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Introduction

The present article is concerned with linear partial differential (or
pseudodifferential) operators having double characteristics, those which
are essentially of the form P=X*X + R, where X satisfies a subelliptic
estimate (with loss of 1/2 derivative) and R is a lower order term (actually
we shall allow more general leading term than X* X, but this will only
introduce inessential modifications in the argument outlined below).
Since the best hypoelliptic estimate for X*X involves the loss of one
derivative, the “perturbation” R cannot be absorbed in the leading term.
It has been observed in several particular cases ([4, 6, 7]) that, in order
that P be hypoelliptic, the symbol of R must avoid a discrete set of values
on the characteristic variety of X. We shall derive, here, necessary and
sufficient conditions on R in order that P be hypoelliptic with loss of one
derivative. They will turn out to be precisely of that kind. Our conditions
will also imply a local existence theorem for P, with loss of one derivative.

The paper is an outgrowth of [10], in which the same phenomenon is
described in the abstract set-up (i.e., P is a second-order ordinary differ-
ential operator whose coefficients are unbounded operators on an
abstract Hilbert space).

Roughly speaking the idea of the proof is the following: we shall write
P=XX*+R, R=R+[X* X], and observe that if P satisfies a hypo-

* The work of L.Boutet de Monvel was partly supported by an NSF Visiting Senior

g;)éeign Fellowship, while that of F.Tréves was partly supported by NSF Grant No.
71.
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2 L. Boutet de Monvel and F. Tréves

elliptic estimate with a loss of one derivative, then R’ must satisfy the
same estimate, when restricted to Ker X*. Now, we dispose of a very
precise description of Ker X* (mod C*) due to Sjostrand and Duister-
maat ([2, 9]). It enables us to show that R’ must be elliptic on the charac-
teristic variety of X. The next step is to notice that the range of X, which
is the “orthogonal complement” of Ker X*, is essentially stable by P
(this is precisely formulated in Section 5) and, on it P behaves essentially
as an operator B, of the same form but with R replaced by R+[X*, X].
Repeating this procedure leads to a sequence (“concatenation”) of
operators P, where P, is approximately equal to P+j [X*, X]. Since
[X*, X] is positive-elliptic on the characteristic set of P, P, will be hypo-
elliptic for sufficiently large j, which makes possible an inductive proof.

However, in order to carry on such an induction, estimates in Sobolev
spaces are not sufficient; more precise ones are needed, and these require
the use of a scale of spaces of distributions (denoted by 5% closely
linked to the characteristic manifold Z (see Sections 2,3,4,and [1, 5]).

The present work is closely related to that of Grushin and Vishik
(see [4-7]). As a matter of fact, in the particular case where X is the
cotangent bundle of a submanifold of the base €, their results are con-
siderably more general than ours. They introduce the spaces W
relative to this situation: and also what we call Hermite operators and
describe in Section 6. Their approach is very different from ours: they
construct a parametrix and thus, in the “flat” special case, it is stronger
than ours. The drawbacks of their approach is that the parametrices
they describe dont seem to lend themselves to a “good” symbolic calcu-
lus. In particular, it is not clear how to “microlocalize” their compu-
tations. In our approach this is straightforward. The microlocalization
reduces us to the flat case, where we prove or disprove the relevant
estimates and there is no difficulty in patching the results together, in the
cotangent bundle 7*Q. The difficulties inherent to handling this type of
problem (where the characteristics are double) with parametrices, and in
trying to devise a symbolic calculus for the latter, become apparent when
one realizes that the commutators which recur lead to nonnegligible per-
turbation (these perturbations essentially determine whether the operator
will be hypoelliptic or not).

The problem of the hypoellipticity (or solvability) of the operator P
under study is transferred to that for another operator (which we denote
by L), this time on the boundary —though in our case there is no bounda-
ry: only microlocally can we introduce a submanifold of the base which
plays the role of a boundary. The total symbol of this pseudodifferential
operator “lives” on the characteristic manifold Y —it should be said
however that the operator is uniquely defined only up to similitude (i.e-
the class of operators A~ Ly A is defined, where 4 is elliptic arbitrary);
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its similitude class, and the associated class of total symbols, are canoni-
cally attached to P (actually, there is a sequence Lp, of such operators
each attached to an element of the concatenation {B}; but, at each point
of the characteristic manifold, only one of them is not elliptic, possibly and
this is the one that controls the properties of P —at that point). In the
last section (3 8) of the paper the reader will find a few remarks about
these operators Lp and their construction.

0. Notations and Conventions

Throughout the article, Q will stand for an N-dimensional C*®
manifold, countable at infinity. The variable point in Q will be denoted
by x, its coordinates, in some local chart, by x!, ..., x". By T*Q we denote
the cotangent bundle over Q, by T*Q the complement in it of the zero
section. The variable along the fibres in T*Q will be called &, its coordin-
ates in some local chart, &, ..., &y. The canonical symplectic form on
T*Q will be called w; in a local chart,

N
w=Y déndx’.
j=1

If u,v are two functions, defined and C' in an open subset O of T*Q,
their Poisson bracket will be

N
e i=% (géu gvj_ auj ov ),
= ; 0x) 0xX 0¢

and as usual the Hamiltonian field H, of u is defined by the formula
H,v={u,v}.

