D
[-A elt

Werk

Titel: A Construction of Surfaces with pg =1, g = 0 and 2...(K2) ...8. Counter Examples...
Autor: Todorov, Andrei N.

Jahr: 1981

PURL: https://resolver.sub.uni-goettingen.de/purl?356556735_0063 | log20

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Invent. math. 63, 287-304 (1981) Inve”twﬂeé:
mathematicae

© Springer-Verlag 1981

A Construction of Surfaces
with p,=1, ¢=0 and 2=(K*)=8

Counter Examples of the Global Torelli Theorem

Andrei N. Todorov
Columbia University, Department of Mathematics, New York, NY 10027, USA

Introduction

The aim of this article is to give a construction of surfaces with p,=1, =0 and
2<(K?*<8. From the way we constructed surfaces with p,=1, ¢=0 and (K?*)=2
it follows that there exists two types of such surfaces; one of the types has a
trivial fundamental group and the other type has n, =Z/2Z. We prove that the
moduli space of the surfaces we constructed with p,=1, =0 and (K*)=2 has
dimension 12 and its image in the period domain has dimension 9. So surfaces
withp, =1,qg=0and (K?)=2 give counter examples of the Global Torelli theorem,
Le. there exist surfaces with p,=1, g=0 and (K?)=2 that are birationally distinct
but have the same periods. The same is true for surfaces with p,=1, ¢=0 and
3<(K?) <8. These surfaces have a “big” fundamental group. The calculation of
the fundamental group of the surfaces we construct will be given in another
paper.

Surfaces with p=1 and (K?)=1 are studied in [C], [Ku] and [T]. In [C]
and [T] it is proved that surfaces with p,=1 and (K*)=1 such that |2K]|:
X —1P? is a Galois covering of IP%, the Local Torelli theorem is not true. Such
surfaces we will call canonical Galois coverings of IP?. In [T] it is proved that
the moduli space of all canonical Galois coverings of IP? with p,=1and (K?)=1
has Dimension 12. Theorem 3 shows that the image of the moduli space of all
canonical Galois coverings of IP? with p,=1and (K?)=1 in the period domain
has Dimension 10. This is an answer to a question of F. Catanese.

The surfaces with p,=1,¢=0 and (K?)=8 have a moduli space of dim>12,
while the period domain has dim=11, so Global Torelli fails generically for
them.

I hope that the surfaces constructed here are the only surfaces of general type
possessing pathological properties concerning the period map.

1. Geometry of the Double Points on a Kummer Surface
Let J be the jacobian of a non-singular curve of genus 2. The canonical
involution i: x — —x of the two-dimensional torus J has 16 distinct fixed points

and each of them determines an ordinary double point on the orbit space
J/i=X. It can be proved that X can be embedded in IP* as a quartic with 16
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ordinary double points. See [M,]. A quadratic transformation at each of these
points desingularizes the orbit space X and the resulting non-singular surface X
has 16 distinct projective lines E;, such that (E;, E;)=—2 and (E,,E)=0 if i=}.
X is called a Kummer surface.

1.1 Definition. Let A,,..., A, be k points in IP?, where k>3. We will say that
these k points are in general position iff every four of them do not lie on a linear
hypersurface in IP3.

1.2 Lemma. We can find 6 points among the double points {P} of the Kummer
surface X in IP? in general position.

Proof. Let P, be any of the double points on X. Let us blow up the point P,. We
will obtain a surface X with 15 double points. Consider the map r: X —IP?
obtained by the projection from P, to a linear hyperplane in IP3. In [G and H]
it is proved that: a) degr=2 and b) the branch locus of r: F—IP? consits of 6
distinct lines meeting in 15 distinct points. These double points on F are just the
images r(P), i=2,...,16. From the calculation of the branch locus we get:

Fact 1. If a hyperplane section of X contains 4 or more double points, then this
hyperplane section contains exactly 6 double points.

Proof. Let P. be one of the double points that lies on the hyperplane section C.
Project X onto IP? from P. Since C is a hyperplane section, it follows that r(C)
will be a line in IP2. The line r(C) will contain at least 3 double points. From the
fact that the branch locus of r F consists of 6 distinct lines meeting in 15 distinct
points, we get that r(C) must be one of the components of F. So r(C) will
contain exactly 5 of the double points of F. Remember that we are projecting
from one of the points P. on C, so C contains exactly 6 double points. Q.E.D.

Notation. Let me denote by L; all hyperplane sections of X that contain exactly
6 double points. Their number is equal to 16. See [G and H].

Fact 2. Through each pair of double points (B#P) there pass exactly two
distinct such hyperplanes, say L; and L;. Every two distinct L; and L; intersect
each other in two distinct double points of X.

Proof. Fact two is proved in [G and H]. This is exactly figure 21 on page 787 of
[G and H]. Q.E.D.

Let L, and L, be distinct hyperplane sections of X, such that each of them
contains exactly 6 double points. From Fact 2 we know that L, nL, contains
exactly two distinct double points say Py and P, so L, U L, contains exactly 10
double points, say P,P,...,P, and P,,. Let the remaining six points be
Pl s Pigy v s Bige

Proposition: P, P, ,, ..., P, are in general position.

Proof. Suppose that P,,, ..., P, are not in general position, which means that 4
of them lie on a hyperplane section say L, (this follows from fact 1). We know
that L, contains exactly 6 double points. We have the following possibilities:
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1) The six double points that lie on Ly are P, P,,,...,P,s. From here it
follows that Ly "L, =L, nL,=0, which contradicts Fact 2.

2) The double points that lie on L, are P4, P, P,,,P 3, P, and P,,. From
here it follows that L, nL,=L,nLy;=L,nLy=(P, and P,,). This contradicts
fact 2.

