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1. Introduction

Let G be a connected reductive group over k=11_7p, and 6: G— G an involutive
automorphism. We fix a subgroup K of G, having finite index in the fixed
point set of 6; and we assume that p#2. Then K has only finitely many orbits
on the flag variety # of all Borel subgroups of G. If xe#, write K, for the
isotropy group. Then the component group K /(K,), has exponent 2. Fix a
prime [+p. A K-equivariant sheaf of Q,-vector spaces on the orbit ¢ =K -x is
specified by the representation of K /(K,), on the stalk at x. Accordingly the

sheaves with one dimensional stalk play a central role.

Definition 1.1. Let 2 be the set of all pairs (0, y), with @ an orbit of K on £,
an y an isomorphism class of K-equivariant sheaves of one dimensional Q,
vector spaces on @. Since @ is determined by y, we may write simply y instead
of (0,7). For (0, y)e2, we write

[(y)=dim 0.
Example 1.2. Consider the group G x G, with the involution 0(x, y)=(y, x); write
G, for the fixed point set, the diagonal subgroup of G x G. The orbits of G, on
% x B are in one-to-one correspondence with the Weyl group W of G, by

we O, ={(B,B') in relative position w}. The isotropy groups of G, on & x %
are all connected, so the set 2, of Definition 1.1 may be identified with W.

Example 1.3. Suppose G=SL(2, k), and

0 _(1 0) (1 0)—1
=4 —1/8 o —1f -
0
Then K is the usual torus, consisting of diagonal elements (g z“)' The flag

variety is B=P'=ku{0};
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and K acts by

z 0
(O z_l)-y=zzy (zek™, yeku {o0}).

Thus K has three orbits {0}, {0}, and k*; the isotropy groups are K, K, and
{+ 1} respectively. The set 2 therefore has four elements: the constant sheaves
on the orbits, and a “Mobius band” coming from the double cover of k*.

Example 1.4. Suppose G=PGL(2,k), with the same automorphism as in Exam-
ple 1.3. We take for K the fixed point set of 6, which is the normalizer of a
torus in G. The other component of K contains an element n taking y to y~!
on IP! =ku {o0}. This interchanges {0} and {cc}, so there are two orbits of K
on #. The isotropy group of {0} is K,, and that of {1} is {1,n}. Therefore
there are three elements in 2: the constant sheaves on the orbits, and a second
sheaf on k* differing from the constant sheaf only in the action of K.

Definition 1.5. Suppose (0,y)e2. Let 7 be the Deligne-Goresky-MacPherson
(hereafter DGM) extension of y to @ (see [5], [3], or [7]). This is an element
of the derived category of K-equivariant constructible l-adic sheaves on @, and
may be characterized by the following properties. Write §* for its cohomology
sheaves. Then

(a) 7 is self-dual

(b) #=0 for i<0

(0 ?%023’

(d) If i>0, then supp(5') has codimension at least i+ 1 in 0.

Regard 7 as a sheaf on all of # by extending it by zero off of . Given y,
5€2, write [y:5'] for the multiplicity of y in the Jordan-Holder series for &'.
Our purpose is to compute the numbers [y:6"]. They are fairly delicate
measures of the singularity of @, and the extendibility of §; if @ is smooth and
d extends nicely to it, then &' is zero for i>0, and 6° is the extension of 6.

In the case of Example 1.2, this problem was solved by Kazhdan and
Lusztig in [7]. (Actually that paper considered Schubert varieties, but the
problems are equivalent.) The answer was formulated in a combinatorial way,
and the proof was an application of the Weil conjectures as proved by Deligne.