Unless otherwise specified, all pseudodifferential operators con-
sidered in the present article have total symbols which are (asymptotic)
sums of positive-homogeneous terms. “Positive-homogeneous” is al-
ways meant with respect to the fibre variable, £. Furthermore, the homo-
geneity degrees of any two terms in the above asymptotic series will
always differ by an integer (the degrees themselves need not be integers,
of course). The principal symbol of a pseudodifferential operator 4 will
often be denoted by o (4). More generally, we use the standard notation
of distribution theory and of the calculus of pseudodifferential operators.

In particular, we recall that a subset I" of T*Q is said to be conic if it
is stable under the dilations (x, &)+ (x, t &), t>0. This means that I' is
equal to the preimage of its (canonical) projection nI” into the cosphere
bundle S*Q over Q. If I’ is another conic subset of 7* Q, we shall write
I'c=cT to express the fact that the closure of nI” is a compact subset of
nl.

1*



4 L. Boutet de Monvel and F. Treves

Let ' T*Q be conic. We denote by S°(I') the space of symbols of
degree <0 (in T*Q) whose support is contained in a conic subset
== "

We depart somewhat from the standard conventions in the termino-
logy used to describe microlocal (i.e., local in T*Q2) properties.

We shall say that a space of distributions in Q, E, is microlocal if it
stable under all the mappings fi— q(x, D) f as q(x, ¢) ranges over S%T*Q),
and if its topology can be defined by means of seminorms of the kind
#(q(x,D)f ),where g ranges over S°(T* ) and 2 over some set of continu-
ous seminorms on E. One of the basic theorems in the theory of pseudo-
differential operators states that 2'(Q), C*(£) and the local Sobolev
spaces H},.(Q), se R, are all microlocal.

Let then E be a microlocal space of distributions in €, and let I be a
conic open subset of T*Q. We shall say that a distribution fin Q belongs
to E in T if q(x, D) fe E whatever g€ SO(I'). In order to alleviate a little bit
such expressions we shall omit any mention of @ in the notation for E
(for instance, we write C* instead of C* (£2), Hi,c instead of Hj,.(Q)).

Incidentally, “fe C* in I'” means that the wave-front set WF (f) does
not intersect I'.

We shall use a similar terminology in dealing with a pseudodifferential
operator A in Q.

1. Statement of the Main Theorem

One of the two basic ingredients in our analysis is a conic C* subma-
nifold = of T*Q, of codimension two, to which the restriction of the cano-
nical form o is nondegenerate.

Every point (x,, %) of Z has a conic open neighborhood I in T*Q
in which X can be defined by two real equations:

(1.1) u=v=0

where u and v are two real ¥® functions, homogeneous of degree 0,
whose Poisson bracket satisfies

1.2) {u,v}>0 in I;.

The second basic ingredient will be a pseudodifferential operator P of
order (or degree) m in €, with principal symbol o (P)=p(x, &). It will be
submitted to the following conditions:

(1.3) the set of zeros of p(x, &) in T*Q is exactly Z;
(14) p vanishes exactly of order two on X

(1.5) the winding number of p about X is identically zero.
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(1.4) means that for any compact set K < T*Q, there exist two constants
¢, C>0 such that, d(x, &) denoting the distance to X

cSp(x, EHNd(x, )P=C  for (x,{)eK—-2.

Moreover, (1.5) means that, if (x,, £°) is an arbitrary point of T*Q and
if £’ is an arbitrary two-dimensional C* surface through (x,, &°) trans-
versal to Z, the restriction of p to X’ defines a mapping into R* whose
winding number at (x,, £°) is zero ((1.4) implies that the hessian of p|;- at
that point is nondegenerate).

Let us reason microlocally, in the conic neighborhood I of (x,, E9ex
and use the functions u, v introduced above. The properties (1.3)-(1.4)-(1.5)
mean that we have

(1.6) p=au?+2buv+cv?,

with a, b,c smooth in Iy, positive-homogeneous of degree m=degp
(we recall that u and v are homogeneous of degree zero). Moreover, the
polynomial a 2% +2b 1+ ¢ must have exactly two roots «, § such that

(1.7) Ima<0, Imfp>0 in I.

Since these roots are distinct, they are smooth functions, homogeneous
of degree zero, in Ij.

Let now X be any pseudodifferential operator in Q whose principal
symbol is of the form q(u—o v) in I3, with g elliptic; let Y another operator
such that o(Y)=g *a(u—pv) in I;. Then

(1.8) Z=P—-XY

is of degree <m—1 in I,. We observe that, on 2 NI,

(1.9) o([X, Y])= —i(x—B)a{u,v},

(1.10) o([X, X*])= —i(x—%)|ql* {u, v},

(1.11) o([Y, Y*))=—i(B—P)lg~ " al* {u,v}.