3) The other two points (except P4, P,,, P,,, P,5) are both on L, or both on
L, and these two points are different drom P, and P,,. If they are on L,
then L, nL,=@. This contradicts fact 2.

4) L, contains except P,,, P,,, P, and P, one point on L, and the other on
L, and one of these two points is different from P, and P, . It follows that either
L,nL, or L,n L, contains only one double point. This contradicts Fact 2.

5) L, contains 5 of the double points P, P, P,,, P,5, P, and P;5. Then L,
must contain one more double point. This follows from fact 1. We see now that
L,nL, or L,nL, or both of them will contain only one double point. This
contradicts fact 2. Q.E.D.

2. A Construction of Surfaces with p, =1, =0 and 2=(K <8

From Lemma 1.2 we know that there exist 6 double points on X (Kummer
surface in IP?) in general position. We can find a quadric Q in IP? such that:

a) Q@ nX contains i of the singular points of X that are in general position,
where 0 <i<6. This can be done because the space of all quadrics in IP? is a
projective space of dim=9 and the double points are in general position.

b) X nQ contains exactly i double points and the curve Q n X has exactly i
singular double points. It follows from Bertini theorem that we can find Q with
the above properties.

2.1 Lemma. Let me denote by C; the proper transform of Q nX on X,0<i<6,
then

a) (C,,C)=16-2i

b) C;+Y E;=0(mod2) in H,(XZ) (the sum is taken over all E; such that
(Ci,E)=0).

Proof. a) Let p: X — X be the map that blows up each of the double points of X.
Clearly we have:

2.1.1) p*(QNnX)=C,+E, +...+ E,=2p*(H),

H is a hyperplane section ‘of X that does not contain any of the singular points
on X.

From (2.1.1) it follows that:
(2.1.2) C,=2p*(H)—(E,+E,+...+E)
From (2.1.2) we get:

(2.1.3) (Ci, C)=4(p*(H),p*(H))+(E,, E,)
+(E;, E))+...+(E,, E).
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This is true because (p*(H), E,)=0 and (E,,E;)= —2J,,. So from (2.1.3) and the
fact that deg X =4 we get that (C,, C;)=16—2i. Q.E.D.
The Proof of b). From (2.1.2) we get
(214) C,+E, ,+..+E
=2p*(H)—(E,+...+E)+(E; ., +...+E )
=2p*(H)—(E;+...+E,+E, +...+E ) +2(E;, ;+... +E )
Now b) follows from Lemma 2.2. Q.E.D.
22 Lemma.E,+E,+...+E,,=0(mod2)in H,(X,Z).

Proof. Let P: J—J be the map that blows up each of the fixed points of i.
Clearly the involution i lifts to an involution i on J. As i acts as —id on the
tangent space of J at any of its fixed points, the fixed locus of i is just the union

~

of the exceptional curves on J. Note that J/i=X, i.e. J is a double covering of X
with the ramification divisor (E,+...+E,). From here we get that (E;+...
+E,;)=0(mod2)in H,(X,Z). Q.E.D.

Remark. C, is a non-singular curve on X.

From Lemma 2.1b) it follows that there exists a double covering ¥ of X with
a ramification divisor C;+E,, ;+...+E . Let p: Y— X be the canonical map.
Notice that p*(C;)=2C; and p*(E;)=2E; for j=i+1,...,16.

2.3 Lemma. (Ej,E)=—1 and (C;,C)=8—i.

Proof. From the well known formula (5*(E)), p*(E;)=degpx(E;, E)) (see [H])
and the fact that p*(E;)=2E; we get

(P*(E)), p*(E)))=4(E}, E))=2(E}, E))= —4,
so (E;,E)= —1. Using the same arguments we get that (C; C}))=8—i. Q.E.D.
J J

From Lemma 2.3 and Castelnuovo’s theorem it follows that we can blow
down all E} on Y and we will get a non-singular surface Y.

24 Lemma. a) Y is a minimal model, i.e. it does not contain exceptional curves of
the first kind.

b) p(Y)=1, q(Y)=0 and (K})=8—1i.
Proof. The following lemma is proved in [M,] on p. 110.

Lemma. Let f: X"— Y" be a regular dominating morphism of smooth r dimensional
varieties with branch locus B. Then for all rational r-forms w on Y (f*(w))=B

+7HW)).
From this lemma and the fact that X is a K-3 surface, i.e. K,=0, we get:
Q4.1) K¢=Ci+E, +...+E\,.
From the fact that (E}, Ej)= —1 (this is lemma 2.3) we get that
(24.2) Ky=C, andso (K3})=8-i.
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From here we get that Y is a minimal model, otherwise K, must contain all the
exceptional curves of the first kind. Q.E.D.

The Proof of b)

Step 1. The topological Euler characteristic xlop(f’): 16+i.

Proof. First we will compute me(f’) from the well known formula:
(2:4.3) Hiop(F)=2216p(X) — 110p(B),

where B is the branch locus of P: Y— X. From the fact that X is a K-3 surface it
follows that:

(2.4.4) me()?) =24.

The branch locus B consists of the disjoint union of non-singular curves. ie.
B=C+E;, ,+...+E},, so.

i+ 1
(2.4.5) Yiop(B)=1(C) +(16 —i) y(IP") = 3 (C)) +2 (16 —i).
Note that
(2.4.6) 2(C)=2—=2p,(C).

From the adjunction formula 2p,(C)—2=(c;, C;+ Ky) we get:
(2.4.7) x(C)H=2i—16
(here we use the fact that C;=C,). So

(2.4.8) y(B)=2i—16+32-2i=16
(2.4.9) 1(Y)=224—-16=48—16=32.
On the other hand we have y(Y)=y(Y)+16—i, so

(2.4.10) 1(Y)=16+i.
Q.E.D.
Step 2. x(Oy)=p,—q+1=2.