In the present setting, we will again give the answer in a combinatorial
form. However, we will replace the detailed study of the geometry with two
kinds of extra information. The first is a generalization of Deligne’s work, due
to O. Gabber. The second is a representation theoretic interpretation of the
[y:6], due to Belinson and Bernstein [1]. To G and K one can attach a real
reductive Lie group . The elements of 2 parameterize certain irreducible
representations of %, and the [y:6"] appear in character formulas for these
representations. This is explained in [9]. This interpretation really matters for
the calculation of [y:6']: certain known facts about character formulas cor-
respond to properties of § which we were unable to prove geometrically. One
of our main motivations, however, was to use this idea in the opposite
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direction, to get character formulas for 4. That problem, and the application of
our results to it, is discussed in [9].
We turn now to the formulation of the main results.

Definition 1.6. Let u be an indeterminate. Write M for the free Z[u,u']
module with basis 2.

Let (W,S) be the Weyl group of G. In Sect. 3 we will define for each seS an
endomorphism T, of M, given by explicit formulas on basis elements (as well
as in a natural geometric way). Since this is rather messy, we will not repeat it
here. Although the following fact is not used in what follows, it is certainly
worth observing.

Proposition 1.7 (cf. proof of Proposition 5.5). The endomorphisms T, (Defi-
nition 3.1 and Corollary 3.6) make M a module for the Hecke algebra of W.

Combinatorially, our goal is to imitate the constructions of [6] using M
instead of the Hecke algebra. The function [(§) on 2 (Definition 1.1) plays the
role of the length function on W. We also need an analogue of the Bruhat
ordering. The following definition is not the most natural one; but it does
reduce to the Bruhat order in Example 1.2, and is adequate for our purposes.

Definition 1.8. The Bruhat %-order on 2 is the smallest order with the follow-
ing property. Suppose d'€2, ¢ appears in T,6' with non-zero coefficient, and
[(6)=1(8")+1; that y and 7" have the same relationship (with the same s); and
that y' <. Then we require that y<J and §' <9.

The next ingredient for [6] was an anti-linear (with respect to u—u~")
automorphism of the Hecke algebra; it was defined by

(1.9) D(T,)=T % (weW).

In our case, we want an anti-linear automorphism of M compatible with (1.9)
and the Hecke algebra action on M. The existence of such a map is a
combinatorial problem, but we must appeal to algebraic geometry (namely,
Verdier duality) to solve it.

Theorem 1.10. There exists a unique Z-linear map D: M — M, subject to the
following conditions.

(@) Dum)=u='D(m) (meM)

(b) D(T,+ 1)ym)=u""(T,+1)D(m) (meM,seS)

(c) If 6€2, then

D(®)=u""P[5+ Y R, 5(u)y].

y<o
The R, ; are actually polynomials in u, of degree at most 1(3)—I(y).

Because of Lemma 3.5, condition (b) of the theorem amounts to a system of
equations for the R, ;. The proof of Lemma 6.8 of [9] explains an algorithm
for solving these equations.
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Theorem 1.11. For each 6€9 there is a unique element

Cs= Z s yeM,

y<o

subject to the following conditions.
(@) D(Cy)=q""2C,.
(b) ;=1
(¢) If y=*0, B, 5 is a polynomial in u, of degree at most L0 =I(y)—1).

Once the R, ; are known, P, ; may be computed exactly as for the Hecke
algebra case (see [6]). The use of algebraic geometry in the definition of D
actually forces us to prove slightly stronger uniqueness theorems for D and the
C,: they are unique over a larger coefficient ring than Z[u,u~']. Here is the
main result.

Theorem 1.12. Suppose y, § are in 9. Define 5, §' as in Definition 1.5.
(a) $=20if ids.add
(b) B ;=) [y:6*7u.

There is also a statement about the eigenvalues of a certain Frobenius
map; this is stated precisely in Corollary 4.10.

One could ask for a more self-contained geometric proof of Theorem 1.12
along the lines of the study of Schubert varieties.

Let xeZ and let O be its K-orbit. One can construct an imbedding ¢ of the
affine space k¥ (N =codim () into # with the following properties:

(@) @(0)=x
(b) @(k™) is transversal to ¢

(c) There exists an action of the multiplicative group G,, of k on k¥ of the
form

kg, oV = A" s A XY (AEG,, (%45 + 5, X EKT)

with g;>0 and a homomorphism h: G,,— K such that ¢@(ix)=h(4) ¢(x) for all
1€G,,, xek.

