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1 Introduction and Statement of Results

Given a finite, connected, simplicial 1-complex K, which is assumed fixed
throughout the paper, we consider maps ¢: K —IR*® which are linear on each
simplex of K. We call such maps Euclidean frameworks modeled on K, or,
simply, frameworks. If K has v vertices, the totality of frameworks modeled on
K may be conveniently identified with R3" and studied by the methods of linear
algebra and real-algebraic geometry. Connelly [3] and Gluck [4] have used this
approach to obtain some striking results on rigidity. Here, we use the decision
theory for real-closed fields [7], p. 295ff, as well as some real-algebraic
geometry, to answer questions about frameworks motivated by remarks of
Griinbaum [5].

We call a framework ¢ rigid if every edge-length-preserving deformation of
¢ through frameworks is of the form w,o ¢, for some path w, of rigid, affine
motions of R?, w,=identity.

Let RIG denote the set of rigid frameworks. Following Griinbaum [5],
p.2.15, we are interested in connectedness properties of RIG; however, first we
must take care to exclude certain degenerate cases. To see why, note that the
contraction h, of R? given by h,(x)=(1—1)-x, 0<t <1, induces a contraction of
RIG to a constant framework ¢ (i.e., ¢ is the constantly 0 map). Accordingly, we
exclude these degeneracies, the set 4 of constant frameworks (see §2.2), and we
partition RIG\4 into path-components, which we call rigid types. Griinbaum
(op. cit.) asks for a bound on the number of rigid types.

Theorem A. The sum of the Betti numbers of RIG\4 is <23°.

The Betti numbers used here are the ranks of the singular homology groups,
so that the stated bound is also a bound on the number of path-components, i.e.,
the number of rigid types. .

We are able to obtain a somewhat better bound on the number of rigid types
(but not on the Betti-number sum) by an argument that first produces cor-
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responding bounds for certain restricted classes of rigid types (cf. end of § 5) and
then pieces these together. If n,(RIG\ 4) denotes the set of path-components of
RIG\ 4, then the improved bound is

card m,(RIG\ 4) <43 . (1)

Let FLEX denote the set of flexible frameworks: that is, FLEX =R*"\ RIG.
Theorem A and (1) have analogues which apply to FLEX in place of RIG\ 4.
The bounds are similar.

To avoid some trivial special cases later, we shall make the harmless
assumption from now on that the number v of vertices of K is =3.

We now consider the set RIG® <R?" of all infinitesimally rigid (IR) frame-
works (see §2.1 for a definition). The implicit function theorem implies that
RIG® < RIG (cf. [4], p.234). The inclusion is proper. In fact, RIG\RIG® 24
(see §2.1), but there also may be frameworks in RIG\RIG® that are geometri-
cally interesting (see Connelly [3]).

Theorem B. The sum of the Betti numbers of RIG® is <(6v—11)(120—23)3"-3,

As in the case of Theorem A, the bound in Theorem B applies to the number
of path-components. However, for path-components alone, we can again im-
prove the bound:

card 7, (RIG®) < (60— 11)(120—23)3" -, )

Under certain conditions, the bound in (2) applies also to rigid types.
Moreover specifically, we have

Theorem C. If RIG®#@, then the inclusion-induced map ny(RIG®)—
no(RIG\4) is onto. Therefore, when RIG® %0,

card n,(RIG\4) S (6v—11)-(120—23)*"~¢. (3)

Of course the bound in (3) is much better than that in (1). However, the
range of applicability of (3), while by no means uninteresting, is limited. We give
examples in §3.2.

The set of infinitesimally flexible (IF) frameworks will be denoted by
FLEX®: that is, FLEX® =IR*"\ RIG*. We can obtain a bound in this case that
is much better than those in (1)-(3): namely, it is strictly exponential in v:

Theorem D. card n,(FLEX®\4)<4-6°°~ 11,

We do not know whether a similarly improved bound can be obtained for
card n,(FLEX).