In view of (1.2) and (1.7), we derive from this, if I is sufficiently “thin”
(1.12) [X, Y] is elliptic in I;

(1.13) [X*, X] is positive-elliptic in I;

(1.14) [Y*, Y] is negative-elliptic in I .

We shall denote by o,,_, (Z) the principal symbol of Z regarded as a
pseudodifferential operator of order m— 1: this means that if Z happens
to be of order <m—1, 6,,_,(Z)=0. In passing, note that [X, Y] is also of
order m—1.
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We set:
(1.15) lp=restriction to Z NIy of 6,,_1(Z)/o([X, Y]).

The omission in the notation I, of any mention of I is justified by the
fact that [, is defined in the whole of Z— a consequence of the fact that its
definition is independent of the decomposition P=XY +Z, as we now
show:

Let P=X'Y'+Z’ denote another decomposition in I, such that
[X'*, X'] is positive-elliptic in I and the order of Z’' is <m—1. Then
necessarily the principal symbol of X' (resp. Y’) is proportional to that
of X (resp. Y), and we have:

X'=(X-R)Q, Y'=0"%(Y-S), Z'=Z+XS+RY-RS,

with Q elliptic in I, deg R<deg X —1,deg S<deg Y—1. Since deg XY=
deg P=m, we see that XS+ RY is of order m— 1. But its principal symbol
vanishes on X; RS is of order m—2. From this it follows at once that
o([X', Y] =0([X, Y]), 6(Z)=0(Z) on Z I, whence our assertion.

Proposition 1.1. Let P be a pseudodifferential operator in €, satisfying
the conditions (1.3), (1.4), (1.5). Let lp be the function on X defined above.
Then:

(1.16) if P* denotes the adjoint of P, lpx=1Ip:

(1.17) if A, B denote two elliptic pseudodifferential operators in Q,
Lapg=lp-

The proof is very simple and we leave it to the reader.

We also note that I, is “invariant” under canonical transformations.
Let us state this more precisely. Let.7 be a canonical transformation of a
conic open set I” =T*Q onto another such set, I'", and U, an elliptic
Fourier integral operator associated with 7. Then, whatever the pseudo-
differential operator ¥ in Q,

(1.18) (U™ YU)r=(0(¥)r)T .
Then we have:

(1-19) lu-1PU|t=(IP|£nr)°-7’

-1
where we have written £ =9 (XN I"). It suffices to recall that Poisson
brackets are “preserved ” under canonical transformations.

In summary, I, is an invariant attached to our operator P: invariant
under multiplication by elliptic operators and under canonical transforma-
tions. Note that it is essentially a symbol of degree zero but which is
only defined on a proper submanifold of 7*, namely Z. Introduction
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of this invariant will now enable us to state the theorem proved in this
article.
We are interested in the validity of the following hypoellipticity pro-

perty:
(1.20) Given any real number s, any open subset % of Q and any dis-
tribution fin U,
PfeH;, (W)= fe Hit" ().

Theorem 1.1. Let P be a pseudodifferential operator in Q, having the
properties (1.3), (1.4), (1.5).

The following conditions are equivalent :
(1.21) P satisfies (1.20);
(1.22) P* satisfies (1.20);
(1.23) whatever the integer k20, I —k does not vanish at any point of Z.

It is well known that Property (1.20) has various implications. Of
course, it implies that P is hypoelliptic and that the adjoint P* of P is
locally solvable in ©, also that the solutions of the homogeneous equation

Pf=0 (in ©) which have their support in a fixed compact subset K of Q
form a finite dimensional vector space.

2. The Spaces #** (2, X)
Same notation as in Section 1 (in particular, 2 and ).

Definition 2.1. Let d be any real number, k any integer 20. We shall
denote by A% ¥ = _#"¢¥(X) the linear space of pseudodifferential operators
in Q whose (total) symbol is of the form

+ o0
(21) an~ Zaj,
j=0

where, for each j, a; is positive-homogeneous of degree d—j (along the
fibres) and vanishes at least of order (k—2j), on Z.

We have used the notation n, =sup (n, 0), neZ. The condition on the
homogeneous terms a; (which, except for a,, have no invariant meaning)
is easily seen to be invariant, under canonical transformations.

Proposition 2.1. Let Ac A"** Be /"*"¥, Then:
(2.2) A*e N4k ABe yd+d Kk

(23)  [A4,Ble#+4-L*  where k'=(k—1), +(k'=1),.
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Note that, when kk'=0, we have k" = (k+ k' — 1), in (2.3). In particular:

Corollary 2.1. Let AeA"** and Q be an elliptic pseudodifferential
operator in Q. Then:

(2.4) A—QAQ e N1kt
Note also that we have, trivially,
(2.5) N ¥ if d<d, k2k' (d—d€Z).

A%k is an ideal of the algebra of pseudodifferential operators of degree
0, 4% In fact it follows from (2.6) hereunder that 4" * is the k-th power
of 4791,

Microlocally, a more “concrete” description of A" is possible. We
return to the Egs. (1.1) of £ in a conic neighborhood of one of its points,
(Xo, €°). We assume that (1.2) holds. Let U (resp. V) be a pseudodifferential
operator in © whose principal symbol is equal to u (resp. v) in I. Then, if
a pseudodifferential operator A4 belongs to /¥ we must have

(2.6) A= Y A,,U V! in I,

a+pf=k
where, for each («, ), 4, ; is a pseudodifferential operator of degree
<d— (0 + f)/2. This property characterizes the elements of A" *in I,.

