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Introduction

The study of the blocks of characters with respect to a prime r of finite
Chevalley groups defined over fields of characteristic p divides naturally into
the cases of equal characteristic r=p and unequal characteristic r=p. This
paper begins the study of the unequal characteristic case for the linear and the
unitary groups when r>2. The results show a particularly close fit of the
Deligne-Lusztig theory, the Brauer theory, and the combinatorial theory
underlying the character theory of the symmetric groups.

The partition of the irreducible characters of the symmetric group of degree
n into r-blocks was given an element combinatorial formulation in the Na-
kayama conjecture:

Let ¢,, ¢, be irreducible characters corresponding respectively to the
partitions A and u of n. Then ¢, and ¢, are in the same r-block if and only if 1
and p have the same r-core.

We show that an analogue of the Nakayama conjecture holds for r-blocks
of G=GL(n,q) or U(n,q). Indeed, let y, and y, be unipotent characters of G
corresponding to the partitions A and u of n. We prove that y, and x, are in
the same r-block of GL(n,q) if and only if 4 and p have the same e-core, where
e is the order of ¢ modulo r. A similar result holds for U(n,q) with e possibly
replaced by 2e. This result, however, is but a special case of a more general
theorem on when two irreducible characters of G are in the same r-block. The
irreducible characters of G can be parametrized as , ,, where t is a semisimple
element of G and ¥ is a unipotent character of Cq(t). Here z, , =y, , if the
pairs (t,y) and (¢, y’) are conjugate in G, and every such pair (t,) does in fact
label a character. We will show that the r-blocks of G are similarly param-
etrized as B, , by conjugacy classes of pairs (s, @), where s is a semisimple r'-
element of G and ¢ is a unipotent character of a canonically defined subgroup
of Cg(s). The more general theorem then states necessary and sufficient con-
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110 P. Fong and B. Srinivasan

ditions for g, , to be in B , in terms of the pairs (¢, ) and (s, ). Since ¥ and ¢
are in bijection with products of partitions, the conditions can be stated in
combinatorial terms involving hooks and cores of Young diagrams. In the case
of unipotent characters, these conditions reduce to the one in the preceding
paragraph.

The case of blocks with cyclic defect groups plays an essential role in our
work, and it is possible in turn to interpret the preceding classification of
characters in a block as an extension of the cyclic theory of Brauer and Dade.
Thus the characters in a block B with defect group R fall into families
parametrized by equivalence classes of elements of R, and a natural definition
of non-exceptional and exceptional characters in B arises from this param-
etrization. In the case where R is cyclic, these equivalence classes of elements
of R* correspond to the classes of irreducible characters of R used in the
labeling of the exceptional characters of B in the cyclic theory. Moreover, the
character formulas of the Deligne-Lusztig theory, when applied to the charac-
ters of B on r-sections, coincide with the formulas of Brauer and Dade.

The sections of this paper are as follows. Paragraph 1 gives the basic
notation and the facts needed from the Deligne-Lusztig theory. Paragraph 2
concerns the characters of the linear and unitary groups. Two results, which we
call of Curtis type and of Murnaghan-Nakayama type, are important for later
use. These relate the values of irreducible characters on a specified element to
values of characters of certain subgroups containing the element. Paragraph 3
describes the possible r-subgroups occurring as defect groups of blocks and
introduces two basic configurations B™* and B™** of blocks which are the
essential constituents of any block. Paragraph 4 contains the key step for a
classification of blocks, namely a parametrization of the blocks B™* by a set
Z' of polynomials whose roots are r'-th roots of unity. The general classifi-
cation of blocks is given in Paragraph 5. The theorem classifying characters in
a block is proved by an inductive argument based on Brauer’s Second Main
Theorem. The difficult case is the first step of the induction when the center
Z(G) contains elements of order r. This is done in Paragraph 6. The general
case is then proved by a simple induction argument in Paragraph 7. Finally,
Paragraph 8 gives several consequences of the theorems. Among these is a
proof that the height conjecture holds for blocks of linear and unitary groups.

As general references for the Deligne-Lusztig theory, the Brauer theory, and
the character theory of the symmetric groups, we mention [21, 9, and 14].

We wish to thank Richard Dipper, Jorn Olsson, and the referee for their careful reading of the
manuscript.

§1

The general linear and unitary groups can be viewed as the groups of auto-
morphisms of an underlying vector space, or as the group of rational points of
a Frobenius endomorphism of an algebraic group. We require both descrip-
tions and shall use the following notation: V is a finite-dimensional vector
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space of dimension n over a finite field F of g elements and characteristic p,
and GL(V) its group of automorphisms. If g=g¢j is a square, F has a unique
automorphism J of order 2, and V has up to equivalence a unique unitary
group U(V); here U(V) can be replaced by any conjugate subgroup in GL(V).
We shall write GL(n, F), GL(n,q) and U(n,F), U(n,q) for the natural matrix
representations of these groups.

Let F[X] be the polynomial ring in the indeterminant X over F, and %,
the subset of monic irreducible polynomials different from X. In the case q is a
square, say q=gqg, let ~ be the permutation of %, of order 2 defined by
mapping

AX)=X"4o, X" "+, 4o, X+,

onto j(X)z(agl)’g("'A’(X"‘). In particular, w is a root of 4(X) if and only if
o~ % is a root of A(X). Thus 4=4 if and only if 4 has odd degree d and the
roots of 4 have order dividing ¢+ 1. We let

F,={4: Ae F,, A= 4}

Fy={A4: AeFyp, A+ A}.

The polynomials in #, and 4%, have odd and even degrees respectively. The
degree of a polynomial A will be denoted by d,. In addition, we define a
reduced degree J, for polynomials in %, U %, by

5. — d, if e,
1T sd,  if A€,

The conjugacy classes of elements in GL(V) are described by elementary
divisors. Given a power 4' of 4 in %, and given g in GL(V), let m,.(g) be the
multiplicity of 4' as an elementary divisor of g. In addition, let (4) denote the
companion matrix of the polynomial A, and let m(A4) denote the matrix direct
sum of m copies of (A). Then

[T [Ima(e)(4)
aeFo i
is the rational canonical form of g.
A similar theory of elementary divisors holds for U(V) (see [22], §2.6).
Given geGL(V), the intersection géL"' AU (V) is either empty or a conjugacy
class of U(V), and the second case occurs if and only if

my(g)=mz(g) forall 4eZ,, all ieN.

In particular, given a power A' of a polynomial Ae%# U%,, the multiplicity
m ,.(g) may be defined as m,(g), where 4 is any polynomial in %, dividing A.
We then call A' an elementary divisor of g if m,(g)>0. The corresponding
canonical form of g as an element of U(V) is then

[T TTma(g)(A).

FruFy i
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In order to have notation which applies to both the linear and the unitary
cases, we adopt the following convention: G(V)=GL(V) or U(V), and ¥ =%, or
F, U F, according as V is a linear or a unitary space. Given geG(V)), its primary

decomposition will be denoted by g= [] g,, where g, is the primary com-
Az #
ponent corresponding to A. Then V and Cg(g) correspondingly decompose as

V=3 "V, and C4@g)= [] C(g),. In the unitary case the V, are non-singular
Ae # AeF
unitary subspaces. We note the following special cases:

1) Suppose g, is Semisimple. Replacing U(V) by a conjugate we may assume
g,=m(A). Let F, be the matrix algebra of degree d, generated over F by the
matrix (A4). Then F, is isomorphic to an extension field E of degree é, over F.
The isomorphism .# from E to F, gives a representation of E over F. If A%,
then £ is equivalent to the regular representation # of E over F, and C(g), is
then represented in GL(V,) or U(V,) as GL(m,F,) or U(m,F,) respectively.
Note that as such, C(g), is a subgroup of GL(md ,, F) or U(md,,F). If Ae%,,
then . is equivalent to the direct sum representation Z®%’, and C(g), is then
represented in U(V,) as GL(m,F,). Again we note that as such, C(g), is a
subgroup of U(md 4, F).

2) Suppose g, is Unipotent. We may assume g,=][[m,(A’), where A=X—1
and m;=m,(g). Let F,, be the algebra generated over F by (A’), and let F®I
be the embedding of F in the center of F,,, where [ is the identity matrix of
degree i. The group

D,=[]GL(m,F®I) or [[U(m,F®I)

is contained as a subgroup of p-power index in C(g),. In particular, D,
contains a Sylow r-subgroup of C(g), for every prime r #p.

Proposition (1A). Let g be a semisimple element of G=G L(n, F) or U(n,F). Let g
=[]g, be the primary decomposition of g, and [1C(g) 4 the corresponding
A A

decomposition of C(g).
i) If G=GL(n,F), then C(g),=GL(m,(g),F,), and |F,: F|=d ;=0 ,.
ii) If G=U(n, F) and AeZF,, then C(g) ,=U(m,(g),F,), and |F,: F|=d,=¢,.
iii) If G=U(n,F) and Ae%,. then C(g),=GL(m(g),F,) and |F,: F|=%d,
=d .

We shall say the elementary divisor 4 of g in (1A) is of linear type if C(g),
is linear, of unitary type if C(g), is unitary.

The character theory of G(V) is best described for our purposes in the
language of Deligne-Lusztig. Let F be an algebraic closure of F, and let G be a
reductive, connected algebraic group over F with an F-rational structure and
associated Frobenius endomorphism ¢. The group G=G° of fixed-points of ¢
on G is then a finite Chevalley group. We recall some terminology. A para-
bolic subgroup of G is a subgroup of the form P=P’ where P is a a-stable
parabolic subgroup of G. A maximal torus of G is a subgroup of the form T
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=T°; where T is a o-stable maximal torus of G. The Weyl group of T is
Wy (T)= (NG(T)/’T)‘7 The subscripts G and G will in general be omitted. A
subgroup L of G is regular if L=L’ for some og-stable Levi subgroup L of a
parabolic subgroup P of G. If the P containing L is also o-stable, then L is
called a subparabolic subgroup of G, and L< P, where P = P°.

Let L be a regular subgroup of G. Let RY be the additive operator from
X (L) to X(G) defined in the Deligne-Lusztig theory, where X (L) and X(G) are
the character rings of representations of L and G respectively over Q,, an
algebraic closure of the /-adic field Q,. (This is an abuse of terminology in
[7,15], where R¢ is written as R§ or R¢_;, and X(L) and X(G) are the
Grothendieck rings of representations of L and G over Q,.) Among the
properties developed in [7, 15], we note the following three:

(1.1) If KELZG are subgroups of G such that Rk, RY, and RY are defined,
then

RS(RL(0)=R%(6) for feX(K).

(1.2) If L and P are corresponding subparabolic and parabolic subgroups of
G, then

R¢ =Ind§ o Inff.

Here Inff is the inflation operator from X(L) to X(P), and Ind§ is the
induction operator from X(P) to X(G).

(1.3) The degree of R§(0) is ege,|G:LI, 0(1). Here ;=(—1)?, where d is the
dimension of a maximal F-split torus of G.

We remark that the proof in [15], Paragraph5 of (1.1) is for the case K is a
maximal torus T, but the same proof applies for (1.1).

Let x be a class function of G. The principal part y,, of x at a regular
subgroup is the class function of L defined by the following adjoint condition:

(1.4) (X =0t RE(O)g  for BeX(L).

In particular, y,,eX(L) if yeX(G). These functions were introduced for a
maximal torus L by Green, [10] page 423, in the case G=GL(n,q), and by
Kilmoyer in the general case.

An irreducible character of G is unipotent if it occurs as a constituent of
R§(1) for some maximal torus T of G. We will denote the set of irreducible
characters of G by G, and the subset of unipotent characters of G by G*. The
irreducible constituents of RY(6) are in G* if and only if fel.

If T and T’ are maximal tori of G, we write T~ ;T or T~ ;T according as
T and T’ are conjugate or not conjugate in G. We use the same notation for
subsets and elements of G. Then

(1.5) R§(0)=R%.(0)

if there exists geG such that T'=g~' Tg and #0'=0, where #0' is the function of
T defined by 20'(t)=0'(g~'tg). The R§(0) satisfy the following orthogonality
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relations:

(1.6) (RS(0), RY.(0) = ?WQTetﬂl T T

if T T

where W(T, 0,0)={w:weW(T), @="0}. The value of R§() at a unipotent
element u is independent of 6, and is denoted by Q%(u). The QY are then
integer-valued functions on the subset G, of unipotent elements of G. The Q%
are called Green functions and satisfy the following orthogonality relations:

IW(MINT| if T~T
IGI ueGy 0 lf T’*’GT

For the remaining part of Paragraph 1 we shall suppose G=GL(n, F) and o
is the mapping a—a" or a—a~9", where a'? is the matrix obtained from a by
raising every entry of a to the g-th power, and ¢ is the transpose operator. The
group G is then GL(n,q) or U(n,q%). This is a departure from the convention
used at the beginning of Paragraph 1, where G=GL(n,q) or U(n,q). In the
context of the character theory of G’ and the “q to —q” phenomena, GL(n, q)
and U(n, g%) are the natural pairings of linear and unitary groups. We shall
return to the first convention in Paragraph 3.

The Green functions satisfy a second orthogonality relation when G
=GL(n, F).