Proof. From Noether formula we get:

(2.4.11) 12(p,—gq+1)=ci+c,,

SO

(2.4.12) 12(p,—q+1)=8—i+16+i=24
(2.4.13) p,—q+1=2. QED.

Step 3. q(Y)=0.

Prgof Since g(Y) is a birational invariant (see [H]) it is enough to prove that
q(Y)=0. From the Hodge decomposition of Kahler manifolds and the Poincaré¢
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duality we get that g(¥))=dim H*(Q2). If we prove that H'(Q2)=0, then q(Y)
=0. We have the following exact sequence:
(2.4.14) 0 02— Q3(C) —= 0L — 0

(Res means Poincaré residue).

(2.4.15) 0— H°(Q})— HO(Q%(C;))JE» HO(Qé‘,)
— HY(Q3)— H (Q3(C).
Step 3 will follow from (2.4.15) and the following two propositions:
(2.4.16) Proposition. H'(Q%(C;})=0.
(2.4.17) Proposition. Res in (2.4.15) is a map onto.
Proof of (1.4.16). From the Serre duality we get:
(2.4.18) dim H'(Q%(C)))=dim H'(03(— C})).

Let F: Y Y be the map which blows down all the exceptional curves on Y of
the first kind. From the definition of R'f, (03(— C;)) we get:

(24.19) f:0:(= C)=04(-C)),
R'f,(05(— C}))=R*f,(03(— C}))=0.
From the Leray spectral sequence

EZ=HP(Y,RY,(0(~ C)) = H**(%,05(~C))

1

we get:

(2.4.20) dim H'(Y,0;(— C}))=dim H'(Y,0,)(— C})

(see (2.4.19)). From Serre duality and the fact that C;=K, we get:
(2.4.21) dim H'(Y,04(— C))=dim H'(Y,0,(2K)).

Kodaira proved in [K] that if Y is a surface of general type then
dim H'(Y,04(nK,))=0if n=>2. So (2.4.16) is proved. Q.E.D.

Proof of (2.4.17). On Y a canonical involution j acts and Y/j=X, where X is a
K-3 surface. The fixed point locus of j is C;+E;, , +... +E},. On X we have the
following exact sequence:

(2.4.22) 0— HO(Q2) > HO(Q(C)) ——> H(QL)— H(Q2)=0

(X is a K-3 surface). From (2.4.22) we get that Res: H(Q}(C))— H°(Q}) is a
surjective map. Let we H°(Q3(C,)) such that Res(w)=+0, then we will prove that:
a) p*(w)e H(&§(C)),
b) Res(p*(w))+0.
p: Y— X is the canonical map.
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The Proof of a). Let U be some affine open neighborhood of the point Pe C,. Let
(x,y) be local coordinates in U, where y is the local equation of C; in U. Then
we have:

dx ndy

(2.4.23) Wwly=£(x,) (we H°(QF(C))).

Because p: Y— X is a finote morphism, then p~!(U) will be an affine open set in
Y. It is clear that we can choose (p*(x),)’) as a local coordinate system in
p~1(U), where y is the local equation of C;in p~!(U). Notice that p*(y)=y'2.
Let me denote by x p*(x)

. . dx A dp*(y)
PrwW)l ;- uu»:f(x,p*(y))ﬁAg)(y

dx ndy'?
=f(x,y? )sz“

dx ndy
=2f(X,,V'Z)Ty—~

(2.4.24) proves a). Q.E.D.

The Proof of b). Notice that when we restrict the function x on U n C;, then we
get a local coordinate in U N C,;. The map Res is given by the following formula:

(24.25)  ResW)ly e, =f(x,0)dx and Res(p*(w))=f(p*(x),0)dx.

From (2.4.25) b) follows immediately. Q.E.D.

Notice that p*: H°(Q%(C))—H°(2; C)) is an injective map. So from this
fact a) and b) it follows that Res in (2.4.15) is a surjective map. Step 3 is
proved. Q.E.D.

From Step 3 Lemma 2.4 follows immediately. Q.E.D.

So we have constructed minimal surfaces with p,=1, ¢=0 and 2<(K?)<8.
The canonical divisor of these surfaces are non-hyperelliptic curves. All of them
are non-singular curves.

2.5 Lemma. C; is not a hyperelliptic curve on the K-3 surface X.

Proof. In Chapter 10 in [Sh] the following lemma is proved: Let X be a K-3
surface and C a non-singular curve on X, then 1) the complete linear system |C|
has no fixed components and no fixed points, 2) |C| gives an embedding iff C is a
non-hyperelliptic curve. From this lemma it follows that if we prove that the
complete linear system |C,| gives an embedding then C; will be a non-hyper-
elliptic curve. It is easy to see that |C|| is just the space of all quadrics in IP?
passing through p,,,...,p;,- In order to prove that |C, gives an embedding for
X we must prove that if x =y are two points on X different from p,,...,p,, we
can always find a quadric passing say through p,,,...,p, and x and not passing
through y. But this follows immediately from the fact that the dimension of the
family of all quadrics passing through p,,...,p;, and X is equal to two, while
the dimension of all quadrics passing through p,,...,p,¢, x and y is equal to 1,
so from here it follows that |C, gives an embedding and so Lemma 2.5 is
proved. Q.E.D.
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3. The Moduli Space of the Surfaces we Constructed
with p,=1, ¢=0 and (K*)=2,3,...,8

The sutudy of the moduli space of the surfaces we constructed in §2 is based on
the following theorem;

Theorem 1. Let Y be a minimal surface of general type with the following
properties:

1) p(Y)=1, q(Y)=0 and (K*)=2,

2) Ky is a non-singular and non-hyperelliptic curve

3) Ky is an ample divisor and

4) there exists an involution j: X— X such that j/.=id.