Remark 2.1. It is worth noting that several choices of U, V are of some
interest. We may select local canonical coordinates (for the symplectic
structure of T*Q) in I (if the latter is sufficiently “thin”), (..., x",
&y, ..., Ey), with the x’s homogeneous of degree zero, the £’s homogeneous

of degree one, verifying the canonical relations
{x, xI}={&,¢}=0, {&,x'}=0;; (Kronecker’sindex),

and such that the N-th coordinate function x" may be taken as u, while
v=—Ey/I&'), where &'=(&,, ..., ¢Ey_;). Note that {u,v}=|¢|"! and that
(1.2) is therefore satisfied. A more elaborate choice of local canonical
coordinates will be made in § 7 (cf. also [2, 3]).

If we relinquish the demand that u and v be of degree zero, we may
even achieve u=x", v= —¢y. Thus the operators belonging to .4 ** will
be of the form (in I})

2.7) A=Y A, ,(MP@ax"y,
a+p<k
with the orders of the operators 4, ; restricted in a manner analoguous
to that indicated above.
The sets of operators .#"** enable us to define certain special spaces of
distributions in €, naturally associated with the submanifold X, which
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provide a precise description, and a “natural” proof of the a priori
estimates leading to Th. 1.1:

Definition 2.2. Let s be any real number, k any integer >0. We shall
denote by H#5k=#5"(Q, X) the space of distributions f in Q having
the following property:

(2.8) whatever Ae /%! ISk, AfeHy = * 2 (Q).
Observe that #5.°(Q, 2)=H;,.(Q).

loc

The proofs of the statements which now follow are routine, and left
to the reader.

The space #5.* carries a natural topology: the coarsest locally con-
vex one which renders all the mappings f+— Af into Hj,, ¢~ %P2 (Q),
with 4 as in (2.8), continuous. If then K is an arbitrary compact subset
of Q we denote by #**(K) the (closed) linear subspace of #7.* consisting
of the distributions f vanishing outside K, and by %= H>*(Q, X) the
inductive limit of the Fréchet spaces #%*(K), KccQ. The spaces
#ok and H#5* are normal spaces of distributions in €, i.e., they contain
CZ(Q) as a dense subspace. This enables us to identify their respective
duals with spaces of distributions in €. In all rigour we should use the
language of currents, but we shall not, for the sake of simplicity.

Definition 2.3. Let s,k be as in Def. 2.2. We denote by #75. *=
HEK(Q, ) the dual of A~k

We can of course form % *(K), #> *=#>"%(Q,2). All these
spaces closely mimick the classical Sobolev spaces. In particular, they
are all reflexive; 5 and #** are normal, for all values of se R, ke Z.

Proposition 2.2. Every pseudodifferential operator Ae N 4l (leZ,)
defines a continuous linear map #5* — A5 4% (seR, ke Z).

Proposition 2.3. Let s, s'€R, k, k'eZ be such that
(2.9) s<s, §—k'/2Zs—k/2.

Then we have a continuous injection H5.F<— #5:%.

Corollary 2.2. We have #;:5*— or — H;;.**(Q) according to whether
kis >0 or £0.

Let K be a compact subset of Q; the spaces H;(K), A5k (K) are
“normable” (in fact, they can be equipped with a Hilbert space structure).
Let us select in each one of them a norm, | |, and || ||, submitted to the
sole requirement that it define the topology of the space.

Proposition 2.3'. Suppose that
29) s'<s, S—k[2<s—k/2.
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Then the injection H#>*(K)—#°"*(K) is compact and, given any
real number s, (arbitrarily close to — co) and any £>0, there is C, >0 such
that, for all fe #5*(K),

(2.10) I Mg, ke =€l flls, e+ Cell flls, -

The easiest way to prove the above statements is by using a microlocal
description of the spaces #5* and the analoguous properties of the
spaces H°. Let I, be, as before, a conic open neighborhood of (xg, £%)eX
and let u, v be the functions introduced earlier and appearing in (1.1) and
(1.2). Let us now assume that they are real-valued and let U, V' be two
pseudodifferential operators in Q whose principal symbols are respectively
equal to u and v in Iy. We take U and V to be self-adjoint (in the whole of
Q if we wish).

Let then k be any integer =0. Possibly after some shrinking of I
about its axis, the following can be said.

If a distribution f belongs to H#5.%, then:

(2.11) U*VFPfeH %P2 in I, Vo, BeZ,,a+p=k.

If fe 5., then:

(2.12) there are distributions g, ,€ Hie W =2=P12(Q), a, BeZ, , a+ P K,
such that
f— Y U*VPg, ,eC” in Iy,
a+pB<|k|

Furthermore, these properties are characteristic: if (2.11) holds, there is an
element f; € #3.* equal to fin a conic subneighborhood I3 of (x,, £%); if
every point of X has a conic neighborhood I such that (2.11) holds, and
if fe H},. in every conic open set which does not intersect Z, then f belongs
to J#;5¥. Same remark about (2.12).