The paper is organized as follows:

After some preliminaries (§2), we treat the case of IR and IF frameworks
(8§ 3,4), that is, Theorems B-D and (2). Our main tool is a theorem of Milnor
[8] (see 3.1 this paper). The main idea of §§3, 4 is to give algebraic descriptions
of RIG® and FLEX®\4, or of suitable subsets of these, to which Milnor’s
theorem can be applied to good effect.

The case of rigid frameworks, however, leads to descriptions (§ 5) that require
quantifier-elimination before Milnor’s theorem can be applied. The decision
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procedure of Tarski and Seidenberg (see [7] or [10]) involves exactly the right
kind of quantifier-elimination, but it is far too inefficient and inexplicit for our
needs. Fortunately, there is a recent variant of the T—S procedure, due to
Collins [2], which is relatively efficient. Moreover, it has the additional advant-
age of directly producing the desired final bound, obviating the need for
Milnor’s theorem in this case and thereby saving one order of exponentiation.

The resulting bounds in Theorem A and in (1) are larger than those obtained
in the infinitesimal cases, and all of these bounds are almost surely far from
optimal. However, it is unlikely that significant improvements in our bounds
can be obtained unless completely different techniques are used, which are more
closely adapted to the specific problem.

In §6, we describe Collins’ main results and complete the proof of
Theorem A.

The mere existence of the Tarski-Seidenberg decision procedure, when
coupled with the results of § 5, yields a conclusion of some independent interest.

Theorem E. There exists a finite algorithm for deciding whether a given framework
modeled on K is rigid or flexible.

Collins’ more efficient and precise procedure produces an algorithm, tog-
ether with a crude bound on its length (see 6.5). The bound, like that in
Theorem A, is super-exponential as a function of v, and, thus, the algorithm
cannot be used for actual computation.

Note that decidability questions for the infinitesimal cases are much easier,
since they can be expressed in terms of determinants.

In Sect.§7, we mention some variants on the above results, including
another algorithm of some interest.

At this point I want to thank R. Connelly for his inspiring discussions of rigidity that aroused
my interest and for bringing to my attention B. Griinbaum’s provocative survey article [5]. I also
want to thank A. Nerode for bringing Collins’ work to my attention. And finally, I want to thank
C.M. Wagner for some helpful conversations and especially for pointing out an error in the first
draft.

2 Preliminaries

2.1 Definitions. We begin with the algebraic setting, which is similar to that
described in [4].

Order the vertices of K in some arbitrary but fixed manner. A framework
may be viewed then as an ordered v-tuple p=(p,,p,,...,p,)€R?" of vertices in
IR3, together with an edge structure &. & is a set of ordered pairs (i,j), 1 Si<j<v,
with (i,j) in & if and only if the i'™ and j™ vertices of K are joined by an edge. &
depends only on K, which is fixed, and so & is usually suppressed from the
notation and discussion.

The constant frameworks in this setting form a 3-dimensional vector sub-
space 4 (the “diagonal”) = IR3", given by the equations p, =p,=...=p,.

For any (i,j), 1 £i<j<v, we define a quadratic polynomial

4i()= llp;—p;lI%,
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where || || is the usual Euclidean norm. We then define functions A: R3” - IR¢
and A: R?® — R¥ (e=cardinality &, E=1v(v—1)) as follows: For peR3", i(p)
(resp., A(p)) is the e-tuple (resp., E-tuple) of all 4;;(p) such that (i,j)e& (resp., such
that 1 <i<j<v), the 4;;(p) ordered lexicographically according to the subscripts.

Two frameworks p,geR3" are called isometric if A(p)=4(q) and congruent if
A(p)=A(q), [4]. The isometry (resp., congruence) class of p is just the fibre
A=Y A(p) (resp., A= A(p)). Clearly, A~ A(p)<Ai~'A(p), and both are algebraic
sets.