Such transversals played a crucial role in [7]; and although there are some
technical difficulties, it seems likely that they should allow using the methods
of [7] in our case. If this is true, it would eliminate our use of representation
theory, and of Gabber’s extension of Deligne’s work on the Weil coujecture.

The existence of these transversals is also of direct geometric significance.
Very roughly speaking, it means that the singularities are (essentially) obtained
as iterated cones. It is in that setting (over €) that the Goresky-Macpherson
intersection homology theory has been directly related to the [*-cohomology
theory of Cheeger, although the results which have been written down are not
quite general enough to cover our case.

2. The Categories € and €’

We want a geometric description of the module M. To get it, we choose an IF -
rational structure on G so that
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(2.1) (a) each class of parabolic subgroups in G is defined over IF,;
(b) K and 6 are defined over IF,;
(c) each K orbit on £ is defined over IF,; and
(d) the Frobenius map F acts trivially on 2.

Definition 2.2. Let ¥ be the category of constructible, K-equivariant [-adic
sheaves of Q, vector spaces £ over %, endowed with a map

¢ F*F S

having the following properties. If xe 4, write @_ for the map on stalks.
(a) @ is K-equivariant: that is, for all xe# and keK,

D
LﬁF x }x

ij.Fx

G i
is commutative.

(b) For any xe4, fix n=1 so that F"x=x. Then all eigenvalues of @} are
of the form ¢;q"*, with ¢, roots of unity, and d,eZ.

We identify (£, @) with (4, @) if @"=(®P')" for some n. The morphisms of ¥
are morphisms of K-equivariant [-adic sheaves, compatible with the corre-
sponding @" for some n. Write 4 (%) for the Grothendieck group of €.

Given ye2 and deZ, there is an isomorphism

D: F*y—>y

which satisfies (a) and (b) of the definition, with all d,=d; & is unique up to a
root of unity, so

uly=(y, ®)e¥

is well defined. Clearly these elements form a Z basis of A (%); so we may
identify

(2.3) M= A (%).

The form of the Weil conjectures which we will be using does not give
conditions like 2.2(b); so we are forced to consider also a much larger cat-
egory. Put

(2.4) B, =non-zero algebraic numbers (as a multiplicative subgroup of Q)
B, =roots of unity in B,
B =B,/B,

Definition 2.5. Write Z[B] for the group ring of B, and M’ for the free Z[B]-
module with basis 2. We identify Z[u,u~'] as a submodule of Z[B] by
sending u to the image of g in B, which we also write as u; thus McM'
Define ¢’ exactly like %, except that the eigenvalues of @" are only required to
lie in B,. Write 4 (%’) for the Grothendieck group of €.
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Suppose we are given yeZ and b, eB,; write b for its image in B. Then
there is a unique element (y, ) of €’ such that the eigenvalues of @" are all of
the form &b?, with ¢ a root of unity. Write

b-y=(y,®)e¥".
These elements form a basis of £ (%'); so we may identify

(2.6) M =X (€).

3. The Operators T,

Definition 3.1. Fix seS. Put
0,={(B,B')eZ# x % in relative position s}
my, m,: O,— 2B projections on factors.
Suppose Fe% (or €'). We define
T(feX (¢) (or A (¥)

as follows. Pull .# back to n%¥.# on 0, and consider the higher direct images
with compact support Rz, (n*.#). These are K-equivariant, constructible, I-
adic sheaves on £; they inherit the map @, and we will verify the eigenvalue
condition (2.2)(b) in Corollary 3.6. Put

T,(#)=)Y (=1 R'm, (n% S).

As a potential aid to geometric intuition, we give another version of this
definition, and a technical result needed later. Set

(3.2) 2 =variety of parabolic subgroups of G of type s
n, =% — %, the natural projection
L. =n;(n,(x))=IP' (xe ), the line of type s through x.