In connection with these properties we mention the following result:

Proposition 24. Let keZ be arbitrary.

i) A distribution f in Q belongs to H#.5. in I if and only if both U f and
Vibelong to A5 inIy;

ii) fbelongs to H#:5,~* in I, if and only if there are two distributions g, h

belonging to #35.~**" such that
f—(Ug+Vhe®> in L.

The complete proof of Prop. 2.4 will only be given in the next section.
Here we shall limit ourselves to the case k= 1, which will be needed in the
proof of the general case, and in that of the statements of Section 3.

Proof. Thus k = 1. We shall limit ourselves to the proof of i); ii) follows
by duality. The “only if” part of i) is evident. Suppose that Uf and vf
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belong to #5.* " in I. By (2.11) this means that
@13) USVPfeH** P2 in I, Vo feZ,, 0<a+Bsk,

The difference between (2.11) and (2.13) is that in the latter a+ f must be
>0. In particular we see that

(2.14) Uf, VieHsz %12 in I,

We use now the fact that W=i[U, V] is a pseudodifferential operator of
order — 1, whose principal symbol is equal to {u,v}>0 in I;. We may
construct a pseudodifferential operator T of order —1/2 in @ whose
square is equal to W in I, and which is >0 in I;. We see at once that,
for all ge S° (I), for a suitable constant C>0and all pe 6,

I Tq(x, D)fpllf_ﬂ—2Re(Uq(x, D)o,i Vq(x,D)qo)s_glécﬂfpllf'
2 2
where s’ can be chosen arbitrarily close to — oo (the constant C depends
on the choice of ¢ and s but not on ¢). It follows at once from this and
from (2.14) that
TfeH; *'2 in L.

By the ellipticity, of order —1/2, of T'in I we reach the conclusion that
feH$-"?2 in I which, together with (2.13), implies (2.11). Q.E.D.
Actually we may introduce the operator Lo=U +i Vand form

I¥ Lo=U*+V*+i[U,V].

We make now I range over a locally finite open covering of Z by conic
opensets I;(i=1,2, ...) of the kind we have been considering and introduce
a partition of unity {g;} subordinate to this covering, and consisting of
symbols g;(x, £)=0 homogeneous of degree zero. Noting that the I;
might not form a covering of the whole T*Q, we set g, =1—)Y ¢g;. We
form then :

(2.15) #=Y g;(x, D) I Li+ 4., (x, D).

We see that 2 is a pseudodifferential operator of order zero in Q, whose
principal symbol is everywhere =0 and vanishes exactly of order two on
Z (and vanishes only on ZX). In particular, it has the properties (1.3), (1.4),
(15); it belongs to .4#°% 2. Thus (Prop. 2.2) it defines a continuous linear
map H#5*— #s k-2, whatever selR,keZ. It can be shown (and will
follow from the results of the next section) that £ is actually an isomor-
phism of H#5k(Q,Z)/€*(Q) onto H5k *(Q,Z)/€”(Q). Among other
things, this provides a simple description of the spaces % when k=
2j,jeZ. Indeed, since #5,° = H;,., we see that fe #;5.% is equivalent with
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the following property:

(2.16) if j=0, 2 feH; (Q); if j<O, there is geH;, () such that
f—P g™ (Q).
When k=2j+ 1, the role of H;, in (2.16) can be played by #75;." .

Of course 2 is not unique in having these properties. Nevertheless
the similarity with the elliptic situation is clear: in many respects 2 plays
the role of 1 — 4, where 4 is the Laplace-Beltrami operator in some Rie-
mannian metric in Q.

If we do use a Riemmanian metric on €2, we can define norms || j ||, . for
distributions fe #**. Indeed, we can then define norms || f||; for any s real
and fe H:. We may then use a locally finite covering of 2 by conic open
sets I; and for each i, operators U;, V; of the kind described above. Let {g;}
be a partition of unity in a neighborhood of 2 subordinate to the preceding
covering and consisting of symbols which are homogeneous of degree
zero. As before, let us set g,,=1—) ¢g;. Clearly it suffices to define the

norm | | , on each space #5¥(K), K: an arbitrary compact subset of Q,
and later on, glue such norms together by means of a partition of unity
in Q. Let then ye € () be equal to 1 in a neighborhood of K. If k 20 and
fe#>*(K) we may set

“f”s,k={ Z Z lxq:(x, D) U? Viﬂf”.sz—%(k—a~ﬁ)

i1 a+p<k

2.17) 3
+ 1% g (x, D)fllf} :

Notice that, in the summation with respect to i, only finitely many terms
are not zero—for x(x)q;(x,&)=0 except for finitely many i’s. Also
observe that || f, =0 implies g;(x, D) f=0 in a neighborhood of K for
all i< +o0; but g, (x, D)+ ¢;(x, D) =Identity, hence f=0.