(17) L5 05) 08.(w)= {

(1.8) y

ICa)l  if u~ g’
mcclwm w(1) 0% () = {

if u~gu

Here and elsewhere (T)=G denotes a set of representatives for the G-con-
jugacy classes of maximal tori of G. The character formula for the R§(0) takes
the following form: Let xeG, and let x=su be the Jordan decomposition of x,
where s is semisimple and u is unipotent. Then

1
(1.9) RIO))=r=—~ 2 &0(s) Qgfy-(w).
lC(S)I geG
gTg~1<=C(s)
An equivalent statement can be obtained as follows: Let T, ..., T, be repre-

sentatives for the C(s)-classes of maximal tori of C(s) conjugate in G to T, and
let g,eG be chosen so that T,=g,Tg; '. Let K,= C(s) g;N(T). Then

(1.10) (RF(O)) ( X)— Z Y. 0s®) Qgie-+ (w).

i gek,

Let S be the o-stable maximal torus of G consisting of diagonal matrices of
G. We shall call W=W(S) the Weyl group of G. As usual, W may be replaced
by a conjugate W#, where geG. The Weyl group W is represented as the
symmetric group of degree n in its reflection representation, and as such, there
is a unique involution w, in W which is the element of longest length. The G-
conjugacy classes of maximal tori of G are in bijection with the o-conjugacy
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classes of W. Two elements w,,w,eW are o-conjugate if w,=ww,a(w)~! for
some weW. In the linear case, o-conjugacy is the same as conjugacy. In the
unitary case a(w)=woww, for all weW. Thus w,,w, are o-conjugate if and
only if w,w,, w,w, are conjugate. In both the linear and the unitary cases, the
G-conjugacy classes of maximal tori of G are parameterized by conjugacy
classes of W, and hence by partitions of n. We shall write T, or T, for a torus
representing the G-conjugacy class corresponding to the W-conjugacy class of
w or the partition 4 of n. Then

(1.11) IW(T,)|=ICy (W),
and if A={1"12"2...n"™}, then

l__[(qi— 1) in the linear case

1.12 T)|= . : ; : .
(112 I [1(g'=(=1))+ in the unitary case

When A= {n}, T, is called a Coxeter torus.

The irreducible characters ¢ of W are parametrized by partitions of n. We
shall write ¢, for the character in W corresponding to the partition g The
unipotent characters of G in turn are parameterized by the irreducible charac-
ters of W. We shall write y, for the character in G* corresponding to the
character ¢ in W, and also write % for y, if ¢ is ¢,. The class function

) i &, d R0

is +y,, and if ¢ is ¢,, x* shall also be written as y*. We introduce the x* in
order to simplify the appearance of certain formulas. The Eq.(1.13) can be
inverted to give

(1.14) R (=3 oWy’

peW

The degree of y* is given by a hook-length formula. Let u={u,, u,, ..., u,}, and
let p'={uy, 1y, ..., w,} be the conjugate partition. Let P(x) be the polynomial

XHX - 1)(E"~1=1)...(X=1)
[Tx"—1) ’
h

where d=Y (u})>— Y ip;, and h runs over the hook lengths of u. Then
Jj i
in the line:
(1.15) -ﬂ(]):{&(q) in the linear case

P(—gq) in the unitary case’

This formula is well-known in the linear case; in the unitary case it follows
from [17].
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We pause in this summary of facts to note that the preceding formulas can
be immediately extended to direct products L=[] L, where each L is a linear

.

or a unitary group of degree n, over an extension field E of F. We shall adopt

the following notation: As Weyl group of L, we take W, =]| W, where W, is
r

a Weyl group of L. The irreducible characters ¢ of W, have the form [] ¢,
r

where ¢.eW. If ¢, corresponds to the partition y, of ny, we shall write ¢,
for ¢. We shall then write ¢, for ¢, where p=[1#r. A similar convention will
r

be used for unipotent characters of L and their associated class functions, that
is, we shall write y,, x, or 1® »* for the unipotent characters or functions

corresponding to ¢ = H ¢ or u= n Ur.

Finally, we come to the 1rreduc1ble characters of G. In the linear case these
were constructed by Green [10], and in the unitary case by Lusztig and
Srinivasan [17]. To describe the construction we fix an isomorphism of F*
into Q. Let s be a semisimple element in G and let L= C(s). Such subgroups
L are always regular. Then the fixed isomorphism induces an isomorphism (see
[16], (7.4.2))

(1.16) Z(L)~Hom(L/[L, L],0}).

The linear character of L corresponding to s under the isomorphism (1.16) will

be denoted by $. The irreducible characters y of G are then in bijection with G-

conjugacy classes of pairs (s, /), where s is a semisimple element of G and ¥ is

a unipotent character of L= C(s). The bijection is given as y=¢,¢, R§(S¥). We

note that if [[s, is the primary decomposition of s and [[L is the corre-
r r

sponding decomposition of L, then L is a direct product of the type considered
in the preceding paragraph. If ¥ corresponds to the character ¢ in W, we
shall write y, for i, and if ¢ is ¢u’ we shall also write y, for y. Thus

x=tce  REGx,)=¢ece RE(S1,)

and we shall write any of x, ,,, 4 or £, for x. As before, we introduce the
class function

(1.17) RE(Sx*)=RE(Sy"),

and denote the function by x*¥, x*¢, or y**.
The characters of the form y, , for a fixed s form the geometric conjugacy
class s;. The following is an analogue of (1.13) for characters in sg.

1
— RS (3).
TARIRGA

Here L= CG(s) T, is a torus of L corresponding to w”*, and § denotes the
restriction of § to T,,. This formula follows from (1.17) by expressing x* in the
form (1.13) and using transitivity of the R-operators. We conclude this section
with two results on inner products.

(1.18) =
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Proposition (1B). Let H be a regular subgroup of G of the form H=Cg(p),
where p is a semisimple element of G. Let y, ; and y, , be irreducible characters
of G and H respectively. Then the following hold:

(i) Ift~gs, then (1% RS(#*) =0

(”) If [=S, then (XS'A’ Rg(XS’u))G:(XA, RSS)(S)(X”))C(S)

Proof: By definition

RE (") = RERE,, (1) = RE(EREL(1")-

H(l)

We note that C(t) is a regular subgroup of C(t) since Cy(t)=Cc,(p). The
classification of characters then implies the following: If t s, then y** cannot
occur in R§(x"*) and i) holds. On the other hand, if t=s, then (%%, RS(x*")) is
the multiplicity of y* in REY (x*), which is the statement of ii).

Proposition (1C). Let H be a regular subgroup of the form Cs(p), where p is a
semisimple element of G. Let || Hy and Y. V;. be the decompositions of H and the
r T

underlying space of G corresponding to the primary decomposition [[py of p.

-
Suppose H.=G(V}) for all I'. If y, and y, are respectively unipotent characters
of G and H corresponding to peW and ¢'e W, then

(1% R§(x* ) =(o, Ind}; ¢ )y-

Proof: We note that W, can be assumed to be a subgroup of W because of the
hypothesis that H,.=G(V}) for all I'. By (1.13) applied to H, we have that

= Y. ¢'WRE (1)

IWH| weWy

By (1.14), it follows that

; |
RG(M)=rmr 2 2 dw) d'(w) i,

I WH| deW weWn

whence (1%, R§ (1) =(lg. ¢, = (. Ind}j, (#)y as claimed.

§2

We continue with the notation from the end of the preceding section, so in

particular, G=GL(n, q) or U(n,q*). The main results of this section relate the

values of irreducible characters of G on a given element to values of characters

of certain subgroups containing the given element. Although the results are

stated only for G, they extend immediately to direct products L=]] L, of the
r

form considered in Paragraph 1. The proofs of (2A) and (2B) are based on
unpublished notes of Kilmoyer.
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Lemma (2A). Let y be a class function of G and let X, be its principal part at
the maximal torus T. Then

_ﬂ C(t
2.1) 1n(O=jcqy , & M0

for all teT.

Proof: It suffices to prove (2A) for the case where y is the characteristic func-
tion of a conjugacy class of G, say the class x° Let x=su be the Jordan de-
composition of x, and let y, denote the function on T given by the right
hand side of (2.1). The term y(tv) in (2.1) is non-zero only if tv~ zsu. More-
over, the set of elements veC(t), for which tv~gsu is a conjugacy class of
C(t). Thus

'TJ C(t)(1,8 i — 8
ICol 07w®) if t=s

%=1 if s

and y, is rational-valued. For any 0T, we have

1 C@t)(,,8
IC(x)] erT 0(t) QT( (u®)

t=s8

=(R%(9), 0)¢
by (1.9). Thus (0, xo)r=(0, %(1))r for all 0eT, and so Xo=X(r)-

(0’ XO)T —

Lemma (2B). Let y be a class function of G, and let L be a regular subgroup of
G. The following hold:

1
)r= Y — RS(r)
1= s w(r) T

1
i) 2oy= Y e RE()-
(L) (T)ZCL‘WL(T)l T\A(T)

Proof: Let 0, 6 be irreducible characters of the maximal tori T, T’ respectively
of G. Then

(RE(O) 1, 0)=(R(0), R7.(0),
so by (1.6) we have
6 if T=T7"
2.2 L W el :
22 Rz(0)ry=1 if Ty T

By its definition y,, is W(T)-invariant, so

R(T;'(X(T))(T) =|W(T)| A(r)-
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Let y, be the right hand side of i). Then =y for all T occurring in the

sum Y , and thus (x—yo, R§(6))=0 for all such T and all 6eT But X(G) is
(T)=G
spanned by such R$(0) by [17], Theorem 3.2. Thus y=y, and i) holds.
Now Eq.(2.2) holds with L in the place of G. Let y, denote the right hand
side of ii). By (1.1) and (1.4) (y.)r,= s, for any T occurring in the sum Y .
(<=L
So as before, it follows that y,, and z, have the same principal parts at every

such T. Again, X (L) is spanned by the R%(0) for all such T and all feT. Thus
Xy =Xo and ii) holds.
We remark that (2B)i) and (1.1) imply that

1
Ré(B)= ¥ ———R%(@
L(0) =L (T 0

for any 0 in X(L). Thus the RY are determined by the RS. The following is the
theorem of Curtis type.

Theorem (2C). Let xeG, and let L be a regular subgroup of G containing C(s),
where s is the semisimple part of x. Then

21(x)="Y (1, R{(0)) O(x)

0cL
for all y€G.

Proof: We need only show y,,(x)=y(x) since

twy= Z(m,, ) 0= (1, R§(0)) 0.
OeL

The character formula (1.10) implies that

W, (S
RiGa) ()= ) WL

C(s)
2t oS i) Q57 (1),

where u is the unipotent part of x. It follows by (2B) that

X(L)(x) X(T)(s) QC(S)(“)

1
2 Weo(T
(T)CC(s)| C(s)( )l
1 IT|

)

(T);C(s) |WC(3)(T)| veC(s)u |C( )|

the last equation following by (2A). If we interchange the order of summation
and use the second orthogonality relation (1.8) for Green functions, we find
that

1(sv) QF(v) Q7 (u),

o [
Kl = T 05 = s

veu€®)

as desired.
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Remark: (2C) was proved by Curtis [5], Theorem A, for an arbitrary G in the
case L is subparabolic and y is unipotent. A proof of (2C) for arbitrary G has
been communicated to us by Lusztig.

We will need some facts on characters of symmetric groups. Let ¢, and ¢,
be irreducible characters of S, and S, corresponding to the partitions 4 and 7 of
I and t respectively. We shall write A1 for a partition. The product ¢, ¢, is a
character of §,xS,. Let ¢,0 ¢, be the character of S,,, induced from ¢, ¢, on
the subgroup S,xS, of S,,,. The o operation is associative and extends by
linearity to an operation on class functions of S, and S,. Let &, be the
generalized character of S, defined by

¢r=¢(z)_¢n_1.1}+¢(:_2,12)_--‘(—1)‘_1¢(1r;,

where the subscripts are the hook partitions of t. The sign of ¢, in @, is (—1)"
where [, is the leg length of 7. The following two results are well-known. The
first is a special case of the Littlewood-Richardson rule [13], 16.4; the second
is the Murnaghan-Nakayama Formula [13], 21.1. In the formulas here and
elsewhere, empty sums are interpreted as 0, and ¢,_,=1 if {—} is the empty
partition.

Proposition (2D). Let n=1+t, and let A+—1. Then
$ie®=2(—1)**¢,,

where v runs over all vi-n gotten from A by adding a t-hook, and 1, is the leg
length of the added hook.

Proposition (2E). Let n=1+t, and let pgeS,, where p is a t-cycle and o is a
permutation on the remaining | symbols. Let vi—n. Then

¢.(po) =;(— 1) ¢,(0),

where A runs over all L1 gotten from v by deleting a t-hook, and 1,, is the leg
length of the deleted hook.

We require generalizations of the preceding results. Let ¢ be a fixed positive
integer, and let n=I[+mt, where =20, m=0. If u={1"2"2... k"*} is a partition of
m, let i denote the partition {t"*(2t)"... (kt)™} of mt. We define &, by

At ra i
D= oD 0. o,

where @], is the r,-fold product @,,0®; ... ®,,. Given vi-n, we define £, to be
the set of A1 gotten from v by deleting a sequence of m t-hooks from v. For
each pair (v, A), where vi-n and 1e.%#,, Robinson and Farahat [8] have defined
a character ¢,; of S, and a sign ¢, such that the following hold:

Let ¢ be a permutation on [ symbols, p a permutation on the remaining mt
symbols. Suppose the cycle type of p is i, where u+—m. Then

(2.3) ¢,(po)= Z €, Py:(1) @4(0).

AeZy
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Farahat’s theorem [8], page 312, is stated only for the case t is a prime p and
o is a p'-element. But neither hypothesis is used in his proof.