Lemma 3.3. If £ isin ¥ or ¢,
(L,+1)F =) (- 1)n*R'n, ).
Proof. Let O, = % x # be the fiber product
H——5

Then the set @, of Definition 3.1 is the complement of the diagonal in @,. The
lemma follows. Q.E.D.
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Lemma 3.4. Suppose % is a K-equivariant l-adic sheaf on %, belonging to the
category analogous to € (or €'). Put S =n*%. Then

Y i=0
Rin,5={ 0  i=1
u 'y i=2;

here if W is the Frobenius map for %, then u~'% is an abbreviation for
CA I 9}

Proof. The stalk of R'n,# at m (x) is obtained as the cohomology with
compact supports of the fiber ¥ with coefficients in #. Since Sf=n*¥, 5
looks like % on L, =IP'; so the cohomology lives in degrees zero and two,
and has the indicated form. Q.E.D.

Lemma 3.5. Suppose (0,y)e2. Identify y with the corresponding element of € or
%'. Define

6.-s

ye@

Then T,y lies in A (%), and in the identification (2.3) is given as follows. (We
enumerate cases as in [9], Definition 6.4, where a more combinatorial separation
of cases is given.) Fix xe0.

(a) . <0.
Tiy=uy

(bl) E.nO={x}, and O—0O is a single K orbit. Write § for the unique
locally constant extension of y to 0.

TsV=)7|@_w-

(b2) L.nO=L_ —{point}. Write § for the unique extension of y to 0. Nec-
essarily O — 0 is a single K orbit.

Ty=@u—1)y+u(flo_o)

(cl) E,nO={x,y}. Then O—0 is a single K orbit, and y has two distinct
extensions 9, to 0.

Ts)’ZY‘*’(ﬂ"‘?zH@—@-

(c2) L.nO=L,—{two points in one K orbit}, and y extends to 0. write %,
for the extension, y'=7|,_,, and 7, for the other extension of y' to 0.

Ty=@u—1)y—79,le+@—1)y"

(dl) E.nO={x}, and O —0 is union of two orbits. Call these orbits O' and
0", labelled so that

dim@=dim @' =dim0 —1.
Let § be the unique extension of y to O.

Ty =7lo +7lo--
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(d2) L.nO=L_—{2 points in two K orbits}, and y extends to 0. Call the
orbits O', 0", and the (unique) extension 7.

Ty=u—2)y+u—1)Fle+7le).
(e) L.nO=L_—{2 points}, and y does not extend to 0.
Ty=—.

The proof is left to the reader; most of it takes place inside Examples 1.3 (for
(d)) or 1.4 (for (c)).

Corollary 3.6. T, is an endomorphism of A (%) (or A" (¢') or M, or M) satisfying
(T,—u)(T;+1)=0

Proof. Clearly T, is additive for short exact sequences, T,(bm)=>bT,(m) for beB,
meM’; so the eigenvalue condition need only be verified on generators. This
was done in Lemma 3.5. So T, is well defined in the Grothendieck group. The
conclusion of Lemma 3.4 can now be written as

(T,+D)(n¥9) =(u+1)n*¥
or

(3.7) (T, —u)(n* %) =0.

If # is an arbitrary object of %, then Lemma 3.3 shows that (T,+1).# is a
combination of various n¥%; so (3.7) gives

(T,—u)(T,+1) #=0. Q.E.D.

This identity for T, may easily be checked case by case in Lemma 3.5 as well.
Another approach is sketched at the end of Sect. 5.

4. Proofs of Main Theorems

Suppose £e%’. Following Verdier [8] one can associate to .# a complex
R Hom (¢, dualizing complex of %) of I-adic sheaves on 4, well defined up to
quasi-isomorphism. According to Deligne [2], its cohomology sheaves D ~(.#)
are constructible. (In the analytic category,

D~(#).,=Hom(H{(U, #),C) (xe%),

for any small ball U containing x.) These are again K-equivariant
sheaves. They inherit a map @ from .#: it is obtained as a limit of con-
tragredients of maps induced by &. There are natural long exact sequences
in D~ attached to short exact sequences in €', so we get a map

(4.1) D: A (€)>H(€), D(F)=Y(-1)D7(H).