If k<0, the norm of #.**(K) can be defined by duality.

3. A Class of Stable Microlocal Estimates

Property (1.20) will be obtained via a microlocal estimate involving
the #>*norms (we define norms | |, and | |,, by means of a Rie-
mannian metric chosen once for ever on Q). In the present section we
wish to investigate the interrelation between the estimate in question and
microlocal existence and regularity results, and also the dependence of
such results on the indices s and k.

Throughout the section I' will denote a conic open set in T*Q. For
the sake of simplicity we assume that the projection of I in the base £
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is relatively compact and that there exist two symbols u, v in I, homo-
geneous of degree zero, real, such that u=v=0 define X and {u,v}>0
in I' (for obvious reasons we are solely interested in sets which intersect 2).
Let us then list the three type of properties we are interested in. They
will apply to an operator Pe.#"™', [>0 (in Section 1 we had /=2 but for
our present purposes this limitation is unnecessary).

We begin by the property which is closest to (1.20) — which, as a matter
of fact, is the microlocalization of a more precise version of (1.20):

B1),, VY eZ'(Q), PfeAikin I'= fef2tmt+t in I,

Here s is any real number, k any integer >0 or <0. Note in passing that,
if (3.1); ; holds for all open conic sets I''=<I' (in the place of I'), it holds
for I itself. The converse (that if it holds for I' it then holds also for all
conic open sets I''<T') is not immediately apparent but will result from
the forthcoming argument.

The next property is the microlocal estimate we have alluded to. In
its formulation we use a real function Y € €2 (Q), =1 in a neighborhood
of the projection of I' ( will be kept fixed from now on):

(32), to every symbol qeS°(I), to every s'€R and to every compact
subset K of Q there is a constant C >0 such that, for all e (K),

(3.2) Ig(X, D)@l s m k1= CUY Pg(x, D)ol + ll@lls)-

In applying (3.2") one usually chooses s close to —oo. It is clear that,
if (3.2); . holds, it also holds when we replace I' by anyone of its conic
open subsets. It is the glueing together of estimates (3.2') which is not
obviously possible. In fact, it follows from the next assertion:

Proposition 3.1. If (3.2), , is true, it remains true after we have replaced
P by P—R, where R is an arbitrary element of A™1!~1.

Follows at once from Propositions 2.2 and 2.3".

We come now to the third (and last) property, which is relative to the
(microlocal) existence of solutions to the inhomogeneous adjoint
equation (solutions modulo arbitrarily regular functions). Let us denote
by P* the adjoint of P:

(3.3);x Let geS°(I'), s’eR be given arbitrarily. To every geH, ™k
there is fe #,~=~* such that

(3.3) q(x, D)(P*f—g)eH;,. inT.

The situation in what concerns the further localization of (3.3),, is the
same as for (3.2), ,: if it holds, it also does when I is replaced by anyone
of its open conic subsets; but it is not clear that the validity for all I"c< T’
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implies it for I The latter will result from the main statement of this
section, which is the following;

Theorem 3.1. If (3, is true for some je{l,2,3} and for some
(s, k)eR x Z, it is true for all such j’s and (s, k).

Proof. 1°) for a fixed pair (s, k) (3.1) x = (3.2)x-

Let us denote momentarily by E the space of distributions f in @
which belong to H? (K) (i€, belong to H,, and have their support in K)
and which furthermore belong to #55+™**! in I It is clear that E can
be equipped with a natural Fréchet space topology: the coarsest locally
convex topology which renders continuous the injection in Hf (K) and
also all the mappings

f—q(x, D) f from E into 5+ ™+,

as g ranges over S°(I"). We equip now E with a second topology (which
we denote by Zp): it is the coarsest one that renders continuous the
injection in H (K) and also all the mappings

f— q(x, D) Pf from E into #55%,  qeS°(If).

The topology Zp is metrizable. The main point is that (3.1),,, implies
that it is complete. Since it is obviously coarser than the natural topo-
logy on E, it is identical to it (by the open mapping theorem). We derive
at once from this that, to every g, €S°(I'), there is g,€S°(I') and a con-
stant C’'>0 such that, for all feE,

(34) 141 (%, D) f s m 1= C (1192 5 D) PSf s i+ 1 /115)-

Let us take f=q(x, D)o, ¢6.”, qeS°(r), and choose g; =1 ina neigh-
borhood of supp gq: (3.2) follows at once.

2°) for a fixed pair (s, k), (3.2);,x <> (3.3);.1-

First we show that (3.2), ; = (3.3); -

Let g and g be given as in (3.3) and let r denote the symbol of g(x, D)*:

reS°(I). We apply (3.2) with —s’ substituted for s”:

|<q(x, D) g, a)|=1<q(x, D) g, ¥ §)|
<const [|q(X, D)* (Y Q)54 mk+1
< const([[F (%, D)W Ol sy mpsi+ 1Y @l )
<const([y Pr(x, D)ollsx+ Vol _s),

which shows that the antilinear functional ¢+ {q(x,D)g,®) is con-
tinuous (say on =) for the seminorm in the last member of (3.5) and
therefore (by the Hahn-Banach theorem) is equal to an antilinear

(35)
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functional @ (% DY PXW A1), 3>+ W h, @),

—s,—k

where fe > "% heH;,. Since q(x,D)—r(x,D)* is regularizing we
obtain (3.3) by setting f=V/f;.