Let E(3) denote the group of rigid, affine motions of IR? (i.e., the group
generated by rotations, reflections, and translations), and let E*(3) denote its
identity component. E(3) acts on IR3" via the diagonal action on R3xR3x ...
xR3, and the fibres A~* A(p) and A~ A(p) are invariant under this action. In
fact, it is not hard to verify that A= A(p)=E(3)-p, [4]. If C(p) denotes the path-
component of p in A~ A(p), then, of course, E*(3)-p< C(p).

The definition of rigidity asserts that p is rigid if and only if C(p)=E*(3)-p.

Since the constant frameworks A are transformed transitively by E*(3), we
have, for ped, A=C(p)=E*(3)-p, and so the constant frameworks are rigid.
That is, recalling the notation introduced in § 1, 4 = RIG.

Both 4 and RIG are E(3)-invariant subsets of R3".

Next we introduce the notion of infinitesimal rigidity, recalling that we have
assumed v=>3. We say that a framework p is infinitesimally rigid (IR) if and only
if the differential dA(p): R*® —» R® has rank 3v—6, which is the maximum
possible (see [4], p.238ff.). As mentioned in §1, the implicit function theorem
shows that RIG® < RIG, [4]. Clearly rankdA(p)=0 when ped, so that
A<FLEX®.

One verifies easily that RIG® is E(3)-invariant.

Now let X denote any one of the E(3)-invariant sets RIG, FLEX, RIG*, or
FLEX®. We show how X decomposes with respect to 4.

2.2 Lemma. Let V denote any vector subspace of R3" complementary to A, i.e., we
have an internal direct sum R3°=A@ V. Then,

X=4®(X V).

Proof. Let n:IR3 — V be the projection along 4. For any peV, n~'(p)< E(3)-p.
It follows that X =n~!(X n V), from which the result is immediate. []

Since 4 is contractible, 2.2 shows that X and X nV have the same homotopy
type.

3 Counting IR Types

The bounds we obtain here derive from the following theorem of Milnor.

3.1 Theorem [8]. Let A be an algebraic subset of R™ defined by a finite number of
polynomials each having degree <k. Then the sum of the Betti numbers® of A is
<kQRk-1m-1

! Milnor uses Cech Betti numbers, but since A has the homotopy type of a finite CW complex

(see 6.2(d)), these coincide with the usual singular Betti numbers. The same holds for all the sets we
consider. In particular, f, equals the number of path-components
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Proof of Theorem B. Choose a vector subspace ¥V =IR*" complementary to 4 (cf.
2.2), and identify it with R3"~3. For peV, let D(p) denote the sum of the squares
of all (3v—6) x (3v—6) subdeterminants of dA(p). An easy calculation shows that
D(p) is a polynomial in 3v—3 variables of degree 6v—12. Clearly,
peRIG® n V<> D(p)*0. Thus, RIG® "V may be obtained from

A={(p,t)eV x R=IR3*"~2|t-D(p)—1=0}

by projecting (p,t)—p. In fact, an inverse RIG®*NV— A exists, given by
p—(p,D(p)~"), showing that these two sets are homeomorphic.

By 3.1, the sum of the Betti numbers of A (and, hence, of RIG®NV) is
<(6v—11)(12v —23)3"~3, By 2.2, this also applies to RIG*. []

If we are interested only in a bound on card ny(RIG®), we can improve on
the above by restricting to smaller subspaces of IR*". In particular, if W < R%" is
a subspace that meets every E*(3)-orbit, then the inclusion-induced map

o(RIG® A W) - 1,(RIG®)

is onto, and so it suffices to obtain a bound on card n,(RIG* n W). We choose a
subspace W of dimension 3v—6 (below), and then we argue as in the proof of
Theorem B. The corresponding polynomial D involves 3v—6 variables and has
degree 6v—12. Therefore, the sum of the Betti numbers of RIG®nW is
<(6v—11)(12v—23)*"~°, which yields the desired bound on cardz,(RIG®)
(thus proving (2) of §1).