The corresponding map on M’ is also written D.
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Lemma 4.2. Suppose meM’, 6€ %, and beB. Then
(a) D(bm)=b""'D(m)
(b) D((T,+ 1)ym)=u~"(T,41)D(m)
(c) If 0e2, then

DE)=u"""6+ Y a,y, a,eZ[B].
7<d

Proof. Part (a) is clear. For (b), we use Lemma 3.3. Taking higher direct images
of the proper map n, commutes with D in the derived category ([8], p. 195);
and D commutes with inverse image by a smooth map of relative dimension d,

up to a Tate twist (d). Now =, is proper and smooth, of relative dimension 1;
so, in A (%),

Y= R 2 (D) @O, (1)

iJj

=Y (= )+ D ~i(x} (R, ).

By Lemma 3.3, this is (b). For (c), we use the representation theoretic in-
terpretation of & ([9], Theorem 3.5 and Proposition 4.1). Then (c) is contained
in Corollary 5.12 of [9] (which is a weak cohomology vanishing result for
group representations.) Q.E.D.

Lemma 4.3 ([9], Lemma 6.8). There is at most one endomorphism D' of M' or M
satisfying conditions (a)-(c) of Lemma 4.2. If D' is such an endomorphism, and we
write

V€D
then R, 5 is a polynomial in u, of degree at most 1(6)—1(y). In particular, D' must
preserve M.

This result is proved by a purely combinatorial analysis of the three
conditions (a)-(c). Theorem 1.10 is a consequence of these two lemmas.
We turn now to Theorem 1.11. Fix deZ. If § is regarded as an element of
%, then §' is in a natural way an object of %’. Write & for corresponding
Frobenius map. Define
(44)(a) A}={ieQf|A is algebraic, and all complex conjugates
of 4 have absolute value ¢*} =B,

(notation 2.4). The sets A} are cosets of 4. Put
(4.4)(b) A;=A3/B,.

Suppose xeZ; choose n so that F"x=x. By a deep theorem of Deligne and
Gabber (see [4]),

(4.5) eigenvalues of @" on 8. S Aj LA} ,U...UA],.,.
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This is the “Riemann hypothesis” part of the Weil conjectures for DGM
cohomology. So we can write

§'e Y PleM,
yeD
with
(4.6)(a) PieZ[Ay, VA, ,U...04,.,]

(the free Z module with the indicated generators). Define

(4.6)(b) B ;=Y (—1)B;cZ[B]
Cs= Z g,a)’EM'
ye2
oY (—1)dex (@)
Lemma 4.7
(@ D(Cy=u""'@C,
(b) K ,;=1

(©) If y=*0, put m=%(I(5)—I(y)—1). Then
PMEZ[AO,,,UA%,,,U...uAm/z,,,].

Proof. Parts (a), (b), and (c) are reformulations of conditions (a), (c), and (d)
(respectively) in Definition 1.5. Q.E.D.

Lemma 4.8. Fix 6€2. Then there is at most one element

Ci=2 B4y
€D
of M, satisfying conditions (a)-(c) of Lemma 4.7. If Cj is such an element, then
B'; is a polynomial in q (with integer coefficients ).

Proof. We proceed by downward induction on I(y). Condition (a), when written
out in terms of the R polynomials of Lemma 4.3, is a recursion formula for the
P, 5 in terms of the R and the P, ; with I(y")>I(y). We leave the details to the
reader (compare [6], proof of Theorem 1.1). Q.E.D.

These two lemmas prove Theorem 1.11.

Corollary 4.9.
P, ()= (1) [y:57.