Next we show that (3.3), , = (3.2); ;- Let K be an arbitrary compact
subset of Q, K’ another compact subset of Q whose interior contains the
closure of the base projection of I Let us denote by F the space %" (K)
equipped with the single seminorm

o (1Y Pq(x, D)ol i+ lloll-s)

where ge S°(I')is given. Consider then the following sesquilinear functional

(g, @) <8 q(x,D)p>

on "™ k"!(K')x F. It follows at once from (3.3), , that it is sepa-
rately continuous; but on the product of a Fréchet space witha metrizable
space, any separately continuous sesquilinear functional is continuous,
hence, for a suitable constant C>0,

(g, 9 D)@Y S C gl —smm -k 1(IW Pq(x, D)@l i+ @l _s)-

Substitution of 5" for —s’ yields at once (3.2).

3°) If (3.2),,.x, holds for some (so, ko); (3.2); x, holds for all s.

Let ¢ be an arbitrary real number and Q an elliptic operator of order
tin Q. Setting R= P —Q ~ ! PQ, we may, thanks to Cor. 2.1, apply Prop. 3.1.
It suffices then to observe that (3.2), , for Q' PQ=P —R is equivalent
with (3.2),,, 4, for P.

4°) For a fixed ke Z, if (3.2), , holds for all s, so does (3.1);..

Let a,qeS°(I") with g=1 in an open subcone I of I' containing
suppa. Let a, (n=1,2,...) be a sequence of symbols 1 of degree — oo
with support in I'"", which converge (weakly) to a in the space of symbols
of degree zero while remaining bounded there (for instance, a,=ay,
where the y, are suitable cut-off functions in T*Q). For simplicity we
shall write A=a(x, D), A,=a,(x, D), Q=q(x, D).

Let now fe 2’ (Q) be such that Pfe " in I If the real number ¢ is
sufficiently close to — oo we have fe#5™*+!in I Also:

(3.6) PQA,f=A,PQf~[A4,, P10f+P[Q, A1 .
We know that QPfe #%* and that [P, Q] is of order —co in I, therefore

A,PQf=A,0Pf+A4,[P,01f

: Exceptionally, here, we are forced to handle symbols which are not asymptotic sums of
homogeneous terms. Nevertheless the forthcoming reasoning should be clear.
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converges to APQf in #5¥. The third term in the right-hand side of
(3.6) converges to P[Q, A] fin €™ (Q). As for the second term, we observe
(cf. (2.3)) that [A,, P] “converges to [4, P]” (see footnote) in 4™~ 1-!~1
and therefore (cf. Propositions 2.2, 2.3) [4,,, P1Qf converges to [4, P10 f
in Ao o otk Altogether we see that PQA, f converges to
PQAS in #2* where ¢'=inf(s,0+%). We apply (3.2') to ¢ =4, f and
with ¢’ substituted for s (and with s’ sufficiently close to — o). We con-
clude that QA4 f, hence also A f, belongs to #5.*™**!. Since A is arbitrary,
this means that fe #2.*™**! in I By iterating this reasoning we even-
tually reach the stage where ¢’ =s.

5°) If (3.1),  holds for some k and for all s, (3.1); x .., holds for all s.
First, we restrict ourselves to the case where k= — 1.

Let fe2'(Q) be such that Pfes#: " in I. Since, by Prop.2.3,
Ak e #37 PK we derive from (3.1),_ ., that f belongs to #7557 ™~ +*+!
inI'. Let U, V be the pseudodifferential operators introduced in Section 2.
We have PUf=UPf+[P, U]f Since PfeA#S}*' in I' we have
UPfe#:¥in I On the other hand, [P, U]Je 4™~ "'~ in T (cf. Prop. 2.1),
hence [P, U] je#:r+**! in I Thus PUfe ;5" in I' and by (3.1),, we
see that Ufessr™* ! in I Similarly, Ve #3r™* ! in I. We apply
Prop. 2.4 with k+!+1 in the place of k; our requirement that k+/be =0
insures that we are in the case in which Prop. 2.4 has been proved. We
conclude that jes#3 ™ !+ in I

In order to remove the restriction k be = — I, we must settle a certain
number of particular cases of the general result we are seeking; we state

the first one of them:

(3.7) Suppose P=P* and let k, be an integer = —1I. If (3.1),,, holds for
all s, the same is true of (3.1), , whatever k= ko or k< —1 —k,.