To define W, we assume without loss of generality that (1,2) and (1,3)eé.
Then, W is given by the conditions p; =0, p,eR x0x0, and p,eR xR x0.
Clearly, W has dimension 3v—6 and meets every E*(3)-orbit. Henceforth, we
reserve the symbol “W” to denote this particular subspace of R3".

Proof of Theorem C. We must show that if RIG®=+0, then ny,(RIG®)
—7,(RIG\ 4) is onto.

Recall that RIG® = RIG\ 4. Since RIG® is the complement of an algebraic
set and non-empty, it must be dense in IR, hence dense in RIG\ 4. But this
latter set is semi-algebraic (see §6): that is, it is a finite union of solutions of
systems of polynomial equalities and inequalities. A semi-algebraic set is locally-
path connected [6] (also see §6, esp. 6.2(d)), so that its path-components are
open. Thus, each component of RIG\4 meets RIG*. [

3.2 Remarks. a) When RIG® #0, every framework pelR*’ admits arbitrarily
small analytic perturbations p(t), 0=t <e, with p=p(0) and p(t)eRIG*, 0<t<e.
This uses Milnor’s Curve Selection Lemma [9] or a similar result in Wallace
[11], and it provides an alternate, somewhat less elementary, proof of
Theorem C.

b) By a result in Gluck [4], every 1-skeleton of a triangulation of S? admits
imbeddings into IR® which are IR frameworks. Therefore, for every such K,
RIG® %0, and so Theorem C applies.

There are, however, simple modifications of these K for which RIG* =0. Let
a K as above be given, and, to an edge labeled A, A,, attach edges
Ay Ay, A, A, .. A, A, for every n=4. Call the result K.
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By a standard counting argument, K satisfies e=3v—6, whereas K’ satisfies
e=e+n—1, vv=v+n—2. Therefore, ¢'<3v'—6 so that K’ has no IR frame-
works.

On the other hand, K' does have rigid frameworks. For an example, let ¢:
K —1IR? be an IR imbedding and extend it to a framework ¢’: K'— R?> by
mapping the vertices A4,,A4;,...,A,_; in order onto the edge ¢@(A4,4,), as
pictured above. ¢’ is rigid.

4 Counting IF Types

The proof of Theorem B in § 3 can easily be modified to give a similar bound for
card n,(FLEX®\ 4). However, a much better (strictly exponential) bound can be
obtained by a less direct argument.

We use the notation and conventions of §3. In particular, we recall that W
denotes the subspace of R?" given by p, =0, p,eR x0x0, and p;eR xR x0,
where we assume (1,2), (1,3)eé.

Certain kinds of degenerate frameworks must be avoided in our arguments:
namely, the frameworks p for which p,,p,,p; are collinear. We call all remain-
ing frameworks generic, and we denote the set of generic frameworks by GEN.

4.1 Lemma. The E(3)-orbit of a generic framework is a smooth 6-manifold
transverse to W.

Proof. Suppose p is generic. The first assertion follows immediately from
standard facts about smooth actions, together with the fact that the isotropy
subgroup of p is finite. It remains to verify transversality.

We may assume that peW. The tangent directions of E(3)-p at p
=(0,p,,P3,---,P,)EW consist of all vectors of the form

(*) (05Ap29Ap3,~"1Apu)+(b,ba"',b),

where A ranges over all 3 x 3 skew-symmetric matrices and b ranges over R>.
Given any q,,q,,9;€R?, it is not hard to find 4 and b, together with p,eR x 0
x 0 and pjeRR xR x 0, such that

(O’Apz’Ap3)+(b’ b’ b)+(0,p'2,p§)=(q1,q2,q3).

It follows that the vectors (x), together with W, span R3", which is just the
assertion of transversality. []
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4.2 Lemma. A framework pe W GEN is IR<d(A|W)(p): W = R® has rank 3v-6.