Then a) the linear system |2 K| gives a holomorphic map f: Y—1P3, f(Y)=X
is K-3 surface with 10 ordinary double points, i.e. X is a quartic with ten ordinary
double points).

b) degf=2.
Proof
3.1 Proposition. |2K,| gives a holomorphic map.

Proof. We have the following exact sequences:

(3.1.1) 0027 " Q3K )~ @k, —0
(3.1.2) 0— HO(Q2)— H(Q(K ) ——> HO(QL,) 0.

a) Suppose that |2K,| has a fixed component D. Since Ky is an ample divisor
(D, Ky)#0. So the restriction of the linear system |2K,| on K, will not give a
holomorphic map on K. From (3.1.1) we get that the restriction of |2K,| is the
canonical system of K,. It is a well known fact that on a non-hyperelliptic curve
the canonical map always gives a holomorphic embedding. Since K, is a non-
singular and non-hyperelliptic curve we get a contradiction. This means that
|2K,| does not have fixed components.

b) Suppose that [2K,| has a base point x,. Since 2K, €|2K,| this point x,
must be on K,. Now repeating the same arguments as in a) we get that this is
impossible. Q.E.D.

From the Serre duality we get that H*(Q3(K))=0. Kodaira proved that for
all surfaces of general type we have H,(X,04(nKy))=0 for n>1. See [K]. Using
these facts and Riemann-Roch we get that dim H°(Q3(K,))=4, so we get a map
Nagy: Y— IP? and the map is holomorphic. We will denote this map by f.

3.2 Proposition. a) degf(Y)=4, i.e. f(Y)=X is a hypersurface of degree 4 in IP3,
b) the degree of the map f is equal to 2.
Proof. a) Since (2Ky,2Ky)=8 and |2K,| is a complete linear system, it follows

that degf(Y) can be 2, 4 or 8. The proof of the fact that deg X =4 is based on the
following well known fact: Let C be a non-singular non-hyperelliptic curve of
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genus 3, then |K.|: C—IP? is an isomorphism onto a non-singular plane curve
of degree 4. (See [H].) From the adjunction formula and the fact that (K2)=2 we
get that the genus of K is equal to 3. We assumed that K, is a non-singular and
non-hyperelliptic curve of genus 3. Since [2K,]| restricted to K, is the canonical
map and f(Ky) is a hyperplane section of degree 4 (because jl.=id) we get that
degf(Y)=4.

b) From (2K,,K,2)=8 and degf(Y)=4 it follows that the degree of the
map f'is two. Q.E.D.

Since jlg, =id, we get that j*(w_(2,0))=w_(2,0), i.e. the only holomorphic
two form on Y is invariant under the action of j. Indeed let U be a neigh-
borhood of a point p on K. In U we can choose a local coordinate system (x, y)
such that x/=x and y/= —y. Notice that y is the local equation of K, in Y.
From the fact that the divisor of wy(2,0) is Ky, we obtain: wy(2,0),=ydx Ady,
s0 w§(2,0),= —ydx Ad(—y)=ydx ndy. From these local calculations it follows
that w}(2,0)=w,(2,0).

3.3 Proposition. j can have only isolated fixed points outside K.

Proof. Suppose that j(p)=p and p¢K,. Let U be a neighborhood of p. We have
proved that wj(2,0)=wy(2,0), and so the representation of Z/2Z =(1,j) in T,y
(the tangent space of Y at p) must preserve the skew-symmetric form w,(2,0).
This means that we can find a local coordinate system in U (x, y) such that x/=
—x and )= —y, so from here it follows that p is an isolated fixed point of j.

3.4 Proposition. The number of fixed points of the involution j is equal to 10.

Proof. From Proposition 3.3 it follows that the orbit space Y/j4f(Y) has only
ordinary double points and since degf(Y) in IP? is equal to 4 it follows from the
famous results of M. Artin that after we blow up the double points on Y/j=f(Y)
=X we will get a K-3 surface X. Let k be the number of the fixed points of j.
Since f(Y)=Y/j is a K-3 surface with k ordinary double points it follows that
Yiop(Y/))=24—k. We know that y, (Y)=22. Comparing the two Euler charac-
teristics we get that k=10. Q.E.D.

Theorem 1 is proved.

Remark. Repeating word by word the proof of Theorem 1 one can prove the
following theorem: Let Y be a surface with p,=1, q(Y)=0 and 3<(K3)<8.
Suppose that K, is a non-singular and non-hyperelliptic curve, then the com-
plete linear system |2 K,| gives us a holomorphic map f onto a K-3 surface with
8 +(K?) simple double points.

f: Y>IPKD+1deg f=2,

In order to calculate the moduli space of all surfaces with p,=1, ¢=0 and
2<(K?)<8 and K, a non-singular an non-hyperelliptic curve we need the
following two propositions:

3.5 Proposition. Let Y, and Y, be two surfaces with the properties stated in
Theorem 1 and let the images fIZKy,I(Yl) and f|2KyZ|(Y2) are birationally distinct
K-3 surfaces. then Y, and Y, are birationally distinct.
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Proof. Suppose that Y, and Y, are isomorphic and let g: Y,— Y, be an
isomorphism. g induces an isomorphism

g HO(Y2,0(2KYZ))—> HO(YI ,OY,(ZK,,,))-

From here we get that there exists an element of the group PGL(N), g, such that
g,(X,)=X,, where N=dim P(H°(0(2Ky))), X;=f,,x,(Y) and i=1 and 2.

