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David Vogan has pointed out that Lemma 5.3 is incorrect, even for matrix
groups, and therefore some changes are needed in the statements of the main
theorems. The changes in question are not decisive, but we feel that the
accurately stated versions of the theorems should be in the literature. Actually,
when changes are needed, the new results yield more Szegé mappings than were
originally predicted and in that sense represent an improvement of the original
results. Vogan also suggested the statement below of Theorem A as an approach
to making the necessary changes.

To correct matters, delete Lemma 5.3 and introduce M, =M (FNT), where
F is the finite group defined in the proof of Lemma 5.3. Redefine ¢, on p. 176 to
be the restriction of t,(M,) to the M,-cyclic subspace H, generated by ¢,. As in
Proposition 5.5, we can conclude that ¢, is irreducible and has the stated highest
weight and highest weight vector. The character &, gives the values of o, on
elements of FN T, instead of F. For the most part, we can then replace
subsequent occurrences of M by M, and of induction from M AN by induction
from M, AN, and the results through the end of §10 go through, with their new
interpretations. (At the beginning of §8, delete the fourth paragraph and then
define A(o, v) directly in the obvious fashion.) No changes are needed in §§11-12.

Qualitatively the result is that the Szegd mapping f— Sf now operates on a
different domain of functions but otherwise has the same properties as in
Theorem 1.1. The new domain is smooth functions from K into the redefined H,
that transform under the smaller group M, according to the redefined ¢,. In
representation-theoretic terms, the Szegd map S gives an intertwining operator
between a representation W(ag,,2p* —v) induced from M, AN to G (rather than
MAN to G) and the discrete series 7 ,.

We can use this result to get an explicit quotient map to =n, from a
representation induced from MAN to G. To this end, let
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(6,, H,)=representation of M on the M-cyclic subspace of ¢, in V,,

r

6,= Y, o; be a decomposition into irreducibles under M,
j=1
C*(K,0))=(feC*(K, space for a,)| f(mk)=0;(m) f (k)
for meM, keK ’

U(ogj, v)=induced representation of G (in nonunitary principal series) nonuni-
tarily induced from o;®v®1 on MAN (cf. formulas (6.6) and (6.7)),
M, ={meM|t,(m)H,<H,}.

Theorem A. With A=A+0,—9, integral and with A nonsingular and G-dominant,
the operator

S;(N) )= [ 1,(k) " f(kx)dk=[ e D g (k(Ix= 1)~ f (D dl
K K
carries C*(K, o;) into the kernel of the operator 2 on C*(G,t,), and under
the identification of C*(K,a;) with the space of the nonunitary principal series
Ulaj, 2p* —v), it carries the K-finite vectors of U(c;,2p* —v) in a g-equivariant
fashion onto the K-finite vectors of the discrete series T ,.

Proof. Clearly S; is g-equivariant. Define a function f; in C*(K, a;) by f(k)
=F, 1,(k) ¢,, where F, is the orthogonal projection on the space for ¢;. Then

Trace P, degreeo;
S- . 1 = k _1 = q.l = j )
1S l{n( )" R, ta(k) ¢, dk degreer, 2 degree, ¢s

Thus §; is not the 0 map. In view of Proposition 10.7, Theorem 10.8, and the
remark after Theorem 10.8, Theorem A will follow if we show that image
S;Simage S.

Let {g;, 1<i<n} be representatives of M/M, chosen from F. Formula (3)
below, valid in the linear case, implies here that F normalizes T. Thus each g;
gives rise to a member s; of the Weyl group Wy, and we have 1,(q,) ¢, =c; ¢, ;.
These 5,4 are distinct, 1<i<n; in fact, s;A=5;4 leads to 7,(g; 'q,) ¢,=c9,,
hence ¢;* q;€M,, and hence g;=q;. Consequently the vectors 1,(q;) ¢,, 1 Si=n,
are linearly independent. Each such is a highest weight vector for M,, since
Ad(F) acts on m as the identity, and thus

dim (Z rl(q,-)HA);n dimH,=) dimrt,(q) H,.

i=1 i=1

Consequently the spaces t,(g;) H, are independent and

heH, for 1<i<n and Y 1,(g)h;=0 (1)

i
i=1

imply h;=0 for all i. )
From (1) it follows that the operator T on H, given by

T= Z t,(q) P(q) ™",
i=1
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where P is the orthogonal projection of H, on H,, is invertible. In fact, if Tv=0,
take h,=Pt,(g;)"'v in (1) to see that Pt,(q;)"'v=0 for all i. In terms of the
inner product in H,, we then have

{t,(g) " 'v,ud=0 forall u in H, and all i,
{t,(q) v, t,(my) ,>=0 for all m, in M, and all i,
(v, t,(q;m;)9,>=0  for all m, in M, and all i,

v, 7;,(M) ¢,>=0,

and so v=0 since ¢, is M-cyclic in H,.
Thus T is invertible on H,. But also T commutes with all ,(m) for m in M
since

n

{ ©a(m) Pry(m)= dm= Y ,(¢) Pt,(q) ™' =T.
M i=1

Let f in C*(K, &,) be given, and define F=T~'of. Then it follows that F is
in C*(K, ¢,) and

| ©y(m)= ' PF(mk)dm=({ t,(m)~"' Pt,(m)dm) F (k)

M M
=T(F(k)=1 (k).

Now PoF is in C*(K, o,) since P& ,(m,)=0,(m,) P for m, on M,. Consequently

S(f)(k)= [ S(x,k)t,(m)=*PoF(mk)dmdk

KxM

= | S(x,mk)PoF(mk)dmdk

KxM

={S(x,k)PoF(k)dk after mk—k
K
=S(PoF)(k)

and image S;<image S. This proves Theorem A.