Lemma (2F). Let the notation be as above, let n=I1+mt, A1, and u+—m. Then
the following hold:

i) ¢0 d)u. = Z &y d’wz(#) o,
1P,

ii) D= Y ()P,
{ f\ﬁf’:"v

Proof. We have by (2D) that

(2.4) ¢’/1° (Du == Z Cm(ﬁ) d)\"

Vin

Here v runs over all partitions of n such that a sequence S of r, t-hooks, r,
(21)-hooks, ... can be successively added to 4 to yield v, and C, (B)=) (—1)'s,

S
where S runs over all such sequences and [ is the sum of the leg lengths of the
hooks of S. If such sequences S linking A and v exist, then 1€, by [18], I,
Paragraph 5. Let ¢ be a permutation on [ symbols, and p a permutation of
cycle type i on the remaining mt symbols. Then

(2.5) dpo)= 3, C,()¢;(0)

AeY
by (2D) and (2E). Hence i) follows by (2.3) and (2.5). Suppose n=mt and v is a
partition of n such that & ={—}. Then (2.5) becomes ¢ (i)=C, , (i), and ii)
follows from (2.4).

We now come to the theorems of Murnaghan-Nakayama type for G. Let
|1 &r be the primary decomposition of the element geG, and YV, the corre-
r r

sponding decomposition of the underlying space V of G. We fix an elementary
divisor A of g and set

Vo= Z Ve, W=V,
Ir+4
o= H 8rs P T84
r+aA
Thus o and p are respectively elements of G,=G(V,) and G,=G(V),). Let ¢
=d,, m=m,(p,), where p_ is the semisimple part of p. Then C,(p))=H=H,
xH,, where H,=G,, H, =C (p), and H,~GL(m,q') or U(m, g*") according
as A is of linear or unitary type. In particular, W, is isomorphic to the
symmetric group S,,. Finally let | be the dimension of V,,, so that n=[+mt. We
shall continue with the notation used in (2F). The maximal tori of H,, when
viewed as maximal tori of G,, correspond to partitions jimt, where - m.
Thus tori of G, of the form T, can be taken as representations for the H,-
conjugacy classes of maximal tori of H, .
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Theorem (2G). Let p, 0, H,, and the notation be as above. Let vi—n. Then

po)= 3, al,x'(o),

Ae .,

where &, is the set of partitions obtained from v by removing a sequence of m t-
hooks,

s Z ()|

and p, is the unipotent part of p. If H, is linear, each a’, is a polynomial in

Z[q'] whose non-zero coefficients have the same sign, and in particular, a?,+0
for leZ,.

Proof. By definition of po, we have C(po)< C(p)< H, so by (2C)
(2.6) (pa)= ). (', R{(0)) 0(po).

6eH

?;I(pu) d)v]/l()u)a

Here the sum need be taken only over fe H" since y, is unipotent. Such a 0 is
of the form §=y,{, where x, is the unipotent character of H,=G, correspond-
ing to A/ and Ceﬁ'{. We may replace y; by x* in 0 without affecting (2.6).
Moreover, {(p)={(p,) since p,eZ(H). Thus

2.7 2(pa)= 3, (s RE* % 3 Lp)0) 1 (o).

AL leHY
Let a?, be the coefficient of y*(s) in the right-hand side of (2.7). Then by (1.1)
(2.8) al, =", R ¢, (x* x RG'(ZC £.)0)

We compute R (Y ((p,) (). Since we may replace { by —( without affecting

;
the expression, we shall take the (s to be the x%, where ¢ runs over the
characters in Wy, . By (1.13) applied to H,, we have

¢ H,
X u§m| (T)I () R7A(1),
and in particular,
0}
1He)= ,lgml (7;1)| (1) Q7i(p.):

Using the orthogonality relations for the characters of Wy , (1.11) applied to
H,, and (1.1), we find that

29) REEUP)O= T Gy (T)l

But R%;(l)= Y. ¢, (@) x* by (1.14) applied to G,. Here « need run only over

ap-mt

partitions of mt from which a sequence of m t-hooks can be removed. Thus by

(P REL(D)
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(1C) and (2F) we have

(2.10) (0, RE 6,0 X R§H (1) =(,, b0 ). $,(H) )
=(¢\" d)/lo (p‘])
=&z ¢\-/1(.u)

The first part now follows by (2.8) and (2.9).
For simplicity of notation, we set

2.11) bt =041 (p,).

If H, is linear, the bf are known to be polynomials in Z[¢']. Moreover, if b,
=sziq“, then the function f: u—b%, is a character of S,, (see [11], page 122).

Since

aC}. =8\'A Z (_fiﬂ’ ¢\'/A) q“»

the second part of (2G) follows.

Remark. The by, are also polynomials in Z[g'] in any of the following cases: i)
p is semisimple, ii) p and q are sufficiently large. Indeed, in 1) bﬁ=Q$;(1), and in
ii) Ennola’s conjecture holds, ie. the Green functions for U(n,q?) are poly-
nomials in g obtained from the corresponding polynomials for G L(n,q) by
changing g to —q (see [11]). The functions f in these cases are then genera-
lized characters of S,,, so the a?, are then polynomials in Z[4'].

We note several consequences of the proof of (2G) which will be needed in
Paragraphs 6 and 7. Again, with the notation of (2G), we have

(2.12) (0, RS u, (1) =5, (o0 D).

This follows from (2.10), since y*= )

1
— ¢ (x) RE(1) and so
L g Pt R ()

1
R§ by#y=RY ( Ax Y ——— ¢ (k RG-E(I)),
om0 1) =Reyo, (U 2. Ty a9 R
In particular, if the left-hand side of (2.12) is non-zero, then A can be obtained
from v by deleting a sequence of m t-hooks.

This last remark can easily be extended to cover the case when p is the
product of several primary factors and Cg(p,)=H has the form HyxH, x ...
x H,, where H,=G, as before and H, is isomorphic to G L(m;,q") or U(m,,q*")
for i>1. Let vi-n, A1, and y;-m, for 1 Si<k. If (1", RG( x* ... ) +0, then
A can be obtained from v by deleting a sequence of m, t,-hooks, a sequence of
m,_, t,_,-hooks,..., and finally a sequence of m; t,-hooks. This follows by
induction on k.

Before stating the next theorem of Murnaghan-Nakayama type, we note
the following lemma.
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Lemma (2H). Let y be an irreducible character of G in the geometric conjugacy
class sg, and let teZ(G). Then

Fral x2(18)=5(t) x(8)
or all geG.

Proof. 1t suffices to show this for a class functions y of the form y**. Let K
= C(s) and apply (2B) to y* with K in the place of G. Then

1
Vie RK( Vo).
X (T)ZC[( |WK(T)| T X(T))
Since seZ(K), it follows by (1.1) that
1
5-"_——_RG'A"’= Rq*v !
b 81 (T)ZCK_IWK(T)| 'I(SX(T))

But ‘
RY(30) (tg)=3(2) R§(30) (2)

for all 0T by the character formula (1.9). Thus y(tg)=3(t) 7(g) as claimed.

We will need an extension of (2G) which applies to an arbitrary yeG under
the additional hypotheses that the primary component p is semisimple and the
elementary divisor A has degree t=1. We continue with the notation of (2G).
Let y=y, ,, and let s, run over representatives for the H-conjugacy classes
contained in s~ H. By (1B) and (2C)

1 (po)=Y. 1*(po),

where y** is defined by
(2.13) “pa)="3. (1 R(0)) 0(po).

0€ (sa)m
For fixed o, let s,=s,,s,,, where s,;€H;. Let [](s,;); be the primary decom-
r
position of s,, as an element of G, and let [[p, be the corresponding

.
decomposition of p as an element of Cg (s,,). The hypotheses on p and 4
imply that p,. is primary as an element of Cg; (s,,), its elementary divisor has
degree 1, and G,=H,, G,=H,.

Theorem (2I). Let the notation be as above. Then

15pa)=5,(p) 3 A3, 1 (o)
A

where A runs over products || A, with Apmy(s,,). The coefficient A%, is given
F

by

vrAr

(2.14) A%, =1G,: Cq, (5,0, [T "
r
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where the air, are the coefficients a?, occuring in (2G) when applied to the
class function x'* of Cg(s,); and the primary component p. In particular, A, is a
partition of mp(s,,) obtained from v, by deleting a sequence of 1-hooks.

Proof. We may take s,=s without loss of generality. The characters 6 in sy
have form 0,0,, where 0,€(s;)y,. Now s, and s,, considered as elements of H,
and H, respectively, have elementary divisors in the same set & used for
elementary divisors of elements of G. Thus

OOZXSD.A’ 01 :Xs1,u’

where A= ]_[/lr, = Hur, Apmp(so), and ppmy(s;). Since (2.13) is unaffected
when 0, is replaced by —0,, we may rewrite (2.13) using (2H) as

1(pa)=8(p) 3, (" REOC* x 2 1 #(1) 21 1 (o).
A u
Since H=G,G,, we have by (1B) that
1 pa)=3(p) Z(x Rk, 07 % 2 (1) 1) 1 *(0),
m

where K= C(s) and K;= C (s;). Now

1rH1)=1G,: Cg, (s, x*(1).
Thus

1Npa)=3(p) G, : Cq (sl D 0" RE, &, 0 x X 2*(1) 1) x° X(0)
A u
But
(% Rk, 0 < 2 r* () k) =T1 " R(“,{O,\”r(,(‘r XY (1) )
n r ur

so (2I) holds by (2.8).

Remark. 1t is possible to state and prove (2I) without the hypotheses on p and
A, but the weaker statement is sufficient in the applications.

§3

We return to the convention that G is GL(n,q) or U(n,q). Let r be an odd
prime distinct from p. Let v be the exponential valuation of Z associated to r,
normalized so that v(r)=1. If H is a finite group, we write v(H) for v(|H|). Let e
be the order of g modulo r, and let a=v(q°—1). The integers e and a will have
this meaning for the rest of this paper. If g=g3, we let e, be the order of g,
modulo r. In particular, e,=e if r divides g5 — 1, and e,=2e if r divides g5+ 1.

Lemma (3A). Let v,e,a be as above, and let i be a positive integer. Then the
following hold:

i) v(q¢'—1)>0 if and only if e divides i, and if so, then v(q' —1)=a+ v(i).
i) v(qy+1)>0 if and only if e divides i, but e, does not divide i; and if so,
then v(q,+ 1)=a+v(i).
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Proof. This is immediate from the definitions and the hypothesis that r is odd.
We note as a consequence that if G contains elements of order r, then G
contains elements of order r°.

We define two basic configurations which are essential constituents in the
classification of blocks. For each non-negative integer o, let A, be a poly-
nomial in % having a primitive r***-th root of unity as root. The degree and
reduced degree of A,, defined in Paragraph 1, depend only on « and not on
the choice of 4,; we denote them by d, and J, respectively. Then d, is the
minimal dimension that the underlying space V of G must have in order that G
contains elements of order r**% and J,=er* In the unitary case, either d, =4,
for all o or d,=20, for all a.

The first configuration arises as follows: Let m be a positive integer, and let
G™* be GL(md,, F) or U(md,F). Let (A,) be the companion matrix of A,.
Replacing (4,) by a conjugate if necessary, we may assume that m(A,)eG™"
The cyclic subgroup R™* of G™* generated by m(A,) is then an r-subgroup of a
Coxeter torus of G™? and |[R™®* =r*"* R™* is a Sylow r-subgroup of this
Coxeter torus if and only if v(m)=0. We may replace R™” by conjugates under
g™,

The second configuration arises as follows: Let § be a non-negative integer,
S, the group of permutation matrices of degree . and X, a Sylow r-subgroup
of S;. Here X, may be taken as the wreath product Z, "\, ... \.Z, of § copies of
a cycle of order r. Let G™**# be G L(md,r*,F) or U(md,r*, F), where m=1, «=0.
Then R™*” is defined as the r-subgroup R™*"\. X, of G™** and is a subgroup
of the normalizer of ¥ copies of a Coxeter torus of G™*. Since v(X,,)=v(r” 1),
we have v(R™*#)=(a+o)r’ +v(r*!), and R™** is a Sylow r-subgroup of this
normalizer if and only if v(m)=0. We may also replace R™*” by conjugates
under G™*#,

Proposition (3B). Let n=nyd,+1, where ng,,| are non-negative integers with
0<l<d,. Let ny=Y c,r* be the r-adic expansion of n,. Then

is a Sylow r-subgroup of G. Here I, is the identity matrix of degree I, and
¢y R"*" is the direct product of c, copies of R**7.

Proof. This is a result of Weir [23]. The symbols ¢, e,q,q* in [22] correspond
to our e, ey, q,, 4.

Theorem (3C). Let R be a defect group of an r-block of G. Then R is conjugate
to

RO
R

(3.1) "
R

t

where R, is an identity matrix of non-negative degree, and for i=1, there exist
integers my, o;, B; such that R,=R™-*".
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Proof. We proceed by induction and assume R#+1. We may replace R by
suitable conjugates in G at any stage if necessary.

Case 1 Q,(Z(R))=Z(G). Then Z(R) is cyclic, e=1, and in the unitary case, r

divides g,+1. Now there exists an r'-element geG such that R is a Sylow r-

subgroup of C,(g). Thus R is a Sylow subgroup of C(u), where K= C,(s) and

s,u are the semisimple and unipotent parts of g. Let [[s; be the primary
r

decomposition of s, and [] K the corresponding decomposition of K. Now
I
Z(R)Z[]0,(Z(K})), and O(Z(K)+1 if K .#1. Since Z(R) is cyclic, it follows
r

there is some I" such that s=s,. and K=K. Hence K=GL(m,F,) or U(m,F),
where m=m (s) and F_=F[(I')] as defined in Paragraph 1.