3.6 Proposition. Suppose that Y, and Y, are surfaces constructed in the way
described in Theorem 1, that they are constructed from the same K-3 surface X but
that the ramification divisors are not isomorphic. Then Y, and Y, are birationally
distinct.

Proof. Suppose that g: Y,— Y, is an isomorphism. Then f will induce an
isomorphism f: Ky ——K,,, since p,(Y;)=p,(Y,)=1. This contradicts the as-
sumption that K, and K, are not isomorphic. Q.E.D.

3.7 Lemma. Suppose that X is a K-3 surface embedded in P and X has at most
ordinary double points, then the number of moduli of all non-isomorphic hyperplane
sections of X is equal to N, i.e. the dimension of the space where X is embedded.

Proof. This is a standard fact about the number of moduli of curves on a fixed
K-3 surface. For the completeness of this article we will prove this fact for K-3
surfaces embedded in IP3. First some notes about the automorphisms of X
induced by PGL(3). Notice that all automorphisms of X induced by PGL(3)
formed a compact algebraic group G with a Lie algebra contained in H°(X, @)
=0, so G is a finite group. Now let C be a curve cut by a hyperplane section. We
suppose that C is a non-singular curve. Notice that C is canonically embedded
in IP? ie. from the adjunction formula it follows that H-C=K., H is a
hyperplane section. Since C is a canonical curve in IP? it follows that all the
automorphisms of C are induced by PGL(3). Let G’ be the group of automor-
phisms of C. Now let C' be a non-singular hyperplane section on X different
from all images of C by the action of the finite group G. We want to prove that
C’ is not isomorphic to C. Suppose that C and C’ are isomorphic curves. From
the fact that H- C=K_ it follows that the isomorphism f: C— C’ is induced by
g€PGL(3) and geG (this is because of the way we choose C’). So C'=g(X)
Nng(H)=XnH', C'=XnH' From this fact it follows that C'=g(X)n X, but
this is impossible because it is easy to see that g(X) intersects X transversally
and g(X)n X is an irreducible curve. From here it follows that he space of all
hyperplanes in IP* which is isomorphic to IP3, defines a family of curves F cIP?
x X, where F=(x, H,n X) (H, is the hyperplane section defined by the point x).
The fibers of this family are non-isomorphic curves, so this family has Dimen-
sion 3.

Theorem 2. The moduli space of all surfaces with the properties stated in Theorem
1 is isomorphic to Ux(I'~ SO(2,9)/SO(2) x SO(9)), where U is an open subset in IP*
and I'~S0(2,9)/SO(2) x SO(9) corresponds to the moduli space of all K-3 surfaces
from which we contructed the surfaces with the propertie stated in Theorem 1. I is
an arithmetic subgroup of SO(2,9).
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Proof. From Theorem 1, Proposition 3.6 and Lemma 1 it follows that the
moduli space of all surfaces with the same properties as in theorem 1 will be
isomorphic to U x M; where M, is the moduli space of all K-3 surfaces from
which we construct the surfaces with the properties stated in Theorem 1 and U
corresponds to the moduli space of the ramification divisors on the K-3 surface
from which we construct the surface with the properties stated in Theorem 1.
The proof of the fact that M =I"S0(2,9)/SO(2) x SO(9) will ge given in Appen-
dix 1, because we need some facts about Hodge structures and these facts will be
introduced in the next paragraph.

Remark. From now on, if we say that a surface S has the propertes stated in
Theorem 1, we will understand that the surface S has the following properties:

1) p(S)=1, q(S)=0 and 2<(KF)<8.
2) K is a non-singular and non-hyperelliptic curve.

4. General Facts About Hodge Structures on Surfaces with p, =1
and the Period Mapping for the Surfaces we have Constructed in 2

In [B] Bombieri proved that |SK,| (K is the canonical class of the surface X)
gives an embedding modulo rational double points for all surfaces X of general
type. From now on we will consider only those surfaces of general type with an
ample canonical divisor K. Next we must define what is a polarized Hodge
structure on a surface X of general type with p, > 1.

Let X be a surface of general type with p, =21 and ample canonical class.
From Bombieri’s theorem it follows that |SK,| gives a non-singular embedding
of X in IP". It is a standard fact that the Poincaré dual of |[SK,| is a (1, 1) form
that comes from the restriction of the form of Fubini-Study metric of IP" on X.
Let me denote this form by w. Let H*(X, Z) be the torsion free part of H*(X,Z).
On H?*(X,Z) there is an inner product induced by the cup product, so
H?*(X, Z) is an Euclidean lattice and we will denote this Euclidean lattice by L.
It is a standard fact that the signature of the bilinear form is equal to (2p,
+1,h" ' —1) where h'* ' =dim H'(Q}). Let (L® C),=(xe L® C|(x,w)=0).

4.1  Definition. A polarized Hodge structure on L with a polarization class w is
defined as a filtration H>°cH*°+ H"'c(L® €),,, which has the following
properties: a)

a) dimH* =p,;

b) (HYY):=(H>?+ H%?), where H**=H%9;

¢) (x,x)=0 for all xe H*° and

d) (x,x)>0 for all xe H*° and x 0.

Griffiths proved that the space
SO(2p,, "' —1)/U(p,) x SO(h"' =1)/T

parametrizes all admissible Hodge structure on L with dimH*°%=p,.
I'=(g- Aut(L)|g(w)=w).
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3.2 Definition. The space SO(2p,,h*' —1)/U(p,) x SO(h"'—1)/T" is called the
period domain.