In short, each irreducible constituent of &, leads to a Szegd mapping whose
image is the same discrete series. In the linear case we can say more. The group
F is central in M and is spanned by the commuting elements y; of order at most
2 given by

vp=exp 2milBl=2hy,

where f3 runs through the restricted roots and h, is the member of a dual to .
(See [26], p.93.) Thus F is a sum of copies of Z,, and M is the direct sum of M,
and a group Y Z,. It follows that &, is multiplicity-free and that the number of
distinct constituents o; is |[M/M,|. The various ¢;’s are related as follows: They
have a common formula on M,, and all of them are obtained from one of them
on Y Z, by multiplying by an arbitrary character of Y. Z,. Theorem B below
identifies the formula on M,. Let u=ITu, be the Cayley transform in Eq. (5.7),
and let 2=40 Ad(u) and &;=0o;0 Ad (u).
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Theorem B. Suppose G is a matrix group and A is integral and K-dominant. If the
product y=y,, ... Vg, isin FAM,, then & ,(y) acts on H; as the scalar —1 raised to

the power B
Zk: 2L BB

Proof. Since y is in M,, G,(y) leaves H, stable. Since 7 is central in M, 6,(y)|,,
commutes with ¢,(m,) for m; in M,. The irreducibility of ¢, implies that o,(y) is
scalar on H,, hence on ¢,. Since ¢, is M-cyclic for &, on H, and since y is
central in M, &,(y) is scalar on H,. Thus it is enough to identify the scalar c in
the equation

1,0 =co;. (2)

We need a different formula for y. If p, denotes a particular one of the two
standard representatives of the reflection in o; in the Weyl group Wy, then we
shall show that

vp=[]p2 0P, 3
J

In fact, our definitions make h, =Ad(u, )" H, . We can expand

B,y

h,= LAy

B Z Iij|2 a,

and then
2B, &y mih, nih, \2<Pa1812
Yp=exp ) ———I-—t= (ex .___.L)
! ; Bl 1,.7 Pla
=Hexp(%ni(E +E_ ))2(0.&j>/ll’|2:Hp2<l‘v&,)/]p|z
i J J ; ay

as required. This proves (3).

Since 4 is integral and G is a matrix group, we can introduce a G-ordering
(for current purposes) so that A is G-dominant. Let %, be an irreducible
representation of G with highest weight 4. Then it is easy to see that the
restriction of 7,(K) to the span of a highest weight vector is equivalent with t,.
That is, we may regard 7, as extended from K to G, with the space suitably
enlarged.

In view of (3), 7,(7) ¢, is a weight vector for the weight

ILAL
(H pi}(ﬁk-“;)/l“}l ) ,1
Jrk

Hence (2) implies that
24Py, &) .
(A o;>=0  whenever ZM is

pal -7l

odd 4)

and hence that 7,(p, ) fixes ¢, for these j. For any j,

Tl(pal)z ¢}L = TA('Vaj) ¢A

A 5
=(— 1)2<1.a,>/lajlz¢l=(_1)2<1.a1>/lu1|2¢1 (5)
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by a computation in SL(2, R). Then (4) and (5) show that ¢ in (2) is given by —1
raised to the power

2K, @) B, @
2 AR AR

with the sum extended over those j for which Z 2By, o‘cj>/lo"tj|2 is even. The sum
k

(6)

in (6) may be further extended to be over all j because of (4), and then (6) reduces
to the sum in the statement of the theorem.

Theorem C. If G is a matrix group and 4 is integral and K-dominant, then
244, BY/IBI? is an integer for every restricted root B, and the assignment

0‘()’{;)2(“‘ 1)2<7.‘ﬂ>/|lf|2

extends to a well-defined character of F. Moreover, some constituent o, of &, has
0,(z2)=0(z2)1 forall z in F.

Proof. Since 4 is integral, 4 is the differential of a well-defined character ¢, on T.
Define a character ¢ on expiaSG® by o(z)=¢,(uzu~"'). Applying (3), we have

uygu—lzﬂexp(%niAd(u)(Eaj_{_E_%))zqz,aD”mz
J
=[] exp(mila)| =2 H, > S-21PE,
j
Therefore
ol =E,urpu)
Ao 2{B,a.
exp (i3, 25 2A.5)

r 7 V1
_ A 2¢B, 8
=exp (m; i e )
2 T
=exp (ni <|;|2ﬁ>)

Since y; =1, it follows that 24, >/||* is an integer.

Now write M=M,®) Z, with Y Z,<F. Let o, be a constituent of &, and

define
oo(m) for meM
01(m)~{ o 2

" lom)I  for meY Z,.

The remarks before Theorem B show that ¢, is a constituent of &;, and
Theorem B shows that g,(z)=0(z)I for all z in F.

Concluding Remarks. 1) If G is a matrix group and A is also K-regular,
Theorem A gives |M/M | distinct explicit quotient mappings. For K-singular 4,
Theorem A gives only the smaller number |M/M,| of distinct explicit quotient
mappings. However, an argument with tensor products on the nonunitary
principal series and on 2% shows the existence of |[M/M | maps from nonunitary
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principal series to 2* even if A is K-singular; it is just that not all of these maps
are given by Theorem A.

2) Vogan offered SO(4,4) as a counterexample to Lemma 5.3. For other
groups it is often the case that M| =M, hence that Lemma 5.3 remains correct.
This happens for G if it happens for the adjoint group of G. It happens if G has
real-rank one, or if M is connected (e.g., when the restricted roots form a BC
diagram), or if G/K is Hermitian symmetric. Among the classical simple groups,
it can fail only for groups locally isomorphic to SO(m, n).
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