Proof. In one direction the implication is trivial. Suppose then that
peWNGENNRIG®, so that dA(p): R*" — R® has (maximum) rank 3v— 6. Since
rigid motions do not change edge-length, the tangent space of E(3)-p at p is
contained in kerdA(p). By 4.1, this tangent space has dimension six and is
complementary to W. Therefore, it equals kerdi(p), and kerd(A|W)(p)
=kerdA(p)n W ={0}, as desired. []

4.3 Corollary. A framework peWnGEN is IF<>3qeW such that q+0 and
dA(p)(@)=0. O

Now choose any pe W, so that p, =0, p, =(x,0,0), and p;=(y, z,0), and define
r(p)=xz. Clearly pe WNnGEN<r(p)+0. It follows from this and 4.3 that
W GENNFLEX® consists of all pe W such that, for some ge W,

dA(p)(@)=0, q=+0, r(p)=0.
4.4 Proposition. card n,(WGENNFLEX)<3-5°v- 11,

Proof. The equation dA(p)(q)=0 above is equivalent to the simultaneous system
of equations

a) (pi_pj)'(qi_qj)zo’ (i,))eé.

The two inequalities above may be changed to equalities (cf. §3, proof of
Theorem B) by introducing two slack variables ¢,,¢,:

b) t,r(p)—1=0.
¢) t,llgl*—1=0,

The simultaneous solutions (t,,t,,p,q) to (a)-(c) form algebraic subset C of
R?x W2=R® ' whose projection onto the p-coordinate is
WNGENNFLEX®. All the polynomials in (a)-(c) have degree <3. Therefore,
by 3.1, the sum of the Betti numbers of C, hence card 7,(C), is <3-5°°~!!, Since
projection cannot increase the number of path-components, the desired result
follows. [0

Since W meets every E*(3)-orbit and GEN is E(3)*-invariant, we conclude
that the natural map

To(WNGENNFLEX®) - n,(GENNFLEX®)

is onto. Therefore:

4.5 Corollary. card n,(GENNFLEX*) <3511,
We now sketch the rest of the proof of Theorem D.

Recall that the definition of GEN distinguishes the vertices p,, p,,p;, which
corresponds to our assumption that (1,2), (1,3)eé (i.e., the stated vertices belong
to adjacent edges). Any other choice of two adjacent edges determines a similar
set GEN' to which the foregoing arguments and results apply mutatis mutandis.
By 4.5, each of the sets GEN' contributes at most 3-5%°~!! to the number of
path-components of FLEX*\ 4.
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Frameworks that are not generic with respect to any choice of two adjacent
edges are characterized by the property that all their vertices are collinear. It
follows from this that the non-constant, non-generic frameworks contribute at
most one path-component to FLEX®\ 4.

Combining the two preceding paragraphs, we obtain

4.6 Corollary. card ny(FLEX®\4)<k-3-5°°~!'' 41, where k is the number of
sets GEN'.

Finally, we observe that not all the sets GEN' are necessary, since there may
be much overlap. In fact, a short combinatorial argument shows that at most
4(v—1) such sets are needed to exhaust the non-collinear frameworks, and
so we may take k=4(v—1) in 4.6.

Theorem D is now an immediate consequence of the emended 4.6.

5 Characterizing Rigid Frameworks

Recall that pelR*' is rigid if and only if the path-component C(p) of p in
4~1 A(p) is contained in E*(3)-p.

5.1 Lemma. p is rigid <> p is interior to A~' A(p) in A= A(p).

This is equivalent to the characterization in [4] of rigidity as e-rigidity. We
give here an independent proof which avoids the use of the Curve Selection
Lemma [9] (cf. 3.7 (a) above).

Proof of 5.1. We use two facts: (a) Algebraic sets are locally-path-connected. (b)
E*(3)-orbits in IR3¥ are closed in IR3". The first fact is well known (cf. 6.2 (d)),
and the second may easily be verified directly.

Fact (a) implies that C(p) is open in A~'A(p). Thus, if p is rigid, then
peC(p)<E*(3)-pc A~ A(p), so that peint 4~ A(p).