The remainder of the proof of Theorem 1.12 is representation theoretic, and
may be described as follows. In [10], there is an algorithm which (in light of
[1]) computes the numbers [y:6'], modulo a technical conjecture (Conjecture
2.5 of [10]). The recursion step in this algorithm is based on formulas which
are also satisfied by the P, ;. So to prove Theorem 1.12, one only has to prove
the technical conjecture. At each step of the algorithm, one can use Corollary
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4.9 to deduce enough of the conjecture to justify the following step. Details of
the argument are given in [9].

Corollary 4.10. Fix €9, and choose a representative (0, D)€€’ for the corre-
sponding element of A '(€). (Thus we are assuming that if xe%, and F"x=x,
then the eigenvalues of " are roots of unity.) Let & be the induced map on §*'.
Suppose xe A, and F"x=x. Then the eigenvalues of & on %' are of the form
eq™, with & a root of unity.

Proof. We want to show that
P2i=[y: 5]
By Theorem 1.12(b) and (4.6)(a),
g[w?”] W=2 k%
P’ eN[4,.,U...Uu4,,] (N={0,1,2,..}),
[y:6*1=RZ().

(The coefficients of P?; are dimensions of eigenspaces, and therefore non-
negative.) We proceed by downward induction on i; so suppose

PA=PA(M), i,
Comparing coefficients of 4’ in

LRL=Y R

gives
coefficient of u’ in P2i°=sum of all coefficients in P2}°.
Since the coefficients are non-negative,
55w .
=P 0)u®

as required. Q.E.D.

5. Complements
We propose to define a W graph ([6]) attached to M, analogous to the one
defined using the Hecke algebra in [6]. The main ingredients are contained in

Definition 5.1. Suppose 7,0€92, and I(y)<I(d). Set u(y, 6)=coefficient of
=10 =Din P, and p(d, y)=p(y,9).
Write O for the support of 4, and define @, as in Lemma 3.5. Put

7(8)={s€S|0 is open in @, and J extends to 0 }.
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If s¢ 7(9), set
5-0={0'e2|l(6')=I(0)+1, and ¢ appears in T,0}.
Lemma 5.2. Suppose d€ 2, s€S§, and se1(). Then (T,—u) C5=0.

Proof. We begin with a different construction of §. Recall the notation of
Sect. 3:

n: B0, O0,=|) L.
xel

Write
¥ =1,(0,).

Since set(d), O is open in (ﬁs, and ¢ extends to . on @S, such that
SI=nt¥y
for some K-equivariant l-adic sheaf ¥ on ¥ Write ¢ for the DGM extension

of ¥ to ¥ =n (0). Since D commutes (up to a twist) with inverse image by a
smooth map, the characterization in Definition 1.5 gives

S=n*(9).
Now apply (3.7). Q.E.D.
Lemma 5.3. Suppose 6€ 2, seS, and s¢ t(d). Then

(T+1)C= T Cypt+ Y uly, utt@-0+dC
d'es-o y§(&)
set(y

Proof. Define
Ci=(+1)Cy— T uly, Yuit@—0+vC,,

y<0
set(d)

By Theorem 1.11(a) and Theorem 1.10(b),
D(CY)=u~tO+1 s

The rest of the proof follows [6] exactly: Cj has the same leading terms as

Y C,, and satisfies the vanishing condition of Theorem 1.11(b) by con-
d'es-d
struction. We leave the details to the reader. Q.E.D.

Lemma 5.4. (a) Suppose s¢t(d), and 6 €s- 5. Then u(d', 6)=1.

(b) Suppose y=96, s¢t(d), set(y), and u(y, 0)%0. Then yes- d.
Proof. For (a), consider the coefficient of ¢’ in the identity of Lemma 5.2 for §".
The claim follows by inspection of Lemma 3.5. For (b), the assumptions mean

first of all that F; , has degree 2(I(y) —1(8) —1). Consider the occurrence of ¢ in
the identity of Lemma 5.2 for y. Using Lemma 3.5, we can write this as
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uFy ,=ub;, (case (bl), '=s-9)
B, +w=0(F, ,+F, )=ub, (case(cl), s-0={5,,0,})
B ,+w—1)F ,=ub  (case(dl), s-d=s-0"={d})

—bB ,=ub;_, (case (e)).

