

Werk

Titel: 0. Notation and preliminaries.

Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?356556735_0076 | log22

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen 188 B. Mazur and A. Wiles

$$f = \text{constant}) \cdot \prod_{a \in (\mathbf{Z}/p\mathbf{Z})^*} g_{0,a}^{\chi(a)},$$

where $\chi(a) = (a/p)$ is the Legendre symbol. Here I am using the obvious modification of Kubert-Lang's notation for Siegel functions, i.e., (a, b) in $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ rather than in $1/p\mathbb{Z}/\mathbb{Z} \times 1/p\mathbb{Z}/\mathbb{Z}$ [39].

To compute f^w we use a result of Kubert and Lang (§ 4 of [39]) which applied to our case gives:

$$f^{w} = (\text{constant}) \cdot \prod_{\substack{a \in (\mathbf{Z}/p\mathbf{Z})^{*} \\ b \in \mathbf{Z}/p\mathbf{Z}}} g_{a^{-1},b}^{\chi(a)}.$$

Now let \equiv denote "mod squares":

$$f \cdot f^{\mathsf{w}} = \prod_{\substack{a \in (\mathbf{Z}/p\mathbf{Z})^* \\ b \in (\mathbf{Z}/p\mathbf{Z})}} g_{0,a} \cdot \prod_{\substack{a \in (\mathbf{Z}/p\mathbf{Z})^* \\ b \in (\mathbf{Z}/p\mathbf{Z})}} g_{a^{-1},b} = \prod_{\substack{(a,b) \in \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z} \\ (a,b) \neq (0.0)}} g_{a,b}$$

and the latter product of Siegel functions is one.

3. Page 100, line 7 bot. The formula for the action of T_l on $X_1(N)$ quoted here is incorrect. The correct formula is, of course, well known (cf., e.g., [67], §2), and the argument on the next page in which the formula is used is unaffected by the correction.

II. Erata for [67]

Hida has pointed out that the formulas for U_p' in Theorem 5.3 are not correct as they stand. They should state:

On
$$\operatorname{Pic}^0(\mathscr{C}_{0}^{(N)})$$
, $U_p' = \langle n_p^{-1} \rangle (\operatorname{Frob}_p + \sum_{\zeta \neq 1} W_{\zeta})$.
On $\operatorname{Pic}^0(\mathscr{C}_{0}^{(N)})$, $U_p' = \operatorname{Ver}_p$.

The proof is correct except for the formula giving the conjugation of Frob_p and Ver_p by W. They should read:

$$W^{-1}(\operatorname{Frob}_p)W = \operatorname{Frob}_p \cdot \langle n_p^{-1} \rangle, W^{-1}(\operatorname{Ver}_p)W = \operatorname{Ver}_p \cdot \langle n_p \rangle.$$
(A.W.)

Chapter 0. Notation and preliminaries

If K is a field, \overline{K} denotes an algebraic closure. If K is a local or global field, $\mathcal{O}(K)$ is its ring of integers.

If Y is a scheme over a base S and $T \rightarrow S$ any base change, $Y_{/T}$ denotes the pullback of Y to T. If $T = \operatorname{Spec} A$, we may also denote this scheme by $Y_{/A}$. By Y(T) we mean the T-rational points of the S-scheme Y, and again, if $T = \operatorname{Spec} A$, we may also denote this set by Y(A).

If $A_{/T}$ is a group scheme and N an integer, $A[N]_{/T}$ is the kernel of multiplication by N in A, viewed as group scheme over T.

A finite flat group scheme G over S is said to be of *multiplicative-type* if its Cartier dual is étale; it is called *ordinary* for every geometric point s of S, the fibre G_s is a product of a multiplicative-type group scheme and an étale group scheme.

Proposition. Let K be a finite extension of \mathbb{Q}_p of ramification index not divisible by p-1. Let $\varphi \colon G_1 \to G_2$ be a morphism of ordinary finite flat group schemes over $\mathscr{O}(K)$ such that the induced map

$$\varphi(\overline{K})$$
: $G_1(\overline{K}) \rightarrow G_2(\overline{K})$

is injective. Then if k is the residue field of O(K), the induced mapping

$$\varphi(\bar{k})$$
: $G_1(\bar{k}) \rightarrow G_2(\bar{k})$

is also injective.

Remark: Although this is all we shall use, much more is true: Under the same hypotheses on K, and G_1, G_2 , any injection $\varphi_{/K}: G_{1/K} \hookrightarrow G_{2/K}$ extends to a closed immersion of G_1 to G_2 .

If we *drop* the hypotheses that G_1 and G_2 are ordinary, but require that the ramification index of K be *less than* p-1, these results remain true by the work of Oort-Tate ([52]; for groups of order p); of Raynaud ([55]; for groups of type (p, p, ..., p); and of Fontaine ([20]; for arbitrary groups).

Before we give the proof of this proposition, recall the following consequences of the theory of Oort-Tate [52]:

Any finite flat group scheme G of order p over $\mathcal{O}(k)$ is isomorphic to a group scheme of the form $G_{a,b}$ for a,b elements of $\mathcal{O}(K)$ such that $a \cdot b = w_p \cdot 1$ where w_p is equal to p times a unit. [52], §2; especially Theorem 2). The pair (a,b) is uniquely determined by the isomorphism class of G up to multiplication by (p-1)-st powers of units in $\mathcal{O}(K)$, i.e. $G_{a,b} \cong G_{a',b'}$ if and only if $a' = u^{p-1} \cdot a$, $b = u^{p-1} \cdot b'$ for some $u \in \mathcal{O}(K)^*$.