We consider u as a unipotent element of K. Replacing K if necessary by a
suitable conjugate, we may assume u has the form ) m/(®'), where @' is the
polynomial (X —1)' considered as an element in F, [X], and (®') is the compan-
ion matrix of @ over F,_. The field F, is embedded as F.®I; in the center of
F.[(®)], where I, is the identity matrix of degree i. Moreover, the subgroup
ﬂGL (m;, F,®I,) or ]_[ U(m;, F,®]I,) of Cg(u) contains a Sylow r-subgroup of

Cy(u). Since Z(R) is cycllc (3B) then implies u has the form r#(®%) for some f
and i, and thus v(Cg(u))=v(GL(**, F,®I) or v(U(r", F,®1I)), where I =1,.

We recall from Paragraph 1 that F;. is isomorphic to an extension field E of
degree o, over F, the isomorphism .# from E to F, being the regular repre-
sentation # of E over F if d,=6,, and 2@’ if d.=25,. Let v(é;)=0, let E,
be the subfield of E of degree r* over F, and let F,., be the corresponding
subalgebra of Fy.. The restriction of .# to E, is then the direct sum of v copies
of #,, where v=d,r * and %, is the regular representation of E, over F. It
now follows by (3A), (3B) that the Sylow subgroup R*“*# of GL(r’v, F. ,®]I) or
U(r’v, F,. ,®1I) is a Sylow subgroup of Cy(u), so (3C) holds.

Case 11 Q,(Z(R))£Z(G). Let x be an element of order r in Z(R), x¢Z(G). Let
[ [ x; be the primary decomposition of x, and [ ] C the corresponding decom-
r

position of C=Cg(x). For '+ X —1, the C,. are either all linear groups or all

unitary groups. Since xeZ(R), there exists a block b of C with defect group R

such that Br&(b)=B, where Br¢ is the Brauer mapping. Let b=[[b; and R
r

=[] R, be the corresponding decompositions of b and R, so b is then a block

r

of C, with defect group R;. Since C <G, induction applies to each R,. Let ¥,
play the role with respect to F.[X] that A, does with respect to F[X]. Then
R, is conjugate in C, to a direct sum of an identity matrix, possibly zero, and
matrix groups S™*f where S™*f=R™*f if I'=X-1, and S™**
={m(¥)>\X, if '+ X —1. Here (¥,) is the companion matrix of ¥, over Fy.
We may view (¥,) as a matrix of degree r*d, over F, since F,.=F[(I')], and as
such, () is conjugate to (4,). Thus S™** when viewed as a matrix group over
F, is conjugate to R™*”. This completes the proof.
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t
Remark. We shall write (3.1) as R, [ [ R;. (3C) was essentially proved by Olsson

[19], Prop. 1.5 for the linear case, but the statement of his result omits some
groups.

We next consider normalizers and centralizers of defect groups. Let N™*
and C™* be the normalizer and centralizer of R™* in G™? Similarly, let N™*#
and C™*? be the normalizer and centralizer of R™*” in G™*#. We use the
following notation: Suppose N is a matrix group of degree n, R is a normal
subgroup of N, and Y is a permutation matrix group of degree r*. Given geN
and yeY, let gR®y denote the set of matrices obtained from y by replacing the
entries 1 in y by arbitrary elements in the coset gR, and the entries 0 in y by
the zero matrix of degree n. We define

N/R®Y=|) (gR®y).

geN
yeY

Proposition (3D). Let the notation be as above. Then the following hold:

i) N™2/C™* is cyclic of order d,

ij) N™*#=(N"*/R™*)Q®Y,; and C™*?=C™*®I,, where Yy =N, (Xy) and I,
is the identity element of S.

Proof. i) follows from the description of conjugacy classes in G™¢, since the
generator m(A,) of R™* is conjugate to (m(A4,)? in the linear case, and to
(m(A,))~% in the unitary case.

As a wreath product, R""""’=R’""\,Xﬁ has a base subgroup A of the form
[ [A:, where 4, is a copy of R™* Let ) V; be the corresponding decomposition
of the underlying space. If a,e4, then [V,,a,]=V, and [V;,4]=0 for i+ by
the definition of R™" In particular, the elements in | J A" are characterized

among the elements acA* by the property that dim[V,a]=dim V,. Since R™*
is cyclic and r is odd, A is the unique normal abelian subgroup of its order in
R™*# by a theorem of Alperin, [1] Theorem 2. Hence N™*” normalizes A,
and N™*# then acts as a permutation group on the set {V;: 1 <i<rf}. Thus
Nmab < Gmo 1S;. Each geG™* S, can be viewed as the element obtained by
replacing the entries 0 and 1 of a permutation matrix n(g) in S, by zero
matrices and matrices in G™*®. So g normalizes R™*# only if n(g)e Y;. But since
X, is a transitive subgroup of S, geN™*# if and only if gexR™*®mn(g) with
xeN™* and n(g)eY;. Thus N™*f=N™*/R™*®Y,. If geC™", then n(g)=I,
since ge C(4,) and V;=[V, 4;]. It then follows easily that C™*#=C™*®1I,. This
completes the proof.

We can now consider normalizers and centralizers in the general case. Let
R be the subgroup of G given in (3.1), where R,=R™*# for i>1. Let V, be the
underlying space of R;, and let G,=G(V)).

Proposition (3E). Let the notation be as above. Then N(R) acts by conjugation as
a permutation group on Q={R,,R,,...,R,}. Let Q,,Q,,...,Q, be the orbits, and
suppose the R; are numbered so that R,eQ; for 0<i<s. Then

1) Q,={R,}, and for i,j=1, R; and R; are in the same orbit if and only if
m;=m;, a;=a;, and f;=p;.
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ii) N(R)=G, [] (Nme2ebin §(Q)), where S(R,) is the symmetric group on Q,.

i=1

t
iii) C(R)=G, [] C;, where C;=Cy (R)=Cmv=h,
i=1

Proof. Let V,=[V,a] for aeZ(R)¥, and let ¥ ={V,: aeZ(R)*}. We partially
order ¥~ by inclusion. The elements in U Z(R))* are then characterized among

the elements a in Z(R)* by the property that V, is minimal in the partial
ordering on ¥, since [V;,a]=V, for acZ(R)* and since [V;,G;]=0 for i}
Thus N(R) induces a permutation action on {V,,...,V;}. Also, N(R) fixes V,
since V= C,(R). Thus N(R) acts as a permutation group on {V,,V,,...,V;}.
Suppose geN(R) and V;=Vg for i,j=1. Then V;=[V,R;]g=[V,Rf] so that

Rf<R;. A similar argument with V;= ng“ shows Rﬁ_' <R,. Thus R§=R;, and
N(R) is represented as a permutation group on Q. Here we can add R, to the
set, since N(R) fixes the subgroup R,. The two permutation representations of
N(R) are equivalent if V; is identified with R; for 0<i<t. If R; and R; are in
the same orbit of N(R) and i,j= 1, then their base subgroups are conjugate by
the forementioned theorem of Alperin, from which it follows m;=m;, o,=ua,,
and f;=p;. Conversely, if R; and R; are so related in the linear case, then there
exists geN(R) such that Rf=R;. This is also true in the unitary case since V,
and V; are then non-singular subspaces of the same dimension. In both the
linear and the unitary case g can be chosen so that it acts as a transposition
on Q. But §(Q,) is generated by its transpositions. Thus i), ii) hold. Finally,

t t
C(R)S C(R)) for all i, so C(R)Z [] G;. Thus C(R)=[] C,,(R;) and iii) holds.

i= i=0

i=0

§4

We consider blocks of G™* with defect group R™* in this section. Quantities
associated with the configuration G™* will need the superscripts m,o in later
sections, but we shall drop these superscripts in this section. Let m and « be
fixed. We set G=G™* R=R™% N=N™° and C=C™"
Proposition (4A). Let G, R, C be as above. The following hold :

i) If A, is of linear type, then C=GL(m,F,).

i) If A, is of unitary type, then C=U(m,F,).
In each case, F,_is an extension field of degree §,=er* over F, represented as a
matrix algebra of degree d,, and R is a Sylow subgroup of Z(C).
Proof. This is essentially a restatement of (1A).

Let T=T™? be a Coxeter torus of G containing R. Then

T=C4(T)< C, Ny(T)=T<0),

where ¢ =¢™* acts on T by t+—t? in the linear case and by t—t~% in the unitary
case. In each case ¢ may be chosen so that (o) " T=1. In particular,

INg(T): T|=Ko)|=md,.
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Since R is characteristic in 7, ¢ normalizes R and induces an automorphism of
order d, of R. Hence by (3D), N=C<(a), ¢*€C, and N, (T)=T<{c*). In
particular,

INo(T): T|=m.
As usual we shall say an element teT is regular (with respect to C) if C(t)=T.

Proposition (4B). C has blocks with defect group R if and only if (r,m)=1 and
Coxeter tori of C contain regular elements.

Proof. Suppose (r,m)=1 and s is a regular element in T. Since R<Z(C), the
elements sy, where yeR, are also regular elements of T. Thus 0,= +RS(5) is
an irreducible character of C for all yeR. The r*** characters ¢, obtained in
this way have the same degree d=|C: T|,. Since R is a Sylow subgroup of T,
we may assume s is an r'-element by replacing s by sy for some yeR. The

character formula (1.9) implies that 6, is r-rational, and that

j}(gr)gl(gr) lf grER

(41) ey(g)={0 e

where g,,g, are the r-part, r'-part respectively of g. In particular, 0, is the
unique r-rational character among the 60,, and

v} 0,(8)Z v(R)=v(T).

By (4.1) the coefficients of the idempotent

d
— > Y O(gg!

|C| geG yeR

are r-local integers in an algebraic number field K for any prime ideal r of K
dividing r. This implies that b={0,: yeR} is a union of blocks b, of C. But the
defect groups of every b; contain R. Since the 0, have degree d and v(d)
=v(C: R), each b; in b has defect group R. But R<Z(C), so by a theorem of
Reynolds [20], Theorem 3, the following holds: b; contains exactly |R| charac-
ters, all of the same degree. Moreover, b; contains a unique r-rational character
which is the canonical character in b;,. Since b contains only |R| characters, b is
necessarily a single block of C with defect group R.

Conversely, suppose C has a block b with defect group R. By Reynold’s
Theorem the characters in b have the same degree d, and necessarily v(d)
=v(C: R). Express the canonical character 6 of b in the form

(4.2) 0=+ RI(SY),

where s is a semisimple element of C,L=Cg(s), and yel* Then d

=|C: L|,, ¥(1), so v(y(1))=v(L: R). By a theorem of Ito [12], y(1) divides

IL: Z(L).. Hence R is a Sylow subgroup of Z(L). Let [[s, be the primary
A4

decomposition of s as an element of C, and let [[L, be the corresponding
a4
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decomposition of L. Here 4 runs over appropriate polynomials in F, [X]. Let

my(s), d,, 6, be the corresponding quantities for the situation where G is

replaced by C. Then m=) m,(s)d,, and each L, is isomorphic to a linear or
a4

unitary group of degree m,(s) over an extension field of degree 6, over F, . By
(3A) v(Z(L )=za+a+v(6,) for each non-trivial L,. But since v(Z(L))=a+«,
there exists a unique 4 such that

(4.3) L=L,, m=m,(s)d,, v(d,)=0.

Let A be the partition of m,(s) corresponding to . The degree formula (1.15),
applied to L, implies that A consists of a single node, since v((1))=v(L: Z(L)).
Thus m,(s)=1, so by (4.3), C.(s) is a Coxeter torus, m=d,, and v(m)=0. This
completes the proof.

The preceding proof actually proves more than the statement of (4B). If 0,
is the canonical character of a block b of C with defect group R, then 0, =
-+ RS(3), where T=C(s) and s is regular with respect to C. This follows from
(4.2) since ¥ is necessarily the trivial character of T. The first half of the proof
shows b= {4+ R%(57): yeR}. Now there exists yeR such that sy is an r’-element,
so that +R$(5y) is then an r-rational character. Since 6, is the unique r-
rational character in b, s must be an r’-element. Hence the mapping b+s©
induces a bijection between the set .o/ =.&/™* of blocks of C with defect group
R and the set ¥ =9"" of C-conjugacy classes of regular r-elements of C. By
its definition the bijection is preserved by automorphisms of C. We summarize
these remarks in

Proposition (4C). Suppose (r,m)=1. For each be.«/, there exists a sign ¢, and a
class (s, in & such that

b={e, RS(5,)): T=C(s,). yeR}.

In particular, g RS(S,) is the canonical character of b. The mapping b—(s,)“
is a bijection of .o/ onto & preserved under automorphisms of C.

The group N=N;(R) acts on &/ by conjugation. Given be.</, let the
stabilizer of b be denoted by N, so that

N,={geN:b*=b}={geN: 0§=0,}.

The second equality holds since b contains a unique canonical character. The
index |N,: C| is by definition the inertial index e, of b. We call b a root block if
(r,e,)=1. The connection with the term “root” in [4] (2]) is clear, since b is a
root block of C if and only if Br&(b) is a block of G with defect group R.

Proposition (4D). Let b and (s,)¢ be corresponding elements in o/ and &. Let T
= Cc(sy). and let Z=<{a), where o is the element of order md, generating N;(T)
over T. Then the following hold:
i) Ny=CCylsg), NynZ=(CZ)x Cylsy)

ii) e, =|Cy(sp)l, (€5, m)=1

i) (5,)° N T =(s,)*

V) There exists a unique I' in & such that sy and e,(I') are conjugate in G.
In particular, md, =eyd;.
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Proof. The two parts in i) are equivalent since N=CZ and N, = C. We consider
the second statement in i). The product (CnZ)x Cy(s,) is direct since TNX
=1. Let geN,n 2. Then 0,= 6, or equivalently,

(4.4) R(T:"(§b) = Rg(fb)g

Thus (s,)! =(s,)" for some he No(T). Since N(T)=T(CnX), we may choose h in
CnZ. Then ge(Cn Z)Cysy). Conversely, let ge Cy(s,). Then (4.4) holds, 6, =6,
and geN,n X. Since the factor CnZX is in N,nZ, i) holds.