The last of these is obviously impossible. The others force B; , to have degree

3UG) = 16) = 1) =3((2) —1(5")
for some ¢'es-d. So y=0. Q.E.D.
This result is also obvious representation theoretically.

Proposition 5.5. Consider the graph with vertex set &, and edges

{(7, )€ 2| u(y, 0)*0}.

considered with multiplicity u(y, 6). Label each ye 2 by t(y)=S. Then & is a W-
graph (cf. [6]). That is, if we let & be the free Z[u*, u=*] module with basis
{e,|ye D}, then

= _{—-eé, s€1(d)
S0 uey+ut Y u(y,de,, s¢t(d)

ye2
set(y)

defines a Hecke algebra action on &.
Proof. Embed & in M’ by
um2e;—»y @I C
Then (if we write E;=u~*'® C;
T.e;—T,-'E;, u*e;—u*E;

by Lemmas 5.2-5.4. Since T,— T,={, u* >u~* defines an automorphism of the
Hecke algebra, we need only show that the operators T, and multiplication by
u make M" a module for the Hecke algebra; that is, we must prove Proposition
1.7 for M'. To do this, we first construct the other operators T,, (we W)
directly. Put (for £ €%’)

0, ={(B, B')e # x # in relative position w}
n;: O, — 2 projections on factors
T,f =Y (—1)R'n, (n% F)eX (¥).

To see that this is a Hecke algebra action, two relations must be verified. The
first is

(T+D(T—u)=0 (s€9),
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which is contained in Corollary 3.6. For the other, suppose w, w'e W, and
Iww)=I(w)+I1(w'). We must show that T, ,=T,T,.. Now O, may be iden-
tified with

{((B,B,B"Ye B x & x B|(B,B)e0,, (B,B")e0,,}.

Write #; (i=1, 2, 3) for the three projections on %, and 7,,, #,; for those on
0,,0,.. Define n;, n; (j=1, 2) as above for w, w'. Then
T, (F)=) (= 1) R'%, (7% F)
T,(T, #)=T, (—1yR'n},(n’* #))
=) (=YY RI'my (n} (R m) (n'* £))

Jri
= Z (—1y*s Rj'nx!(Rjﬁlzy(ﬁ’;s(n,z* #))
JJ'

(since 0,,—— 0, is a Cartesian diagram)

|

o, —B

=) (=WY*'Ri'n, (R, , 75 S)
(since m,7,;=1;)

=) (-)'R'n,(#% #)=T,,(F)
(using the spectral sequence of n, #,,=7,). Q.E.D.

When specialized to u=1, the Hecke algebra representation of Proposition
5.5 becomes the “coherent continuation” representation of W on the lattice of
characters of the corresponding real Lie group ¥, in the basis given by the
irreducible characters.

It is possible to define the action of the entire Hecke algebra at once, rather
than just defining the action of a basis. To do this, we consider the group
G x G of Example 1.2. Then the analogue of M for (G x G, G ) (Definition 1.6) is
Just

Zu,u~'][W]=,

the underlying space of the Hecke algebra. Write %, for the analogue of ¥
(Definition 2.2); then

H(E)=H.

The multiplication on s may be defined directly on X4 (%,), as follows.
Suppose £ and #' are in €,. Write

Ty BXBxB—->RBxAB (1+je{l,2,3})
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for the obvious projections. Then we can define

IxI' =Y (—1)RL, [(n%, £)Q(n33 I )] e X (€,).

13

This gives the usual Hecke algebra structure on #. If now ¥ €%, we can define
(writing =, 7, for the projections of 2 x # on %)

I G=3 (—IYR;, [(F ®(n39)] X (%);

and this recovers the action of J# on 4 (%) already defined. These ideas in
turn are merely “Euler characteristics” of operations on derived categories; but
the significance of this is still not clear.
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