The group schemes $G_{a,b}$ and $G_{a',b'}$ are isomorphic over K (i.e. they have isomorphic Galois representations) if and only if

$$a' = r^{p-1} \cdot a;$$
 $b = r^{p-1} \cdot b'$

for some $r \in K^*$.

The group scheme $G_{a,b}$ is of multiplicative type if and only if b is a unit in $\mathcal{O}(K)$; it is étale if and only if a is a unit.

Lemma 1. Let G, G' be finite flat group scheme of order p over O(K), where G is étale and G' is of multiplicative type. Suppose that the ramification index of K over \mathbf{Q}_p is not divisible by p-1. Then there are no nontrivial homomorphisms over K from G to G'.

Proof. Let $G = G_{a,b}$; $G' = G_{a',b'}$ where a and b' are units in $\mathcal{O}(K)$. Let v be the valuation of K, normalized so that if π is a uniformizer then $v(\pi) = 1$.

By our hypothesis, $v(p) \not\equiv 0 \mod (p-1)$. But if there were a nontrivial homomorphism (hence isomorphism) from $G_{/K}$ to $G_{/K}'$ then $b = r^{p-1} \cdot b'$ for some $r \in K^*$ and $v(p) = v(b) = (p-1) \cdot v(r) + v(b') = (p-1) \cdot v(r)$ yields a contradiction.

190 B. Mazur and A. Wiles

We now return to the proposition.

Replacing K by a finite unramified extension, we may suppose that the étale quotients $G_1^{\text{\'et}}$, $G_2^{\text{\'et}}$ are constant group schemes, and the connected components G_1^0 , G_2^0 are the Cartier duals of constant group schemes. By our hypotheses on K, there are no nontrivial mappings between constant group schemes over K and Cartier duals of constant group schemes (in either direction). It follows that the inverse image of $G_{2/K}^0$ under $\varphi_{/K}$ is $G_{1/K}^0$ and consequently induces an injection of étale quotients

$$\varphi^{\operatorname{\acute{e}t}}\colon \ G_1^{\operatorname{\acute{e}t}} \hookrightarrow G_2^{\operatorname{\acute{e}t}}\,,$$

proving the proposition.

In this paper we shall often be given p-divisible group schemes $\Gamma_{/\mathbb{Q}_p}$ such that for some finite field extension K of \mathbb{Q}_p , the "base change" $\Gamma_{/K}$ is isomorphic to the generic fibre of a p-division group scheme over $\mathcal{O}(K)$. By a theorem of Tate, this group scheme over $\mathcal{O}(K)$ is uniquely determined (up to a canonical isomorphism) by $\Gamma_{/K}$. We shall call it $\Gamma_{/\mathcal{O}(K)}$ and refer to it as the prolongation of $\Gamma_{/K}$ over the base $\mathcal{O}(K)$. By the uniqueness theorem, one has that prolongations "commute with base change".

Given a *finite flat* group scheme G over K it is not necessarily the case that it admits at most one *prolongation* to a finite flat group scheme over $\mathcal{O}(K)$.

Corollary to the Proposition. Let K be as in the proposition and let $i_{/K}$: $\Gamma_{/K} \to \Gamma_{/K}'$ be an injection of p-divisible group schemes over K. Suppose that $\Gamma_{/K}$ and $\Gamma_{/K}'$ have ordinary prolongations over $\mathcal{O}(K)$. Then the unique homomorphism

$$i: \Gamma_{\mathcal{O}(K)} \to \Gamma_{\mathcal{O}(K)}'$$

which extends $i_{|K|}$ ([64] Theorem 4) induces an injection on \bar{k} -valued points:

$$i(\overline{k}): \Gamma(\overline{k}) \hookrightarrow \Gamma'(\overline{k}).$$

Remark. The morphism i is, in fact, a closed immersion.

For use in Chap. 4 we include the following result.

Lemma. Let K be a finite extension field of \mathbf{Q}_p and $\mathcal{O} = \mathcal{O}(K)$.

Let $\mathcal{N}_{|0}$ be the Néron model of an abelian scheme $A_{|K}$. Suppose $\mathcal{N}_{|0}$ has semi-stable reduction.

Let $G_{|K} \subseteq A_{|K}$ be a finite subgroup scheme, and $G_{|\emptyset}$ the Zariski-closure of $G_{|K}$ in $\mathcal{N}_{|\emptyset}$. Suppose that the splitting field of the action of $Gal(\overline{K}/K)$ on $G(\overline{K})$ is an unramified extension of K.

Then G_{0} is a finite flate (étale) group scheme.

Proof. The Néron model commutes with unramified base change; schematic closure commutes with flat base change. Therefore we may suppose the Galois action on $G_{/K}$ trivial. Let $\mathscr{G}_{/\emptyset}$ denote the constant group scheme G(K) over \mathscr{O} . Since $\mathscr{N}(\mathscr{O}) \to \mathscr{N}(K)$ is a bijection, we have a morphism $u: \mathscr{G}_{/\emptyset} \to \mathscr{N}_{/\emptyset}$ such that $u_{/K}$ is an isomorphism of $\mathscr{G}_{/K}$ onto $G_{/K}$. Therefore u factors through the schematic closure $G_{/\emptyset}$. Since $\mathscr{G}_{/\emptyset}$ is finite, so is $G_{/\emptyset}$.