The first statement in i) implies e,=|Cy(sy)l, since CNCy(sy)STNZ=1.
The second statement in i) implies (e,,m)=1, since N,nX is cyclic and [CnZ|
=m. Thus ii) holds.

Suppose teT and t*=s, for some geG. Then T and T,, being Coxeter tori
of G, are such in K= Cg(s,). Thus there exists ke K such that T®*=T, and so
gkeNy(T)=TZ. In particular, there exists teZ such that t*=8*=(s,)*=s,, and
s0 t€(sy)*. This proves the non-trivial inclusion in iii) and iii) holds.

Finally, let [][s; be the primary decomposition of s, as an element of G,
r
and let [ | K be the corresponding decomposition of K = Cg(s,). A generator p
r

of R decomposes as [[p,, where p,eK,, and by definition of R, p +1
whenever K.+1. But T

Ir] {pry S Celp)=Cls)=T

and T is cyclic. Thus there exists a unique I' in & such that s=s; and K=K.
Hence K=GL(m(sy),Fy) or U(mg(sy), Fy), and my(sy)d.=md,. But mp(sy)
=|Ng(T):T|, and Ng(T)=T(KNZ)=TCysy). Thus m(sy)=e, by ii), and
iv) holds.

Proposition (4E). Let b be a root block in <, let T be the unique polynomial in
F determined by b, and let n be the additive order of 6 modulo e. Then
2ny if T is unitary, A, is linear
e =
® \ny  in all other cases.

Proof. Since b is a root block of &/, we have by (4D) and (4B) that
(4.5) e dr=md,, (e,,m)=(ey,r)=(r,m=1.

If G is linear, then d =6, d,=4,, so by (4.5) e,6,=md,=mer* and e,=n . If
G is unitary and d, and d, have the same parity, the same argument applies.
Suppose G is unitary. If d, =20, is even and d,=J,=er* is odd, then e is odd,
so by (4.5) 2e,6,=mer* and e,=n,. If d.=0 is odd and d,=24, is even, then
(4.5) implies e, =2mer*, e, is even, and 1e,=n. Thus (4E) holds.

It will be convenient to have the following notation: Given I'e Z, let

46) o 2nr %f I is unitary, A4, is linear
s in all other cases.
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We recall that the A, for =0 are either all linear or all unitary, so that e is
well-defined. Furthermore, let

: . 2 or . .o
@7 nr:{mm{m.r divides |GL(m,q°")[}  if T is linear

min{m:r divides |U(m, ¢°7)|} if I' is unitary.

Proposition (4F). Let ey, ny be as above. Then the following hold:

i) (ep,r)=1

i) e.=1if the roots of I' have order divisible by r

iil) e =np.
Proof. i) holds since e, divides 2e. If I' is as in ii), then n,.=1. If I' is unitary
and the roots of I' have multiplicative order cr®**, where (c,r)=1 and «=0,
then 6, is odd and cr’** divides gg"+1. Since F, 2F,. and 6, is odd, it
follows that 6, divides 6, and r*** divides ¢%*+ 1. Thus A, is also unitary, e,
=1, and ii) holds. iii) is clear if I" is of linear type. Suppose I' is of unitary
type, so that ¢, is odd. If # is even, then n.=2#,. But e and d, are also even,
so ey =2n,=np. If n, is odd, then e is odd, since e divides 6,7 . But gh=
+ 1(modr), so ¢§=¢5 " (modr), and e, =n. Thus iii) holds.

§5

We now prove the main results on the classification of blocks. We consider
first the basic configurations G™* for varying m and o. In particular, the
quantities introduced in Paragraph 4 will now carry superscripts m, a. Let #™*
be the set of blocks of G™* with defect group R™? and let Z=|( ) #™" Let &'

be the set of polynomials in & whose roots have order prime to r. We define a
mapping & from % to #' as follows: Given Be 4™, let b be a root of B in the
sense of Brauer. Thus be/™* and b induces B. The C™%class in &™*
corresponding to &/™* by (4D) is represented by an element s, which as an
element of G™* has only one elementary divisor I' and I'e%'. Since b is
determined up to conjugacy in N™* and the defect groups of B are determined
up to conjugacy in G™*~ N™% the elementary divisor I' depends only on B.
We define the mapping &:4— %', where &(B) is the I' just defined.

Theorem (5A). & is a bijection from % onto F'.

Proof: Let Be#, say Be#™*? and let §(B)=I be defined using the root
be.s/™? and the class of s, in ™% Given q and I, the integers d. and é, can
be computed. We claim that the triple (gq,r,I') determines in turn each of the
integers o, d,, d,, e,, and m. Indeed, a=v(d;) by (4.5), since a=v(d,). The
degrees ¢, and d, are then determined by ¢, r, and a. Next, ¢; is determined by
(4E), and finally m is given by (4.5). This establishes the claim.

Suppose B’ is a block in # such that &(B’)=&(B)=1I. By the preceding
paragraph B’ is necessarily in 4™ Let b’ be a root of B’, so b'es/™* and b’
induces B'. We may choose the representative s,. of the corresponding class in
F™* 50 that s, e T™? where T™* is the Coxeter torus Cem,.(sy). Since s, and s
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are conjugate in G™* to e (I), it follows by (4D)iii) that s, e(s,)* where X
={d™*). Thus the canonical characters of b’ and b are conjugate under N™¢
and so B'=B. We have proved that & is injective.

Conversely, let 'e#’. We determine in turn the integers o, 6, d,, ey, m as
follows: Let a=v(d}). Then ¢, d, are determined by definition from g, r, and o.
Let e, be as in (4.6). Lastly, define m by the equation

(5.1) md,=epd;.

We note that m is an integer. Indeed, d, is er* or 2er® and er* divides e d, by
the definition of « and e,. Thus m is an integer by (5.1) except possibly in the
case d,=2er* In that case, if d. =20, then (5.1) becomes mer*=e.d, and we
argue as before. If d.=0d, then 2e divides e;d, since e, =2#,, and m is again
an integer.

With «, J,, d,, er, m determined as above, let T be a Coxeter torus of C™*
We claim there exists an r’-element seT conjugate to e (I') in G™* Since
I'eZ’, the roots of I' are d-th roots of unity, where d is a divisor of g’ —1
relatively prime to r. So it suffices by the definition of a Coxeter torus and (5.1)
to show d divides |T|. In the linear case, |T|=q™**—1 and md,=e d =e 5,
so d divides |T|. In the unitary case, |T|=q}% —(— 1)"*. Suppose md, is even,
so that |T|=g*™% —1. If d,=26,, then §, divides {md, by (5.1); if d, =4, then
d is odd, and again 6, divides $md, by (5.1). Thus d divides |T| in these cases.
Lastly, suppose md, is odd, so that |T|=g¢3%+1. Then e, and d, are odd by
(5.1), F'e#,, and d is necessarily a divisor of g¢r+1. But ¢%r+1 divides |T|,
and so the claim holds.

We can show that & is surjective. Let K= Cgm.(s), so K=GL(e, F) or
U(er, F). By (4F)iii)) R™* is a Sylow subgroup of K and Cg(R™*=T"" In
particular, s is a regular r'-element of C™? since Cpm.«(s)=Cy(R™*)=T. More-
over, (r,m)=1 by (5.1). By (4C) there exists a block be.s/™* corresponding to
the C™*-conjugacy class of s. Let ¥ =<¢™*) have the meaning given in (4D).
By (4D)ii) e, =|Cg(s)|. But

[Cy(8)|=|KnZ|=|Ng(T):T|=e,

since T is a Coxeter torus of K. Since (r,e;)=1, b is a root block of C™* Let B
be the block of G™* induced by b. Then Be#™* and &(B)=1I. This completes
the proof of (5A).

The following is a consequence of the last part of the preceding proof.

Corollary (SB). Let b be a block of C™* with defect group R™*, and let s be a
representative of the C™*-conjugacy class corresponding to b. Then R™® is a
Sylow subgroup of Ccm,a(s).

We consider next the basic configurations G™*#. We recall by (3D) that
Rm,a.ll — R™«@ «\‘Xp
(52) N = NmaRrag Y,
Pl = CP4B 1,
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where X is a Sylow r-subgroup of S, Y;=Ng (X,), and I, is the identity of S,.
In partlcu]ar blocks of C™* can be 1dent1ﬁed with blocks of C™*F Given a
block b of C™* we will write b®I for the corresponding block of C™*#,
Moreover, if 6, is the canonical character of b, we will write 9[,®1,, for the
canonical characler of b®I,. Let .&/™*’ be the set of blocks of C™*#R™=”
with defect group R™*#,

Lemma (5C). There exists a bijection between the sets /™" and s/™* given as
follows: b and b are corresponding blocks of .o/™*# and .o/™* if the restriction of
the canonical character 6, of b to C™*# satisfies

Gblcm.z,ﬁ = 0b®1ﬂ’
or equivalently, if

b=(b@Iy)km=r e,
Moreover, the stabilizers of b and b in N™*#? and N™* are related by
Nma[} (Nma/Rmz)®Y

Proof. The bijection follows from a theorem of Brauer [3]1, (5A). Now the
stabilizer N*# of b in N™*# is also the stabilizer of 6, in N™*#. But since 0,
is trivial on R™*f it follows that N/*# is then the stabilizer of 0,|cm.x.s
=0,®I,. Let N"*=C™*%, where X has the meaning given in (4D). Now
C™*/R™*® Y, stabilizes 0,®1,, so by (5.2) N™**# acts on b as X does on b. The
remaining assertions of (5C) easily follow.

We now come to the general theorem. Let G=GL(n, F) or U(n, F). Let B be
a block of G with defect group R. By (3C) we may assume

(5.3) R=R, [] R:

i=1
where R, is the identity matrix of degree [=0, and R,=R™*# for 1 <i<t. Let
the corresponding decompositions of C(R) and C(R)R be [[C; and [|C,R,,
where C,=GL(l,F) or U(l,F), and C,=C™*# for 1<i<t. Let b be a block of
C(R)R Wthh is a root of B, and let b l_[b where b; is a block of C;R; with
defect group R;.

The block bo, if it occurs, has defect 0. The unique character 0, in b, has
the form x,, ; in the notation of Paragraph 1, that is 0,= +R{(S,1,), where s,
is a semisimple element of C,, K,=C¢(s,), and y;, is the unipotent character
of K, corresponding to A. Here A=[]4,, where 4 +m(s,). Since 0, has defect

r

0 and 0,(1)=|Cy: Ky, z,(1), it follows that y, also has defect 0. In particular,
O0,(Ky)=1 and s, is an r-element of C,. Moreover, 4, has no e -hooks for all
I', where e, is defined as in (4.6). Otherwise y, would not be of defect 0 by the
degree formula (1.15) and (4F)iii). It is clear that 4 depends only on B, and not
on the choice of R and b used in defining 4. We call 4 the unipotent factor of
B.

Each block b, for 1 <i<t corresponds by (5B) to a block b; in .o/™*, and b,
in turn corresponds by (4C) to a C™*-conjugacy class represented by a
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semisimple r'-element s;. The r'-element of C(R) defined by
(5.4 s=so [ (:®1Ij)
i=1

will be called a semisimple factor of B. It is clear that the conjugacy class s¢
depends only on B and not on the choice of R and b. Moreover, every element
in s% arises as a semisimple factor of B.

Given a semisimple r'-element s of G and I'e &', let €,(s) be the set of e,
cores of partitions of m,(s). We recall that the e,-core of a partition y, is the
partition obtained from p, by successively deleting e ~-hooks until a partition is
reached which has no ep-hooks. The e -core of u, is well-defined by a theorem
of Nakayama [18],1, Paragraph4. Let é(s)=[]%(s). Two pairs (s,4) and

r

(s',A"), where Ae®(s) and A'€€(s’), are G-conjugate if s'=s8 for some geG and A’

Theorem (5D). Let B be a block of G, and let s and A be the semisimple and
unipotent factors of B. Then the mapping B (s, 4) induces a bijection # from the
set of blocks of G onto the set of G-conjugacy classes of pairs (s, A), where s is a
semisimple r'-element and Le%b(s).

Proof. Let R be a defect group of B, and let b be a block of C(R)R inducing B.
We may suppose R=[]R;, C(R)IR=][] C;R,, and b=[] b, are the decom-
i=0 i=0 i=0

positions used in the definition of s and 1. For i>1,
(5.5) bi=(6,®1,)",

where b,eo/™* and m;, «;, f; are the parameters for R,. We normalize the b,
occurring in (5.5) as follows: Let .«/}"* be a set of representatives for the orbits
of N™* on /™" By replacing b by a conjugate if necessary, we may assume
that b,eZy»* for i=1. Given m, a, f, let

eb={i: 1<iZt, R, =R™“P}
It follows by (3E) that

NR)=C, [] (N™=FSU™*P)

m,a,p

where S(I™**) is the symmetric group on I™*#. Given be.&/ let
I3 = {i: je ™8 b, =b}, ek = | [mh|,
Then the stabilizer of b in N(R) is

NR),=Co [ I (N“*/R™*®@Y,)\SU;*")

m,o,f beo/ ">
by (5C). Thus b has inertial index
(5.6) IN(R),: C(RIRI= [T T (e(Yp:Xp)& ™ (1P,
m,a,f bedf =
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where for be /% e, is the inertial index of b in N™? Since b is a root of B,
(5.6) is relatively prime to r. In particular,

(5.7 (r,e)=1, %b<r

for those b’s occurring in (5.5), and such b’s are root blocks.