Let p: V— D be a family of non-singular surfaces with p,=1, where D is a
complex manifold. There exists a canonical map P:

D—S0(Q2p,,h"' —1)/U(p) x SO(h"* — L)/T.

P is defined in the following manner: to every point ye D, P(y) is the admissible
polarized Hodge structure of the surface p~'(y), defined by the complex
structure on p~'(y). In [G] Griffiths proved that P is a holomorphic map.

Remark. The period domain of the surfaces we have constructed in §2 is:
SO(2,11+1)/SO(2) x SO(11 +1i)/T", where 16 —i is the number of all E, that do not
intersect C;, on X. '=S0(2,11+1i; Z).

Proof. In §2 we proved that g,,,(Y)=16+i and q(Y)=0, so dim H*(X,Z)=b,
=14+i. From dim H*°=1 it follows that h**1(Y)=16+i and q(Y)=0. Now
our remark follows from the result of Griffiths mentioned above. Q.E.D.

2) It is not difficult to prove that the surfaces we contructed in §2 have
ample canonical divisors.

Theorem 3. Suppose that Y and Y' are surfaces with the following properties: 1)
P(Y)=p,(Y)=1, g(Y)=q(Y)=0 and 2) 2<(K3)=(K%)<8, 3) K, and K,. are
non-singular and non-isomorphic curves, 4) Y and Y' are obtained from the same
K-3 surface, i.e. from theorem 1 we know that on Y and Y’ involusions i and i’ act
in such a way that i|y =id=i'|g . and the orbit spaces Y/i=Y'[i are K-3
surfaces, we suppose that these two K-3 surfaces are isomorphic.

Then there exists an isomorphism g: H*(Y,q)—— H?(Y',Q) which preserves
the inner product induced by the cup product and the Hodge filtrations. g is defined
over Z.

Proof. From Theorem 1 we know that on Y and Y’ the involutions i and i’ act
and so they induce an action of Z/2Z on H*(Y,Q) and H?(Y',Q) respectively. So
H*(Y,Q)=Hj +Hjy. where

H{ =(xeH*(Y.Q)|i(x)=x and H;=(xeH*(Y.Q)|i(x)=—x).
The same is true for H*(Y',Q), i.e. H*(Y',Q)=H;. +Hj;..

4.3 Proposition. Hy is orthogonal to Hy with respect to the quadratic form on
H*(Y, Q) induced by the cup product. The same is true for Y'.

Proof. Let xe Hy and ze Hy ..
(x,2)=(i(x),i(z))=(x, —z)= —(x2)=0. Q.E.D.
3.4 Proposition. H>°(Y)+H**(Y)cH; ® C and Hy @ C=H" '(Y)".

Proof. From the proof of Theorem 1 we know that the form wy(2,0) is invariant
under the action of i. The same is true for the anti-holomorphic form wy(2,0). So
H*°+H*?cH; ®C.
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From definition 3.1 we know that H"'=(H*°+H%?' From here it
follows that H'! is invariant under the action of i, so H“!'(Y)=H"!(Y)*
+H"'(Y)". H"'(Y)" =Hy ® C follows immediately from Proposition 3.3 and
the fact (H*°+H®*?)cH,®C. Q.E.D.

We may assume that Y and Y’ are obtained from the same K-3 surface as
double coverings, but with non-isomorphic divisors. From this and the proof of
Proposition 3.7 it follows that we can find a family Y”—%» D of non-singular
surfaces with the properties stated in Theorem 3 such that a) D<= C is simply
connected; b) Y=g '(y,) and Y'=q'(y,), where y, and y, are two points in D.
Since D is simply connected it follows that Y and Y’ are diffeomorphic, even
more we can find a difffomorphism f: Y— Y’ with the following property:
f@i(x))=if(x). On the other hand the Hodge structures on HZ?(Y,@Q)*
=p*(H*(X.@Q)) are isomorphic because these two structures are induced
from the same K-3 surface X. Now our theorem follows immediately from
Propositions 3.3 and 3.4, ie. the diffeomorphism f induces a Hodge isometry.
Since this isometry of Hodge structures is induced by a diffcomorphism f it
follows that this isometry is defined over Z. Q.E.D.

Remark. Notice that we have proved the following lemma: let yeH,(Y, Z)~, i

i(y)= —7 then ij(ZO) 0 and if feH,(Y, Z)*, then ij(Z 0)= [ p*(wx(2, 0))
(B
—ij(ZO From here it follows that all surfaces constructed in the way

B
described in Theorem 1 from the same K-3 surface have the same periods, i.e.
they are mapped to the same point of the period domain.

Corollary. The dimension of the image under the period map of the moduli space of
all surfaces with the properties stated in Theorem 1 is equal to the dimension of the
moduli space of the K-3 surfaces from which they are obtained, i.e. SO(2,3
+1)SO0(2) x SO(3+i)/I, so this dimension is strictly less than the dimension of
the moduli space of the surfaces with the properties stated in Theorem 1.

Proof. The corollary follows immediately from Theorem 1, Theorem 2 and the
remark on the preceeding page. Q.E.D.

From this corollary it follows that there exists birationally different surfaces
with the properties stated in Theorem 1 which have the same periods.

Appendix 1. Moduli of K-3 Surfaces

We need some standard facts about K-3 surfaces, which can be found in [Sh and
P].

Definition. A K-3 surface is a simply connected two dimensional complex
manifold with a trivial canonical class.

If X is a K-3 surface, then H*(X,Z) is a free abelian group of rank 22. The
cup product defines in H?(X,Z) a scalar product in Z. Thus H?(X,Z) is an
Euclidean lattice, which we will denote by Hy. In [Sh] Chapter 10 it is proved
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for every K-3 surface X, Hy is an even, unimodular lattice with a signature
(3,19). In [Se] it is proved that all such lattices are isomorphic. Let me fix one of
them and call it L.