Conversely, if p is interior to A= A(p)=E(3)-p in A~ A(p), then E(3)-p is
open in A~ A(p). By fact (b), E*(3)-p is then both open and closed in A= A(p),
so that E¥*(3)-p=C(p). O

The characterization given in 5.1 may be expressed as a first-order real-
algebraic formula: namely,

5.2 p is rigid <
3eVqle>0& {(Ip—qll* <e & A(p) =A(9)) = A(p)=A(q)}].

The additional condition that we require, namely that p not be constant,
may be most conveniently expressed by the following formula:

5.3 p is non-constant <>

z A’u(p)*oa

i, j)eé

where the 4,; are the quadratic functions defined in 2.1.
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These formulas together involve 6v+1 variables. If we restrict to
(RIG\4)nV, V complementary to 4 (cf. §2.2), the number is reduced to 6v—2.

For the purposes of Theorem A, our descriptions are complete.

An improved bound on card ny(RIG\4) ((1) of §1) may be obtained using
the ideas of §4. The key is a formula in 6v—11 variables that describes
W N GEN N (RIG\ 4). We shall not give further details.

6 Eliminating Quantifiers and Counting Types
of Rigid Frameworks

This section briefly describes the main results of Collins [2] and concludes by
applying these to prove Theorem A.
Consider formulas

(*) lI/=(ka+1)"'(er)(D(xli""xr)a

where 0<k<r, Qx; is Vx; or 3x; and &(x,,...,x,) is a finite disjunction of
simultaneous systems of equalities and inequalities involving polynomials in
Z[x,,...,x,]. Assertions 5.2 and 5.3 are examples of such formulas (modulo
some elementary manipulations of first-order predicate calculus).

The truth or falsity of ¥ may be considered as a function T, of the
unquantified variables x,,x,,...,x,, with value O representing falsity and 1
representing truth. When all the variables are quantified, T, reduces to a
constant.

Given a subset S<IR¥ we say that ¥ is invariant on S, or § is ¥-invariant,
provided that T, is constant on S. For example, both the sets 7;'(1) and T;'(0)
are Y-invariant. The former is called the truth set of ¥. In the case that ¥ is the
formula of 5.2, the truth set of ¥ is RIG. If ¥ is the conjunction of 5.2 and 5.3,
the truth set is RIG\ 4.

The basic contribution of quantifier-elimination in this context is to show
that the truth sets of formulas ¥ coincide with the semi-algebraic (s.a.) sets,
whose definition we now recall. The simplest examples of s.a. sets are ones of the
form {xeR*|f(x)>0}, for some feZ[x,,...,x,] and some k= 1. The s.a. subsets
of R, k fixed, are closed under finite union and complementation, and the s.a.
sets, in general, are closed under projections R¥*! - R¥, k> 1. The collection of
all s.a. sets is the smallest family of sets satisfying these conditions.

Collins’ method, which we cannot describe here, is closely related to the
procedure for triangulating semi-algebraic sets given by Hironaka in [6].

We now state the main results of Collins [2].

6.1 Theorem. Let ¥ be as in (x) above. Then there exists a partition of R* into
JSinitely many non-empty sets S; with the following properties: (a) Each S, is V-
invariant. (b) Each S, is homeomorphic to an open j-cell, for some j<k, j
depending on i. (¢) Each S, is semi-algebraic. (d) There is a finite algorithm which
produces all the defining equalities and inequalities for each S;. [J

6.2 Remarks. a) It follows from 6.1 that the sum of the Betti numbers (and the
number of path-components) of the truth set of ¥ is bounded by the number
of sets S,.
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b) It also follows from 6.1 that there is a finite algorithm for deciding whether a
given (x,,...,x,)eR* belongs to the truth set (cf. Theorem E) - this requires an
induction on the number of quantifiers r—k.
c) Note that 6.1 implies that the truth set of ¥ is a finite union of semi-algebraic
sets, hence it is semi-algebraic. This is the desired quantifier-elimination.
d) It is not difficult to prove inductively that the partition {S,} admits a
refinement as a locally-finite simplicial complex (cf. Hironaka [6]). The truth
sets are not subcomplexes, in general, unless they are closed sets, but they are
locally-finite unions of simplexes and they have the homotopy type of finite
complexes.