Brauer’s First Main Theorem implies each root block b in &/g"* corre-
sponds in 1—1 fashion to a block of #™* which in turn corresponds by (5A)
to a I' in &#'. By abuse of notation we shall write &(b)=TI". Given I'e &', let

I"={i: 15i<t,8(b)=T}.

By (5A) I' determines a block in 4, say B™* in 4™ In particular, if iel”,
then m,=m, o;=a, and b, is the unique root block in &/"* inducing B™*
Moreover, e, =e by the proof of (5A), and the C™*-conjugacy class corre-
sponding to b; is represented by an element whose canonical form in G™* is
e (I'). We shall denote this element by s,.. Given I'e #’ and f, let

I"F={iziel", B;=PB}, "F=|I"A],

In particular, I" is the disjoint union ( ) I"#, and
7

(5.8) R

where b is the block of o/y"* determined by I'. The semisimple factor (5.4) of B
can now be rewritten as

s=so[] [] (sr®Iy)
I,p ielt B
and so

mp(s)=mp(so)+ep . t"rh
B

Thus e, divides mp(s)—m(s,), and so A, is necessarily in % (s) and A€%(s).
Moreover, Zt"#y# is the r-adic expansion of ey '(mp(s)—my(sy)) by (5.7) and
(5.8).
We now turn to the proof # is a bijection. Let s be a semisimple r'-element
of G, and let 1€%(s). Then e, divides m(s)—|4,| for F'e#'. Let Y t"#r be the
B

r-adic expansion of ey '(m(s)—|4.]). Each I' in &' determines integers m and
o, and a root block b, in «/;"* Following the convention for (3C), we define

Ry =I[T(R™*)"",
B
where I, is the identity matrix of degree |4,|d,. Since md,=e d by (5.1) and

llrldr+2tr'”mdar”:Mrldr-kzﬂ:tr'”erdr,
B

the degree of R, is m(s)d,. Next, we set R=[[R. Since n=3 my(s)d, R is a
t r r
subgroup of G of the form [[R; given in (2C), where R, has degree !

i=0
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t
=Y |Arld; and R;=R™*# for i=1. Let [ C;R; be the corresponding decom-
r i=0
position of C(R)R, and let
Jp={i: 1=Zi<t,R,; occurs in R;}.

Thus {1,2,...,t} is the disjoint union ( ] J; of the J;..
r

t

We define a block b=[]b; of C(R)R, where b; is a block of C;R; with
i=0

defect group R;, as follows: Firstly, let s,eC, be chosen so that its canonical

form is [[[Ap(I). Since i, is a partition of mp(s,) with no ep-hooks, 4
r

determines a unipotent character y, of defect 0 of C (so). The corresponding
character 6,=y,, ; of C, is then of defect 0, and we may take b, to be the
block of C, containing 0,. Next, if ieJ; and ;= f, we take b,=b ;, where b ;
is the block of .z™*# defined by

br.p :(br®1ﬂ)Rm,a'ﬂcm,a, ﬂ-

By (5C) b; has defect group R;. The calculations preceding (5.6) show that the
inertial index of b is relatively prime to r, since the integer £"*# in (5.6) is t",
where b=b,, and t"# <r. Thus b induces a block of B of G with defect group
R. Moreover, the construction shows that if b;=b/. ;, then the contribution of
b; to the semisimple factor of B is s,®1,;. Thus the semisimple factor of B has
canonical form []¢.(I'), where

r

cr=mp(so)+ep Y t"Prh
B

and #(B)=(s,4)¢. This proves # is surjective. But the argument also shows ¢
is injective. For if #(B)=(s,4)¢ is computed using the defect group R and the
root b of B, then R and b are determined in turn up to the usual conjugacies
by (s, ). This completes the proof of (5D).

J(B) can be described alternatively as follows: We note first that the
canonical character 6, of a block b in 2/™* can be written in the form y ., by
(4C). Secondly, if b in &/™*# and b in .&/™* are corresponding blocks in the
sense of (5C), then the canonical character 6, of b restricts to

(0, ®15) :(Xsb.{1)®1ﬂ)

on C™*# Now let b be a root of B with defect group R. In the notation of the

preceding proof, the canonical character 6 of b decomposes as || 6, where 0, is
i=0

the canonical character of b;. The character 0, has the form y, ,. The charac-

ters 0, for i=1 restrict to x, ;,®I,; on C;. Then

(s;®r*) and A

s=5,

-
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are the semisimple and unipotent factors of B. In particular, the factor s can be
read from the canonical character 6 of the root b.

The mapping # behaves well with respect to major subsections of a block.
Let B be a block of G with defect group R, and let #(B)=(s, A)°, where s and A
are obtained by means of the canonical character 0 of a root b of B with defect
group R as described above. Now let peZ(R) and H = C(p). By Brauer [3], II,
(4A) there exist blocks of H with defect group R which induce B. These blocks
of H are the major subsections of B in H with defect group R and are
obtained as follows. The N(R)-orbit bY® ={b": neN(R)} decomposes as a
union of Ny(R)-orbits, say as | J(b,)"*®, where b,=b"* for some n,eN(R).

Then B, =Bl x(b,) is a major subsection of B in H with defect group R, and
the mapping b}—B, is a bijection between the Ny(R)-orbits on b¥® and such
major subsections of B. Moreover, the canonical character of b, is 6" and the
semisimple factor determined by b, is s,=s"

To interpret this in H, let H=[[H,, B,=][B,,, R=[] R, be the decom-
A A A
positions corresponding to the primary decomposition p=[]p,. So B, is a
A

block of H, with defect group R,. Since C(R)R<=H, there are corresponding
decompositions C(R)R=[]C,R, and b,=][]b,,, and b, is a block of C,R,
with defect group R, inducing B, ,. Since C,=Cy (R,), b, , is a root of B, ,.
The canonical character 6, of b, and the element s, also decompose as [ [0, ,
and |[[s,,, where 0, is the canonical character of b, , and s, is the corre-
sponding semisimple factor determined by 0, ,. Let ¢, be the mapping of (5D)
for the group H ,.

1)) If A+X—1, then Z(H,) contains r-elements, R, has no trivial direct
summand, and ¢ (B, ,)=(s, ,, { — })"".

ii) If A=X —1, then R, contains R, as a direct summand, H, is a group of
the same type as G over F, and #,(B, ,)=(s, 4, 4)"". We shall write #(B,) for
];IfA(BMl

The following is a consequence of the proof of (5D).

Corollary (SE). Let B be a block of G with defect group R, and let §(B)=(s, /)¢
where se C(R). Let HK and ]—[Rr be the decompositions of K= Cg4(s) and R

corresponding to the primary decompomzon Hsr of s. If Ap={—1}, then R is a
Sylow r-subgroup of K.

Proof. If A,={—}, then m( s)—eth”’ r? and R, H(R"’“”)’ "’ where m, a

are the integers determined by I'. Thus

v(R)=Y t"P((a+a)r +v(rPY)).
B

By (3B) this is also v(K ).
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§6

In this section we shall classify the characters in a block under the assumption
that Z(G) contains elements of order r. Thus throughout this section e=1 and
in the case G is unitary, r divides g,+ 1. The bijection ¢ of (5D) then reduces
to a correspondence between blocks of G and conjugacy classes of semisimple
r'-elements of G. We shall simplify notation and write ,(B)=s if B and s are
corresponding pairs. Moreover, if R is a defect group of B and se C(R), then R
is a Sylow subgroup of Cg(s) by (SE). The following is the main result.

Theorem (6A). Let B be a block of G with defect group R, and let §(B)=s,
where se C(R). Then B= | ) (sy)g, where (sy); is the geometric conjugacy class
of G determined by sy. <R

The proof of (6A) will require a number of preliminary lemmas. We note
the following weaker result contained in (6A).

Theorem (6B). Let B be a block of G with defect group R, and let #(B)=s°,
where se C(R). Then Bosg.

In fact, (6B) implies (6A). Namely, let y,, ,€(sy)g so that y***=RE , (SV").
Then

Rg(s y)(s/j)x“) = R(G‘(s y)(SAXu)

on the set G,. of r'-elements of G. Indeed, by (2B) 1) applied to C(sy), it suffices
to show

R(T;((ﬁ Xu)(‘r)) = R?((SA X“)(T))
on G, for all TS C(sy), and this is so by (1.10) and (2A).

Now
Rg(s y)(§ Xﬂ) - Rg(s)(§Rgg)y)(X”))

by (1.1) and Rgg’y)(x“) is a linear integral combination of unipotent characters
%, of C(s). Hence by (6B) the restriction of y,, , to G,. is a corresponding linear
combination of characters in B, and so y,, ,€B. Since B is arbitrary and every
geometric conjugacy class of G is of the form (sy); for some semisimple r'-
element s of G and some yeR, where R is a Sylow r-subgroup of Cg(s), it
follows that (6A) holds.

It will then be enough to prove (6B). However, in any inductive situation,
we may assume that (6A) holds. In particular, this will be assumed for proper
subgroups of G of the form H= C(p), where p is an element of order a power
of r. Such subgroups are then of the form H=H, xH, x ... x H,, where the H;
are linear groups if G is linear, and unitary groups if G is unitary. We
introduce the following notation: Let t be a semisimple element of G, and
suppose tnH=| ) t¥, where the union is disjoint. Given yetg, let

(6.1) 12pa)= 3 (6RHO)L(po)

{elta)H
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for all geH,. The y“* are then functions defined on the r-section of H
determined by p. By induction the { in (t,), belong to a block b of H, where
F(b)=((t,),)". Let A(b)={a: (t,);<b}. Since (3, R%(()=0 by (I1B) for any (eb
with (¢ ) (t,)y. it follows that

(6.2) > 1"Npo)= 7} (1. RE(Q) L(po).

ae A(b) Ceb

The {(po) are expressible in terms of the generalized decomposition numbers
d?, and the Brauer characters ¢ in b. Since y(pa)=). 1"”(po), it follows by the

a

linear independence of Brauer characters, [2], I, (3E), that

(6.3) Y. 1*Npo)=yx*(po),

ae A(b)

where y”(po) is the function ) @7 ¢(o) introduced by Brauer in [3], II, (1.4).
We recall that web

(6.4) 1po)=> 1"(po).
b

If t is an r’-element, then induction and (5D) imply |4(b)|=0 or 1, and we shall
write B, for the block of H corresponding to t.

Lemma (6C). Let s be a semisimple v'-element of G with only one elementary
divisor I, let p be an element of order r in C(s), and let yes;. Let ¥ be defined
as above for the H-conjugacy class s", where H= C(p). Then there exists a
unipotent element ¢ in H such that y*'(po)+0.

Proof. Let H=H, xH, x ... xH,, where H,;=GL(m;,F) if G is linear, and H,
=U(m,, F) if G is unitary. We may then express s=|[s;, where s;,eH;. We set

K=C4(s), L=Cy(s), and L,=Cy(s). Thus HnK=L=[]L,. As an element of

H;, s; also has I' as its only elementary divisor. Let n; be the multiplicity of I
in s;. Then m;=n;d, where d=d,. We claim that two maximal tori of L
conjugate in H are already conjugate in L. Indeed, since H=[]H,; and L
=[]L;, it suffices to show that two maximal tori of L, conjugate in H, are
already conjugate in L, The conjugacy classes of maximal tori in L, are
parametrized by partitions of n;, since L,~G L(n;,q") or U(n;,q"). Suppose T is
a maximal torus of L; in the L-class corresponding to the partition u
={1"2"2_..} of n,. Then T, viewed as a torus of H,, is in the H;class corre-
sponding to the partition ji={d"'(2d)...}. Since distinct y’s give distinct s,
the claim follows.

Let {,,(5,...,{, be the characters in s;, and let ,,...,0, be representatives
for the conjugacy classes of unipotent elements of H. The number k is also the
number of L-conjugacy classes of maximal tori of L, so k<[ by the preceding
paragraph. Consider the system of equations

1pa)) =2 (1 Ri(C)) Llpo))

=5(p) ¥ (1 RY(E) Cio)
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for 1£j<I1. To complete the proof of (6C), it will suffice to show that the k x !
matrix ({(g;)) has rank k, and that the k-tuple (%, R$()) is not the zero vector.

Let {;=y, 4.» Where ¢, is an irreducible character of W, . By (1.18) and (1.3)
there exists a sign ¢ such that

=iy % SOIRE)

for 1<i<k. Since RY () (aj)zR"w(l)(oj)=Q"w(oj), we have

w,)

W,_(W )

to)=e X o o OF. (0),

where w, runs over a set of representatives for the conjugacy classes of W,.
The orthogonality relations for the irreducible characters of W, and for the
Green functions of H then imply that the matrix ({,(o)) has rank k. Finally, if
X =1s,4> Where ¢ is an irreducible character of the Weyl group Wy, then

G4 R ) = (2%, REGE*)
=(. Indx()

by (1B) and (1C). Thus there exists i such that (3, R%({,))+0, and the proof of
(6C) is complete.

Lemma (6D). Let B be a block of G, and suppose #(B)=sC, where s has at least
two distinct elementary divisors. If soNB=% ¢, then s; < B.