Definition. A marked K-3 surface is called a pair (X, f), where X is a K-3 surface
and f: Hy— L is an isomorphism of lattices.

Definition. An admissible Hodge structure on L of type (1,20, 1) is defined as a
filtration H*°cH*°+ H'! <L ® €, with the following properties: a) dim H*°
=1; b) for any we H>°(ww)=0 and (w, w)>0 if w£0; c) H"!'=H*°%+ H% %)%
where H*2=H?",

It is not difficult to prove that Q=S0(3,19)/S0(2) x SO(1, 19) parametrizes
all admissible Hodge structures of type (1,20,1) on L® C. Q can be represented
by the following formulas in P(L ® C)=IP?!(CT):

2 2 2 2 y
zi+z3+z5—25—...—25,=0

|z, 2 +1z,2 + 257 = |z4)> — ... — 25,2 >0.

We define the period map in the following way: Let (X, f) be a marked K-3
surface. Then 7(X, f) is the admissible Hodge structure f(H*°(X))< f(H*°(X)
+HM ' (X)cL®C.

Theorem 4. The moduli space of all K-3 surfaces that are images g, of surfaces
Y with the properties stated in Theorem 1 is isomorphic to:

SO(2,3+i)/SO(2)x SO(3+i)/T

I is an arithmetic subgroup of SO(2,3+i) which will be defined at the end of the
proof. i is defined as follows (K2)=8—i, where i=0,1,2,3,4,5 and 6.

Proof. From Theorem 1 we know that the image g, (Y) is a K-3 surface X
with 16 —i different simple double points and g|,,/(Ky) is a non-singular curve
C; on X isomorphic to K. Let me blow up all the simple double points on X
and denote by E, E,, ..., E, _; the exceptional curves on X of the second kind.
Of course we have (C7)=16—2i, (E,, E,)= —20,, for all k and 1 and (C,, E;)=0.
Now let me fix a marking of X, i.e. an isomorphism of the lattices H; —/— L. Let
me denote by c;, e,,...,e,s_; the images f(DC),f(De,),...,f(De,_;) in L,
where D is the Poincare duality operator, D: H,(X,Z)—=~ H*(X, Z).

Definition. Let M; be the subspace in Q that corresponds to all marked K-3
surfaces (S, f) for which

f_l(c.'),f_l(el)’ ---’fal(ele_.')

are algebraic cycles on S, this means that the (Poincaré duals) of f~'(c,),
f~Yey)s ..., f~(e;s_;) can be realized as an algebraic cycle on S.

Lemma. 1) M, is isomorphic to SO(2,3+1)/SO(2) x SO(3 +i).

2) Every point of M, corresponds to a marked K-3 surface (S, f) with the
following properties:
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a) D=/ He)), DTS ey))s ..., D= H(f ey ;) can be realized as a non-
singular curves b)

DN Me)+D NS e+ ...+ D~ (ey_1)=0(mod 2)
in H,(S,Z).

Proof. First we will prove Condition 1). The proof of Condition 1) is based on
the following criterion of Lefschetz for a cycle C in H,(S,Z) to be an algebraic
one: A cycle C is an algebraic one if DCeH"'(S)nH*(S, Z). This is equivalent
to the following conditions: 1) DCeH?*(S,Z) and 2) (ws(2,0), DC)=0 for all
wg(2,0)e H*°(S). For the proof of this fact look at [G and H]. From this
criterion it follows that the image of the space of all marked K-3 surfaces (s, f)
for which f='(c,), f ~'(ey),...,f ~'(e,,_;) are algebraic cycles, under the period
map must lieon M, "M, n...AM, _, where M_ is defined as IP(H,)nQ;

HCI:(UEL®C | (U’ Cl-)ZO),
MPJ=]P(H(,J)r\IP(HEJ)r\Q;
H, =(veL® C|(v,¢)=0).

In [To] it is proved that every point of corresponds to a marked K-3 surface
and in [L and P] it is proved that any two K-3 surfaces are isomorphic is they
have isometric Hodge strictures, so form these two theorems it follows that the
moduli space of all marked K-3 surface (S, f) for which f~!(c,), f~'(ey), ---,
f~'(e,s_,) are algebraic cycles on S is isomorphic to M, "M, n...AM, .
Notice that we have fixed the vectors ¢;, ey, ..., e;,_;in L. Let H_ , . be
the subspace in L® R generated by c;e,,..., €;,_;. It is easy to see that the
group that precerves the inner product in L®R and actsasidon H, , ..
is isomorphic to SO(2,3+1i). From this fact and the fact that Q parametrizes all
oriented two dimensional subspaces in L® R for which (,) is strictly positive
(for the proof of this fact see [To]) it follows that SO(2, 3 +1i) acts transitively on
M,AM, n...nM, _ .Itis an obvious fact that the stationary subgroup of

SOQ2,3+i) is SOQ2)xSOB+i),
SO

M, AM, A...nM,, =S0(2,3+i)/S0(2)+S0(3+i).

This proves Condition 1). Q.E.D.

Proof of Condition 2). First we will prove Condition b). We started with a
surface Y which has the properties stated in Theorem 1. We know from
Theorem 1 that Y is a double covering of a K-3 surface X with ramification
divisor on X, C,+E,+E,+...+E,,_,. From this it follows that C,+E, +...
+E,,_;=0(mod2)in H,(X,Z) and so ¢;+e,+...+e,,_;=o(mod 2) in L. So it
follows that we have on S,

D='f~Yc)+D 'f'(e)+...+D" 1 f~(e,,_)=0(mod 2)
in H,(S,Z). This proves Condition b). Q.E.D.
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The proof of Condition a) will be given in two steps.
Step 1. D='f~*(c,) can be realized as a non-singular curve on S.

