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Semiregular maximal abelian =-subalgebras
and the solution to the factor state
Stone-Weierstrass problem

S. Popa

Department of Mathematics, National Institute for Scientific and Technical Creation,
Bdul Pacii 220, 79622 Bucharest, Romania

Let M be a factor von Neumann algebra and AcM a maximal abelian *-
subalgebra (abbreviated in the sequel as MASA) in M. A is called semiregular
if the normalizing group of 4 in M, A (A)={u unitary element in M|uAu*
= A}, acts ergodically on A ([6]).

In [10] we gave a constructive proof of the existence of semiregular
MASA’s in weakly separable factors of type II,, II,. By Connes’ discrete de-
composition this automatically yields the existence of semiregular MASA’s in
factors of type III,, 0<A<1. Moreover, using the discrete decomposition of
type 111, factors (see 5.3.6 in [4]) and going along the line of the proofs in [10]
(see also [1]), one can easily show the existence of semiregular MASA’s in
factors of type IIl,. Further developments of these results may be found in
[11]. In this paper we prove that type III, factors also have semiregular
MASA’s, thus obtaining the following general result:

Theorem 1. Any separable factor has a semiregular M ASA.

Actually, as in the cases II,, II_, III,, 0<1<1, we prove that given a III,
factor M and M, a uniformly hyperfinite C*-algebra with diagonal A4, ([8]),
there exists a representation n, of M, in M (ie. ny(M,)= M) such that N
=my(M,)" is a factor and n4(4,)" is maximal abelian in M. This clearly implies
Theorem 1 (see also 4.1 and Remark 3.5 in [10]), and also the following:

Theorem 2. Any separable factor M has an approximately finite dimensional
subfactor N with trivial relative commutant in M, Nn M =C.

An important feature of these results is related to the Stone-Weierstrass
problem for (norm) separable C*-algebras. In [2] Anderson and Bunce, based
on preceding work by Sakai [12], proved that if any separable factor has a
semiregular MASA then the factorial Stone-Weierstrass conjecture holds true.
Thus, our Theorem 1 constitutes the last “brick” in the proof of the following:
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Theorem 3. If B,cB are separable C*-algebras and B, separates the factor
states of B then B,=B.

Another consequence of our results is related to the possibility of extending
factor states from a C*-algebra B, to a larger one B> B,,. Indeed, by a result
of Sakai (cf. Theorem 7 in [3]), the preceding Theorem 2 entails:

Theorem 4. If B,cB are separable C*-algebras then every factor state of B,
extends to a factor state of B.

We mention that for properly infinite factors a different proof of Theorem 2
was independently obtained by R. Longo [9], using the machinery developed
in [7]. We shall end the paper by giving a global and elementary proof for the
existence of semiregular MASA’s in all factors of type III, assuming the apriori
existence of approximately finite dimensional subfactors with trivial relative
commutant.

In the proof of the partial results obtained in [10] we considered a criterion
for an abelian *-subalgebra of M, range of a normal conditional expectation
and generated recursively by finite partitions, to be maximal abelian in M. We
now use another criterion, that is also suitable to inductive constructions, but
does not involve existence of normal conditional expectations. This criteria is
an easy consequence of a result by Skau ([13], Corollary 1) and of the Kap-
lansky density theorem. Let a von Neumann algebra M be represented on a
separable Hilbert space # with cyclic and separating vector ¢ and choose a
norm dense sequence of vectors {£,}, in # Let Ac M be an abelian von Neu-
mann subalgebra of M which is the weak limit of an increasing sequence of

finite dimensional subalgebras {4,},, | ) A} = 4.

Lemma 1. The following two conditions are equivalent :

(i) A is maximal abelian in M.

(ii) There exist z,e(A4,UM")", |zl £1, such that |[A,E]1¢;—2,&,ll = O, for all
J.
(For Bc (), [B¢] denotes the orthogonal projection onto the closed linear
span of B¢).

Let M be a separable type III, factor. The next Lemma is a consequence of
Connes-Stormer transitivity theorem [5]:

Lemma 2. Let Ay= M be an abelian finite dimensional von Neumann subalgebra
of M, ¢ a normal faithful state on AynM and ¢>0. There exist a matrix al-
gebra My M with diagonal subalgebra A, and a normal faithful state ¢’ on
Ay M, such that ||@' — || <e and ¢'(xy)=0¢'(x) ¢'(y), for xeMynM and yeA,.

Proof. Let e,,...,e, be the minimal projections in 4, and choose partial isom-
etries vy, v,, ...,v, in M with v; v} =e,, v¥ v,=e¢, (this is possible because M is of
type III). Consider the normal faithful positive forms ¢(v;- v¥) and ¢(e; " e;) on
e;Me;. By [5] there exist unitary elements u; in ¢;Me; such that v, u; =e, and

llc; @(v,u;-uf v¥)—ole;- e)] <e/n

where ¢;=¢(e) @(e;)”!. For xedynM=Y e,Me; let ¢'(x)=Y c;p(vu;xu*v¥).
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Clearly ||¢'—¢|l<¢ and if M, is the algebra generated by the partial iso-
metries v,u;, then for any xeM{,n M we have x=) ufv¥xvu; so that ¢'(xe;)=
@' (Ut vF xvu) = (e, xe,) =¢'(x) @'(e)). ‘