Proof. Let ¢ be the set of elementary divisors of s. We define a relation ~ on
s as follows: y,  ~y, , if there exists I'e¥ such that u,=p;. The relation ~
is reflexive and symmetric, and since |%|>2, it follows that the transitive
extension of ~ is an equivalence relation with one equivalence class, namely
sg- Hence it will be enough to prove the following: If y, ,€B and y, ,~x, .,
then y, ,€B. We set y=y, ,, 7' =1, for simplicity of notation. Let

Yo={l'€Y: ur=ur}
Y, ={T'eY: pr+ur}-

We may assume ¥, #+ ¢ as well as 4+ ¢.
A defect group R of B has the form [] R, where by (5E) R, is a Sylow

Ire%
subgroup of C(s),. Let w be a fixed primitive r-th root of unity in F, and let p

be the element of order r in Z(R) defined by
I, if I'e%,
Pr= .
wl, if I'e9,,
where [ is the identity matrix in Rp. In particular, C(p)=H=H,xH, is a
proper subgroup of G. Let s°nH=|(s,)", and for each «, write 5,=s,,Xx5,,

where s,,€H,. We may assume s has been chosen as one of the s.’s, and that
for s=s,xs,, the elementary divisors of s; are in %, for i=0,1. Let b be the
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block of H corresponding to the H-class s”. Then b is a major subsection of B
in H with defect group R by the remarks following (5D).

We apply (2I) to y(p) and x'(p). Thus y(p)=) x*(p), where
(6.5) 15 Np)=8,(p) > A2 , y*=*(1).
A

For fixed o, A runs over all [] 4, such that 4, is a partition of m(s,,) obtained
r

from y, by deleting a sequence of m(s,,) 1-hooks. The coefficients 47 ; are the
quantities in (2.14). We have an analogous formula for y'.

(6.6) 1 C2p)=3.(p) X A5y o =" (1),
e

where A’ runs over all [ ] A} such that A is a partition of m(s,,) obtained from
r

Wy by deleting a sequence of m(s, ,) 1-hooks. By our choice of p it follows that
for s,=s in (6.5) and (6.6), the 4 and 4’ in these expressions are unique since s,
and s,, have no I' in common, and indeed,

Ar=pp, Ap=ur for I'e¥%,.

Thus A=/’ in these expressions. Moreover, 3 =y%®, 5'®=4'® by induction, so
(6.5) and (6.6) become

1P(p)=5(p) A3, (1)
6.7)

x ) =8(p) A3, 2 H(1)
when 5, =s. Now
Ay =IHy: Cy (5l Ua;‘:?./\r’
where the ai ; are the coefficients occurring in

1ror)=ag s, ().
If I'e9,, then py=I, uy=4,, and at* ; =1. If I'e¥,, then py=wl, i =9¢,
and "flﬁ, a-=x"(1). Thus

AZ.A‘__IHI: CH,(51)|,/ n 40 (L).

I'e%,
Similarly
A% =IH: Cy (sl [T 27(1)
Ire%,
Hence by (6.7)
®) /(b) - ()
1®()=Ny®(p), where N= [] “——.
reg, X' (1)

But y®(p)+0 by [3], I1(4C), since b is a major subsection of B in H. Thus
2P (p)%0 and y'eB by Brauer’s Second Main Theorem. This completes the
proof of (6 D).
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We also require two results related to the minimal configurations G™* and
Gt

Lemma (6E). Let G=G™?, let B be a block of G with defect group R=R"™?, and
let ¢#(B)=s%, where s€ C(R). Then B= | J (sy)g.
YER

Proof. We note that (6E) is just (6 A) for a block with cyclic defect group. Since
G=G™* and R=R™* it follows by (4D) that s has only one elementary
divisor I', of multiplicity e =1, and C4(s)=T is a Coxeter torus of G. If
R £Z(G), then

B={g,R7(5)): yeR}

by (4C). But (sy);={e,R5(5))} since C(sy)=T for all yeR. Thus (6E) holds.
Suppose then R£Z(G) and let H=C(R)=C(p), where p is a generator of R.
Suppose y€B and yetg. Let t°nH=|)(t,)". For each block b of H, let 4(b)

={o: (t,)y=b} as before. Now there exists some r'-element ¢ in G with defect
group R such that w, (0)%0(modr), where w,(s) denotes the value of the
algebra homomorphism , associated to y on the G-class sum of ¢. Since R is
cyclic, x has height 0, and so y(6)F0(modr). But oeC(p) and
1(po)=y(o)(modr). Thus y(po)+0, so by (6.3) and (6.4) there exists a block b
of H and aed4(b) such that y”(po)+0 and y"(pa)+0. The first inequality
implies Br{(b)=B by Brauer’s Second Main Theorem [2], II, (6A). But all
subsections of B in H are major subsections with defect group R since R is
cyclic and normal in H. So by the remarks following (5D), #(b)=(s")" for
some ne N(R). The second inequality implies by (6.1) that there exists { in (t,),
such that (eb. So by induction (t,), ~ys". Thus t~; sy for some y€eR, since R
is a Sylow subgroup of C(s). We have shown then that B< () (sy);. On the
yER
other hand, the Brauer-Dade theory [6], Theorem 1, implies B contains one
non-exceptional character and |R|—1 exceptional characters. But the class (sy),
contains only one character since Cg(sy)=171, and the number of such classes is

at most [R|. Hence B= (] (sy); and the proof of (6E) is complete.
yeER

Let G=G™*# R=R™*# C=C™** where f>0, and let B be a block of G
with defect group R. By (5C) a root b of B with defect group R has the form
Brg“(b ®I,), where b is a block of C™* with defect group R™? I, is the
identity matrix of degree r’, and b ®I, is the corresponding block of C.
Moreover, the defect group R is of the form R™* 1X,, where X, is a Sylow r-
subgroup of the group S, of permutation matrices of degree . We choose for
X, a group of the form X, , LX,, so that

R=(R™* \X,_,) LX,=R™=f-1 X .

Let p be an element of order r in the base group of the wreath product R™*#~!
X, of the form

Py
p= Pz.

Py
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Here p;=w;I, where w; is an r-th root of unity, possibly 1, I is the identity
matrix of R™*P~' and w,+w; for i%j. Then C(p)=H=H, xH,x...xH,,
where H,=G"*/~!_ Let B, be the block of H, induced by b ®1,_,, and denote
the defect group R™*”~! of B, as R,. Finally, let B, be the block of H with
defect group R, =] | R, defined by B, =[] B..

Lemma (6F). Let the notation be as above. Then Brfj(B,)=B.

Proof. Let N=N;(H), so N=HS where § is isomorphic to the symmetric
group of degree r and SnH =1. Let By=Bryj(By) and let R be a defect group
of By. The block By is defined since C(R,)<H. Since N stabilizes By, it
follows by [3], 1, (4C), (4D), (4G) that RynH=Ry and that Ry/RynH is
isomorphic to a Sylow r-subgroup of S. Thus

v(Ry)=r[r# a+a)+v(? =" )]+ v(r!)
=rf(a+ o)+ v(rP!)

and v(Ry)=v(R).

We claim that R is a defect group of By. Indeed, let y/, be a fixed character
in B, of height 0, and for 2<i<r, let , be the character in B, corresponding
to i, under the natural identification of B, H; with B,, H,. Then
=y, ,... ¥, is a character in By of height O invariant under N. Let y be a
character in By such that x|, contains i as a constituent, and let w, and w,, be
the algebra homomorphisms corresponding to y and . The choice of such a x
is possible by [3], I, (4A). Suppose £ is a conjugacy class of N contained in
H, and .# decomposes as LVu LD uU...0 LY, where the ¥ are conjugacy
classes of H. Since y|,=my for some integer m, it follows that w ([.#])
=sw,([Z'"]), where [.#] and [ £'"] denote the class sums over .#" and #")
respectively. In particular, we define a class .#° with defect group R as follows:
Let &, be an r-regular class of H, with defect group R,; such that
o, ([Z,D£0(modr), let &, be the class of H; corresponding to &, and let
Y=L xP,x...x%,. Then & is also a conjugacy class of N, and we take
H =%. But

U)x([’){])=U).p,([«~(/)1])r$0(mOd r).

Thus R is a defect group of By.

The root b of B has the form Bri®(b ®1,). Since CRZN, Br¢y(b) is defined
as a block of N with defect group R. We set b"=Brli(b). The transitivity
properties of the Brauer mappings imply

bN=Brig(b)=Bri(b ®Iy), B=Bry(b").

Hence, to complete the proof of (6F), it will be enough to show By =»b". But
since By and b" have defect group R, it will be enough to show that the
algebra characters wy, and w,~ associated to By and b" satisfy

(6.8) g (A D=0 ([ A])
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for all r-regular classes .#° of N with R as a defect group. Let .#* be such a
class, so there exists ge.#" with defect group R. Then ge C= H, so on the one
hand, g=c ®I; for some ce C™? and on the other hand, g=g,¢g,...g,, where
g=c®I, ,isin H,.

Now b"=Br¢ (b ®1)), s0 w,n([A])=wyg,,([A NC]). Since ¥ has R as a
defect group, it follows by [2], I, (10A) that .#" ~ C is a single Ny(R)-conjugacy
class, namely g"~®, But

Ng(R)=N™%/R™* @Ng,(X )
=(N"™?/R™* @I )(I ®Ng, (X))
and N2(N™?*/R™*®I,). Thus
Ny(R)=(N"*/R™* Q@I (I ®Y)

for some subgroup Y where X,;<Y<Ng (X;). Since I ®Y centralizes g, it
follows that

H N C=g""R={c"®I,: ne N™*}.
If € =c""", we have then that #"n C=% ®I,. In particular,
(6.9) O ([ A ] =0y, (LA N C)=wy([€]).

On the other hand, if #,=gl", then #' =% x %, x...x %, so that A’ nH
=.4". Thus

g ([ A =g, ([A])=ws, (L)) =w, ([£,])

But B, =Brf!(b®I,_,), where C,=Cp (R,)=C™**~'. Thus wg ([(Z,])
=wyer, ,([(£1nC,]). Let N,=Ny (R)=N"*"~1_ Since &, is an H,-
conjugacy class with R, as a defect group, ¥, nC, is a single N,-conjugacy
class, namely g}'. Just as before, we conclude that g)' =% ®I,_,. Thus

(6.10) g, ([A]) =y ([¢]).

Now (6.9) and (6.10) imply (6.8), and the proof of (6 F) is complete.

We now prove (6B). We partition the blocks of G into two disjoint sets. A
block B with defect group R is of type I if Q,(Z(R))<Z(G), and of type II if
Q,(Z(R)) £ Z(G). Blocks B of type I occur only when there exist integers m, o, §
such that G=G™*#, R=R™*” and B is a block of G with defect group R. In
particular, the semisimple r’-element s corresponding to B has only one elem-
entary divisor.

Suppose B is a block of G of type I with defect group R, and ¢ (B)=s°
where se C(R). If R is cyclic, then s;=B by (6E). If R is non-cyclic, let
p€eQ,(R) and H=C(p) be as in (6F). In particular, H<G. Let s°nH =/ (s,)",

where s is one of the representatives s,. Given y €sg;, we consider the particular

sum
po)= Y (LR (pa)

{esu
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for all ceH,.. If By is the block of H corresponding to the H-conjugacy class
s, then

1po)=7*"(po)

by (6.3). So by (6C) there exists o € H,. such that y®"(ps)+0. Thus y € Bré(By)
=B by (6F) and Brauer’s Second Main Theorem. Hence s; < B.

Now suppose B is a block of G of type Il with defect group R, and ¢ (B)
=s% where se C(R). Choose peQ,(Z(R)) with p¢ Z(G), and let H=C(p). We

claim B< | ) (sy)y. Indeed, suppose y€Bnig, and let t°nH=|)t". For each
vER

block b of H, let A(b)={a: (t,);<b}. Since peZ(R), there exists by (6.3), (6.4),
and [3], IT (4C) a major subsection b of B in H with defect group R and an
a€ A(b) such that y(p)+0, y*(p)%0. But ¢ (h)=(s")" for some ne N(R) by
the remarks following (5D). Thus (t,),- ~¢ s, and since R is a Sylow r-subgroup
of Cg(s), t~gsy for some yeR. Hence z is of the form y, ,. Now on r-
elements of G,

58 =RE,(Sy¥)=RE JERES )

In particular, there exists a unipotent character y of C(s) occurring as a
constituent of R, (x*) such that RE(Sy) contains a Brauer character in B
with non-zero multiplicity. Thus s; B =+ ¢.

If s has more than one elementary divisor, then s; =B by (6D). Suppose

then s has only one elementary divisor, and let s H =| J s, where s is one of
o

the s,. The block b of H corresponding to the H-conjugacy class s” is then a
major subsection of B in H with defect group R. Moreover, for any yesg,

1Mpo)=1"(po)

for all seH,.. By (6C) there exists ¢ in H,. such that ”(pa)*0. So by Brauer’s
Second Main Theorem, y € B. We have shown then s; < B for blocks of type II
as well. This completes the proof of (6B) and hence of (6 A).

§7.

We now prove the classification of characters in a block in the general case.

Theorem (7A). Let B be a block of G with defect group R, and let #(B)=(s, 1),
where se C(R) and A€%(s). Let y be an irreducible character of G of the form
Yi.v- Then yeB if and only if

1) t~gsy for some yeR

ii) for every I'e 7, v, has ep-core Ar.