Proof. Notice that (D='f~*(c), D~'f~*(c;))=(c;, ¢;)>0. From the Lefschetz
criterion we know that we can find an algebraic cycle C on S such that C is
homological to D='f~!(c,) and (C, C)=(c;, c;)>0. Step 1 follows immediately
from the following lemma proved in [Sh] Chap. 10 and Bertini’s theorem.

Lemma. Let S be a surface of type K-3 and let C be an algebraic cycle on S with
the following property: (C, C)>O0, then the complete linear system |C| has no
fixed components and no fixed points. Q.E.D.

Step 2.D~1f (e ;) can be realized on a non-singular rational curve on S.

Proof. From Lefschetz criterion it follows that we can find an algebraic cycle E;
homological to D~'f~!(e)). Step 2 follows immediately from the fact that
(E;, Ej))=(ej, e;)= —2, the adjunction formula, i.e. p,(E;)=1/2(e;, E))+1=0, Rie-
mann-Roch theorem and the fact that the sublattice generated by e; in L has
rank 1. For more details see [Sh and P]. Q.E.D.

This proves our lemma. Q.E.D.

This lemma shows that each point s of
M, AM, ..M, . =S0(2,3+i)/SO(2)x SO(3Ti)

corresponds to a marked K-3 surface (S,f) for which we can repeat the
construction described in §2 and so we will get a surface Yy with the properties
stated in Theorem 1. If we forget about the marking of the K-3 surfaces we will
get immediately that the moduli space of all K-3 surfaces that are images of
g2k, ((Y), where Y are surfaces with the properties stated in Theorem 1, is
isomorphic to:

S0(2,3+1i)/SO(2)xSOB+i)/T,
Where I is defined as follows:

I'=(geAut(L)|g(c)=c, gle))=ey, ... 8ers_)=¢1,_). QED.

Appendix 2. Some Remarks About the fundamental Group of the Surfaces
with p,=1, ¢=0 and (K*)=2 Constructed in § 2

(The full details will appear in another paper.)

Remark 1. One can prove that a surface with the following properties: p,(Y)=1,
q(Y)=0, (K*)=2 and K, is a non-singular and non-hyperelliptic curve, has an
abelian fundamental group. Outline of the proof: Notice that if Y has the
properties stated above then Y is a Galois covering of IP? with a Galois group
Z,xZ,. From Theorem1 we know that an involution j acts on Y with the
following properties: 1) jx, =id, 2) outside Kyj has 10 fixed points, 3) Y/J =X
can be embedded as a quartic in P*® with 10 ordinary doubple points. A
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projection of X from one of its double points onto IP? shows that X is a double
covering of IP? with a ramification divisor F, a plane curve in P? of degree 6
with 9 double points with distinct tangents. Now it is easy to see using Zariski

theorem, recently proved by Deligne in [D], that the fundamental group of Y is
an abelian one.

Remark 2. If the fundamental group is abelian then 7,(Y)=Tor(Pic(Y)). Bom-
bieri proved in [B] that if p (Y)=1, q(Y)=0 and (K%)=2, then Tor(Pic(Y)) is
either 0 or Z,. We will sow that from the way we choose the points p,,, p,,,
Pi3s Pia> P1s and p,¢ in §1 and the quadric Q with the properties stated in §2
passing through these six points it follows that Tor(Pic(Y))=Z,. Y is con-
structed in the same way as in §2. We will use the same notations as in § 1 and
§ 2. Suppose that the quadrics L, and L, (see for the definition of L, and L, in
§1) contain respectively py, py, p3, Pas Po and pyo; Ps, Pes P75 Pss Po @nd pyq.
Since X is a double covering of IP? with a ramification divisor F consisting of 6
distinct lines in IP?* and L, =p*(L,); L,=p*(L,). (We suppose that I’; and L,
are components of F) we get than on X we have:

(¥) 2L, +E,+E,+E,+E,+Eo+E,
=2L,+E+E+E,+E,+Es+E,o=H

(H=p*(L), where L is a line in IP? not contained in F and not passing through
the double points of F.)
From (x) we get:

(**) (e +E,+E;+E,+...+E,+Eg=2H—-2(L,+L,)—2(Eq+E,,),
SO
(%) E,+E,+..+Eg=mod2) in H,(X,Z).

From (xxx) and Bombieri’s result it follows immediately that Tor (Pic(Y))
=Z,. Indeed let Y’ be a double covering of X with a ramification divisor (xxx),
then it is easy to see that Y'x Y is an etale covering of Y. Y’ x ,Y means
desingularized manifold.

Remark 3. If we choose the quadric Q to pass through the points p,, p,,, Pi3>
Pi4> P15 and p,,, then one can prove that a) p,, p;,,..., P, are in general
position b) among E,, E;, E,,...,E,; there are no relations of type

Z E;=(modn) in H ,(X,Z) for any k and n. It is not difficult to prove that n

can be only 2 and k can be only 8. Now let us repeat the construction in § 2. We
will get Y” with the properties stated in Theorem 1. It is not difficult to prove
that Pic(Y"”) has no torsion and so from Remark 1 will follow that Y” will be
simply connected.

Remark 4. Notice that the surfaces, constructed in §2 with p,=1 & (K*)=8
have the following property: the moduli space has Dimension 12, while the
period domain SO(2,11)/SO(2)xSO(11 has Dimension 11, so for these
surfaces global Torelli theorem is not true generically, i.e. the moduli space has
a greater dimension than the period space.
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