Various other facts about the simplicial or cellular structure of semi-
algebraic sets may be deduced, but we do not do so here.

We turn next to Collins’ analysis of the relevant bounds.

6.3 Theorem. Suppose that ¥ contains m polynomials in the variables
X1,X3,...,X,, S0 that no polynomial has degree (in any single variable) exceeding
n. Then:

a) The number of S, described in 6.1 is <(2n)>" " 'm?*".

b) The computing time for the algorithm of 6.1 is dominated by (2n)**""*-m? " °. b,
where b is a certain function of the number of polynomial equalities and in-
equalities appearing in ¥ and on the particular integers appearing as

coefficients. [

Here (according to Collins [1]), we say that f(x,y,z,...) is dominated by
g(x,y,2,...) if, for some constant ¢>0, f(x,y,z,...)<cg(x,y,z...), for all
X,¥,z,.... The constant ¢ depends on the choice of scale, choice of computer, etc.

6.4 Corollary to 6.3 (Theorem A). The sum of the Betti numbers of RIG\ 4 is less
than 23°".

Proof. As stated in §5, the conjunction of formulas 5.2 and 5.3 involves 6v+1
variables, which may be reduced to 6v—2 by restricting to a complement of 4.
The number of polynomials is e+3v(v—1)+3, where e=card &, and none has
degree exceeding two. Theorem 6.3 then implies that the number of S; (and
hence the desired sum of Betti numbers) is <43*" (e +3+1v(v—1))>*""’, which
one easily shows is <2°*. O

6.5 Remurk. The length of the algorithm in Theorem E has a bound given by
6.3(b). In this case, n=2, r=6v—2, m=e+%v(v—1)+3 (cf. 6.4) and b is essen-
tially negligible. Thus, for example, 42**"* is a bound.

7 Extensions to Other Cases

We now briefly describe two kinds of variations on the notion of framework.
Questions about rigid types and decidability questions arise just as before, and
they may be answered by the foregoing methods because all of the relevant
characterizations are first-order real-algebraic.
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7.1 Restricted Frameworks

Our notion of frameworks is more general than the one often used. For example,
often frameworks are required to be imbedded (i.e., not two distinct vertices meet
nor edges cross), or to be 1-skeleta of imbedded polyhedral surfaces (which we
shall call polyhedral frameworks). Or, for another example, various weaker kinds
of non-degeneracy may be required (as in our restriction to non-constant
frameworks or to generic frameworks).

Any restriction on the general notion of framework that can be expressed by
a first-order formula admits treatment by the foregoing techniques. The restric-
tion that a framework p be imbedded, for example, can be expressed via linear
conditions on p,,...,p,. More complicated expressions are needed to character-
ize polyhedral frameworks.

One interesting application to this last case is the following: Let K be the 1-
skeleton of a polyhedral surface. Then there is a finite algorithm for deciding
whether or not all polyhedral frameworks modeled on K are rigid.

7.2 Cabled Frameworks (see [3])

Such frameworks p, in addition to being equipped with an edge structure &, also
have certain pairs of vertices (call their totality %) joined by “cables”. That is,
the admissible deformations now are those that preserve edge length and do not
increase cable length.

In place of the set A= A(p) considered in §2, we now consider

L(p)={ql4;;(q9)=4;(p), for (i,j)e&, and
hj@)=4;(p),  for (i,j)e€}.

This is a semi-algebraic set (hence, locally path-connected) and is E(3)-
invariant, so that Lemma 5.1 still applies, with L(p) replacing A~ A(p). We
obtain, thus, the desired firstorder, real-algebraic characterization of rigid,
cabled frameworks.
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