Proof. Suppose y, ,€B. If R=1, then B={y, ;} and (7A) holds. Suppose R+ 1
and choose p in Q,(Z(R)) such that p has one other elementary divisor other
than X —1 and such that C,(p)=C,(R), V being the underlying space of G.
Let V,=C,(p), and let V,=[V,p]=[V,R]. Then C(p)=H=H,x H,, where H,
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acts on V.. We may assume H <G, for otherwise (7A) follows from (6A). By
the remarks following (5D) there exists a major subsection B, of B in H with
defect group R such that #(B,)=(s,A). Here, if B,=B,,xB,, and s=s,s,,
where B,; is a block of H, and s,eH,, then #(B,,)=(so,4)" and #(B,,)=(s,
{—}", the last equality holding since Z(H,) contains elements of order r.
Moreover, by the choice of p, B,, must have defect 0, so B,, consists of only
one character (,, say of the form y .
We now argue as we did in Paragraph 6. Namely, we have

2pa)=). Y (R{(O) (po)

b Leb
for all o € H,., where b runs over the blocks of H. The {’s in b can be expressed

in terms of the Brauer characters ¢ in b, and the linear independence of the
Brauer characters implies as before that

1" (po) =Cz (% RGO L(po).
eb
Since peZ(R) and B, is a major subsection, ¥*¥(p)+0 by [3], II, (4C). In
particular, there exists (e B, such that (z, R§(()+0. We write {=(,{,, where
{o=1s,., is the unique character of B,, and (,€B,,. By (6A) {, has the form
Xs,y.u for some yeR. Thus (€(sy)y, t~;sy by (1B), and i) holds.
We may assume then that y, ,=y,, ,. Now

(Y RGO =00 RGO * < 1517+ 4)
=", RE( % 1)
by (1B), where K=Cg(sy), L=Cy(sy). Thus (¢, R} (*x*)#0. Let sy=[](sy)r

r
be the primary decomposition of sy, and let [[ K, and [[p, be the corre-
r r

sponding decompositions of K and p, where p.€ K. In particular, if we set L,
=Cy, (pr), then L=]]L,. Now p, need not be primary as an element of K.
r

But the elementary divisors 4 of p, relative to K, with the exception of X —1,
are algebraic conjugates and hence of the same degree d- ,. Here 4 and d, ,
play the role for K that I' and d play for G. For simiplicity of notation, let
D/ be this common degree d;. ,. Since

G REGA N =TT REEG 7))
r
it follows that

7 REC (A 7)) %0

for each I'. By (2.12) and the remark following it, 4, is thus obtained from v
by deleting a sequence of D -hooks. Let I' be an elementary divisor of sy. If
I'e#’, then D.=e, since both are the integer n, of (4.7). For such I', A} is
obtained from v, by deleting a sequence of ey-hooks, and so A, is the e -core



The Blocks of Finite General Linear and Unitary Groups 149

of vr. In particular, this is so for the elementary divisors of s,. If '¢ Z', then
Z(K) contains elements of order r, so e,=D,=1. Thus the e,-core of v is
{—}. But A, ={—1} as well, so (ii) holds.

Conversely, let y=y,, ,, where yeR and v satisfies ii). Suppose y is in the
block B’ with defect group R’, and let #(B')=(s, X')%, where s'e C(R’). The first
part of (7A) implies that (sy)~; (s')) for some y'eR’, and so s~;s'. Moreover,
for each I', the e, -core of v, 1s Ap. But 1i) implies A=A, for each I'. Thus
(s, A% =(s, )L)G, B'=B by (5D), and y e B. This completes the proof.

The preceding theorem classifying the characters in B can be viewed as an

.extension of the Brauer-Dade theory for blocks with cyclic defect groups.
Indeed, we may define the characters in Bns; as the non-exceptional charac-
ters of B. As will be shown in (8 A), the restrictions of the characters in Bnsg
to G, form a basic set for B, so as in the cyclic theory, the number of Brauer
characters in B is |[Bnsgl. We may define the remaining characters in B as the
exceptional characters of B. These fall into families BN (sy);, where yeR*.
Their values on the r-sections of G which meet R can be expressed in terms of
the character formulas of Paragraph 2. In the case where R is cyclic, we
recover the formulas of the cyclic theory.

§8.

This section contains consequences of the theorems (5D) and (7 A) classifying
blocks and characters of G=GL(n,q) or U(n,q).

Theorem (8A). Let B be a block G with defect group R, and let ¢ (B)=(s, })°,
where se C(R). Let My be the Z-module generated by the restrictions of the y in
B to the set G, of r'-elements of G, and let My be the submodule of My
generated by the restrictions of the y in Basg to G,.. Then Mg=Mj. Moreover,
the number ly of Brauer characters in B is |BNsgl.

Proof. A character in B has the form y,. ,, where yeR and p has e;-core 4,
for all 'e#. Now on G,.,

(8.1) 1" =R (") = RE BRES, (1)
Let |]s, be the primary decomposition of s, and let || K, be corresponding
r r
decomposition of Cg(s)=K. Since ye C(s), we may write y=1_[yr, where
r

vr€K,. As an element of K, y, is the product [] vy , of its primary factors,
AeFr
where 4 runs over the set % of elementary divisors appropriate to K.
Moreover, the factors y, , and y. . are different if (I', 4)+(I", 4). Let y, , be
the primary factor of y, corresponding to the elementary divisor X —1 in 7.
The degrees of the remaining elementary divisors 4 of y, are then divisible by
er. Now Cy (yp)=Lp= [] L 4 and C(sy)=L= l_[LI'A The class function
Ae F -

7" in (8.1) is then of the form H x4, where p , is a partition of m,(y,). In
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particular, the partition p, , corresponding to the factor y. , is a partition of
my_(yp)=mp(sy), and p , has ep-core 4. Now

REQ, 0 =TTRE (T 27

(8.2)  aeFr ,
=[[REfG" = [1 2%
r Ae Fr
AF+FX -1

A unipotent character y, of K occurs as a constituent of (8.2) only if for each
I', ur o is obtained from v, by deleting a sequence of e-hooks. Indeed, this
follows by the second remark following (2G) and the fact that the A’s different
from X —1 occurring as elementary divisors of y, have degrees divisible by e;..
In particular, the e -core of v, is 4. The right-hand side of (8.1) hence belongs
to My and Mz=Mj;. We have shown then that [;<|Bnsg|. Now |sg| is the
number of unipotent conjugacy classes in Cg(s). Thus |s;| is the number of r'-
conjugacy classes of G having a representative whose semisimple part is s, and
Y Y |BAsgl is the total number of r'-conjugacy classes of G. But this last

sc B

number is also ) lz. Thus [y=|Bnsg| for all B and (8 A) holds.
B
We next consider the height conjecture for blocks of G=GL(n,q) or U(n,q).

Theorem (8B). Let B be a block of G with defect group R, and let ¢ (B)=(s, 1)°,
where se C(R).

1) If R is non-abelian, then there exists an irreducible character in Bns,; of
positive height.

i) If R is abelian, then all irreducible characters in B have zero height.

Proof. We begin with some remarks on the characters of the symmetric groups
(see [14]). Let t be a fixed positive integer, let 1 be the t-core of some partition
of n, and let w=t~"'(n—|A|). Each partition u of n with t-core A then determines
a quotient or skew partition of w consisting of ¢ disjoint proper partitions,
some of which may be empty. Conversely, given ¢t proper partitions of w nodes
altogether, there exists a partition g of n with t-core A such that p/i is the
given union. The hooks of u/A are in bijection with the hooks of u having
length divisible by ¢, the bijection mapping a j-hook of p/4 onto a jt-hook of p.
The character ¢, of S, corresponding to /4 has degree w!/H, ;, where H,; is
the product of all hook lengths, multiplicities counted, in u/A. Moreover, if
Vi,Vs,...,v, are the proper partitions occurring as constitutents of x/4, then ¢,
=¢, o0, 0...c¢,, where o is the operation introduced in Paragraph 2. If
wzr, it follows by induction on w that there exists a partition u of n with -
core 4 such that ¢, ,(1) is divisible by r. On the other hand, if w<r, then
¢,,,(1) is relatively prime to r for all such p

Let []s; be the primary decomposition of s, and let [ | K be the corre-

r I
sponding decomposition of C;(s)=K. As was shown in the proof of (5D), R
=[] Ry, where R is the subgroup of K defined by
r

(83) Rr=1r.n(Rm,-,ar.ﬂ)rr,B.
p
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Here I is the identity matrix of degree |i//d;, m; and o, are the integers
determined by I in the proof of (5A), and the t"*# are the coefficients occurring
in the r-adic expansion Y "/ r# of

wr=er '(mp(s)— A

In particular, R, is abelian if and only if t"*#=0 for all $>0, or equivalently, if
and only if w.<r. Moreover,

\'(RI_)=Z thh \,(Rmr.znﬂ)
B

(8.4) =Y t"PL(a+ap) P +v(rP)]
B
=wp(a+o)+v(wp!)

Consider first the case s=1. We fix I'=X —1, the unique elementary divisor
of s. Then mp=1, a;,=0, and 4 is the e,-core of a partition of n. Here e, =e or
2e, and e, =2e¢ if and only if G is unitary and r divides ¢ —1. Set w=e; '(n
—|Al). Then

R=1y, ] R-4y"
B
v(R)=wa+ v(w!)

by (8.3), (8.4), and R is abelian if and only if w<r. Now the unipotent
characters in B have the form y,=y, ,, where u has e;-core 4. Let #,, and ¥,
denote the set of hook lengths, multiplicities counted, occurring in p/4 and p
respectively. We claim the following, which is an analogue of a formula for the
symmetric group, holds for all y, in B.

(8.5) YD) =v(G:R)+v(¢,,(1)

In particular, y, has height v(¢,,(1)). Indeed, %,(1) is given by (1.15). If G is
linear, then

v (D=v(G)~ Y v(g"—1)

he Ay
=v(G)~ X v(g"“ -1
he Hyua
=v(G)—wa— ) v(h) by(3A)
he Hua

=v(G:R)+v(w!)—v(H,,;) by (84)
Thus (8.5) holds, since v(¢,,,(1)=v(w!)—v(H,,). If G is unitary, then

v (D)=v(G)— ¥ v(go—(—1)").

he Ay

But v(gh —(—1)")>0 if and only if e divides h, in which case v(qf—(—1)")=a
+v(h). This follows from (3A) and (4F)iii). Thus (8.5) holds in the unitary case



152 P. Fong and B. Srinivasan

as well. We can now show (8B) for the case of unipotent characters. Indeed, if
R is non-abelian, then w=r, and there exists a partition p of n with e, -core 4
such that v(¢,,,(1))>0. The corresponding character y, in B is then of positive
height. If R is abelian, then w<r, and all unipotent characters in B necessarily
have zero height.

The proof of (8B) in the general case now follows by reduction to the
preceding case. Suppose R is non-abelian. Since R=]] R, there exists a fixed

r

I' such that R, is non-abelian. For this fixed I, we may choose a partition yu,-
of m(s) such that p, has e;-core 4, and such that y, has positive height. Let
%s.. D€ any character in Bnsg such that p; is the chosen partition. Then

V(s (D) =v(G: K) + ) v(x,,. (1)
r
=v(G:K)+ Y V(K iR+ Y v(e,,;,.(1)
r r

= v(G:R)+; V(5. (D).

Here, we have used (8.5) for each y, . Thus y,, has positive height and i)
holds.
Finally, suppose R is abelian. Then R, is abelian, w.<r, and R, has
exponent a+oy for each I'. Let y,, ,€B, where yeR, and let y=[]yr, where
r

yr€R. We note that the elementary divisors of sy are disjoint from those of
spyp if T#1T7. Let &, be the set of elementary divisors of s;y. If 4e& and 4
#+T, then 6,=n.6,, where #, is the additive order of 6 modulo e. This follows
since the order of y, divides r***". We claim that d,=e d. Indeed, if G is
linear, then d,=d,, d.=0, e,=#n, and the claim holds. Suppose G is unitary.
Let ¢ be the multiplicative order of a root of I', and let ¢r” be the multipli-
cative order of a root of 4. We have that 0<y<a+a,. Suppose I' is of unitary
type. Then 6, is odd and ¢ divides g’r+1. If e =n, then n, is odd and r’
divides gy +1. So .1, is odd, cr” divides g37""+1, and 4 is of unitary type.
Thus d,=epd;. If e,=2n, then either 5 is even, or y, is odd and r’ divides
gor"r—1. In the first case J, is even; in the second case c¢r’ does not divide
gdr""+ 1. In both cases, d , =23 ,=ed,. Suppose then I is of linear type, so d;
=20, and e =n,. If 6, is even, so is J,, and then d,=20,=e d. Suppose I
is odd. Then ¢ does not divide g + 1. If 4 were of unitary type, then 5, would
be odd, and cr’ would divide g27"" + 1. This would imply the odd part ¢, of ¢
divides g3+ 1. Thus the 2-part ¢, of ¢ is not 1, g, is odd, and ¢, does not
divide ¢2r+1. But since ¢, divides ¢3'""+1, n, must be even. This is im-
possible, so 4 is of linear type, d,=20,=ed}, and the claim holds.

Since mp(s)d= Y m(s;yr)d,, it follows by the preceding claim that
Adeér

mp(s)=mp(spyr)+ Z my(Sryr)er.
Acér—(I}

But mp(s)=|i,|+ e w, and hence

(8.6) r>we=er(mp(spy) — 1A+ Y mylspyp).
Ae & -1}
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Let L=C4(sy), and let [[L,, [[R, []x,., be the decompositions of L,R,y,
A 4 a4

corresponding to the primary decomposition of sy. We note that R<L since R
is abelian. Now x, ,(1)=|G: L, x,(1), so that

V(lsy, u (1) =v(G: L)+ Y v(x,,, (D).

But for each 4, v(x,,(1)=v(L,:R,) by the preceding case and (8.6). Thus
V(%s,..(1))=v(G:R) and ,, , has zero height.
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