To prove Theorem 1 in the remaining case when M is of type I1I,, suppose
M acts on the separable Hilbert space # with cyclic and separating vector ¢
and fix {¢,}, a norm dense sequence in # Denote by ¢, the state on M given
by & For each n=1 we construct by induction the objects:

a) A finite dimensional subfactor M, = M with matrix units {e;}, ; and di-
agonal subalgebra 4,=span{el};;

b) A normal faithful state ¢, on A, M;

¢) An element z,e(4,UM’)", |z,| £1;
such that the following conditions hold:

(1) M,oM,_,, A,>A, , and each ¢/, ' is the sum of some e};;
@) l9p=@n_ilgpoul <27" and @, (xy)=0,(x)@,(y) for all xe4,, yeM, " M;
(3) I[4,¢1¢;—2,8501 <277, 15jsn

Suppose these objects have been constructed up to n—1. Let B® be an
arbitrary maximal abelian subalgebra in ¢%7'Me’7". Then B= Zefl ‘Bt is

maximal abelian in M. Since B® is separable there ex1sts an increasing
sequence of finite dimensional subalgebras Bj<B° | )Bi*=B° Thus
n

{Ze{'l 'B%en7 1} increase to B. By “(i) implies (ii)” in Lemma 1, there
ex1sts an m such that if A,=) e/ 'Ble};" then |[[4,8]¢;—z,¢,(<27",

1<j<n, for some appropriate element z,e(A,uM)", |z,£1. Denote by

P=¢}7'Mej7! and P=0,_ (@1 'e,_,lp- We now apply the preceding
lemma to B =A,e17'cel7'Me;7 =P and to ¢ to get a state ¢’ on B NP
and a matrix algebra M, = P with matrix unit { f;;} = P such that f; are the mini-

mal projections of BY, |l(p' @|BY " P|| <27, @'(xy)= <p(x) ¢'(y) for all xeB?,
yeMynP. Let M, be the algebra generated by f;ers ! ¢, the state on 4,nM

defined by ¢,(x)=) c;¢'(e}; ' xel '), where ¢;=¢,_,(e) @,_,(e;)~". It is easy

then to verify that M,, ¢,, z, defined like this verify conditions (1), (2), (3).
Let A=) Ay. By condition (3) and “(ii) implies (i)” in Lemma 1, 4 is maxi-

mal abelian in M. Since ¢, are all defined on A< A, "M, by (2) the sequence

{p,lA}, converges to a normal state ¥ on A. Moreover if N=()M) then

Y(xy)=y(x)y(y) for all xel JAy=A4, ye(( JM,)nM=N'nM. But AcN
so that NnMcA'nM=A. Thus Y(xy)=y(x)y¥(y) for all x,ye N'nM. This
means that N'n M has a nonzero atom, say e. Hence AeceMe is a semiregular
maximal abelian subalgebra in eMe, (Ne) neMe=Ce and because eMe is
isomorphic to M the proof of Theorem 1 is completed.

Finally let us consider a type III factor M acting on the separable Hilbert
space s with cyclic and separating vector ¢ and having an approximately
finite dimensional subfactor N <M such that Nn M =C. We fix {{;}; a norm
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dense sequence of vectors in # and {yj}jc@(%) a sequence of operators
dense in the unit ball in the strong operator topology. For each n>1 we
construct by induction:

(«) A matrix algebra M, = M with matrix unit {};}, ; and diagonal subalgebra
A,=span{e];};;

(B) Elements z, in the unit ball of (4,uUM’)” and xj,...,x" in the unit ball
of M,uM")";
such that the following conditions are satisfied:

(1) M,oM,_,, A,oA,_, and each ¢/ ! is the sum of some ef;;
() ILA4,¢1¢;—2, 801 <277, 15j=n;
() y;—xe&5ll <277 15, k=n.

Assume the construction for 1,2,...,n—1. Since e};'Me};! is isomorphic
toM there exists an increasing sequence of finite dimensional subfactors N? in
€11 ' Me;7! such that (UN2) nei ' Me7 ' =Ce"7 . Then the finite dimension-
al subfactors N, generated in M by N? and M,_, satisfy (UN)"M=C so
that | J(N,UM’)" is a dense *-subalgebra in %(#). By the Kaplansky density

k

theorem there exist xj,...,x} in the unit ball of () (N,uM’)" such that |x}¢;
k

—¥:¢;1 <27", 1=i, j<n. Let k be large enough such that all x}, 1 <i<n, are in
N, and denote MJ=N,. Further let {f;;} be a matrix unit for MJ such that
{f.} is a refinement of ¢7; ' and more generally such that each ¢! is the sum
of some f,,. Let also B® be a maximal abelian subalgebra in f,, Mf,,, generat-
ed by an increasing sequence of finite dimensional subalgebras B%. Then B,

=Y f,; B f,; increase to a maximal abelian subalgebra in M so that by Lemma 1
— /i1 % mJ 1

there exist an m such that | [B,¢]¢j—z¢; <277 1<j<n, for some z in the
unit ball of (B,,uM’)". Take A,=B,,, z,=z and choose any matrix unit {g,}, .
in f, Mf;, with span{g,},=Bgs=A,f,. Then the matrix algebra M, generat-
ed in M by M} and {g,},,, with the set of matrix units {e};}, ;/={f,,8,,} sat-
isfy the conditions.

Let A=(JAy and N=()MY. Then by (2) and Lemma 1, 4 is maximal

abelian in M. Moreover the normalizer of 4 in M generates an algebra that
contains N by (3), U(MkuM’)” is dense in %#(H), so that (NUM')" =RB(H)
k

which means that Nn M =C. In particular N is a factor. This shows that 4
is semiregular in M.

r-q Sgl—"!
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