Proof of (3.7). Let us assume that (3.1),,, holds for all s. We have
already shown that (3.1); , holds then for all s and all k>k,. Let now k
be < —I—k,, and let ge A=~ ™ k! 5™ k=!I By (3.3), ,, which
we know to be equivalent to (3.1);,,, there is fe#, =% such that
(3.3') holds. We choose g=1 on an open conic set I'ccI. We see that
Pfes—s~™%=lin I'". But —k—I12=k,, hence (3.1), - is true if

§=—s—m, k'=—k—I

and if I is substituted for I' (in this connection we are exploiting the
equivalence, already established in 1°) and 4°) between (3.1); and
(3.2) ). Consequently we have fes# >~* in I', which shows that
(3.3);,x» hence also (3.1); ., is true.

We shall apply (3.7) to the operator £ defined at the end of Section 2.
It is not difficult to check that, given any qeS°(I'), any s’eR and any
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compact set K =< Q, there is a constant C,, >0 such that, for all 6. (Q),
(3.8) lg(x, D)pll§,s < Co{(¥ 2a(x, D) @,q(x, D)p)o+ @2}

(we take s'~ —o0). We derive from (3.8):

(3.9) Ig(x, D)pllo.1 < Coll¥ 2 q(x, D)ollo, -1 + lllls),

which means that (3.2),, _, hence (by 3°) (3.2); _, for all s, and therefore
also (3.1); _; for all s. In the case of Z we have /=2. Thus we see that
(3.1), 4, holds for all s with kg=—12 —1. From (3.7) we derive that
(3.1)  also holds for all s and for k< —Il—kq= —1, in other words for
all k. We have thus obtained:

Lemma 3.1. When P=2, (3.j), is true for all j=1,2,3, all se R and
for all keZ.

This enables us to complete the proof of Prop.2.4: let keZ be
arbitrary and suppose that Uf and Vf belong to J5* " in Iy. Let I"
be any conic open set, I =<I,. We may form 2 so that it is equal to
(U—iV)(U+iV)in I". We have therefore Zfe#;5*"* in I'’, hence (by
Lemma 3.1) fe#5k in I'. As I''cc1, is arbitrary, we have fe 5t
inl;. QED.

But now that we know that Prop. 2.4 is true with no restriction on k
we may repeat the argument at the beginning of 5°) without the assumption
that k+ [ is =0. This completes the proof of 5°).

We come now to the last stage of the proof of Th.3.1:

6°) If (3.1), , holds for all s and some k, it holds for all (s, k).

By combining 5°) and (3.7) we see that the result is true when P is
self-adjoint.

For a general Pe A"™' we may as well assume that (3.2), ; holds for
some k =0. Setting

M=P*(U—-iV)*(U+iVyP,
we may rewrite (3.2) in the form
(3.10)  1g(x, D)@y m st < C {|(y Mq(x, D) @, q(x, D)p)| + @[3},

which, by Cauchy-Schwartz, implies at once that (3.2)_,_,, _x_; holds
with M instead of P; the same is therefore true of (3.1)_,_,, _x_,. Since
M is self-adjoint, (3.1), , for M is true whatever s, k". Let then fe Z'(Q)
such that Pfe #3:% in I' (s, €R, k, € Z arbitrary). We derive from this:

oc
Mfesg ™42l n T

Since M e #"2m2k+D in I we conclude that fe #s*™* +in I

oc

" .
2 Inventiones math . Vol. 24
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The proof of Th. 3.1 is complete.

Remark 3.1. Suppose that both P and P* satisfy anyone of the con-
ditions (3.))x (i=1,2,3). Then, whatever seR, keZ, the following
stronger version of (3.3), ; is-valid:

(3.11), . Given any conic open set I'ccI and any ge ekl
there is fe 3,5 ~* such that

P*f—geC® inI".

This follows from exploitation of a priori estimates such as (3.2') (or
(3.4)) and standard Fréchet space techniques.

4. A Microlocal Subelliptic Estimate

We return now to the pseudodifferential operator P of Section 1. We
shall assume throughout that its order is zero. We shall use the norms
I lls> Il lls,i defined by means of a Riemannian metric on £.

Theorem 4.1. Suppose that P has the properties (1.3), (1.4), (1.5). Let
(xg, £°) be a point of Z such that

4.1) Relp(xo, %) +3=0.

There is an open conic neighborhood Iy of (x, , £°) such that the following
is true:

Given any qeS°(Iy), any real number s' (arbitrarily close to —o0)
and any compact subset K of Q, there is C>0 such that, for all functions
pe€” (K),

4.2) lq(x, D)o|2.1 < C{|(Pq(x, D) @, q(x, D)p)o|+ ]2}

Proof. We use two real valued functions u, v as in (1.1) and (1.2). As
already pointed out, the principal symbol p of P can be factorized in I
as p=a(u—ov)(u—fv) where a, o, B are elliptic (and homogeneous of
degree zero). We assume that (1.7) holds. If we substitute u+(Rea)v
for u and v for —(Ima)v, these properties subsist, while we have now:

(4.3) p=a(u+iv)(u—iliv),
with 1 homogeneous of degree zero, satisfying
(4.4) Rei>0 in I.
Let us set w=u+iv; (4.3) reads:

4.5) p=a(l+A)ww+lw), (=1-A/1+1).
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Note that {=0 (at some point) is equivalent with A=1, i.e, p=a|w|?.
Suppose that {(x,, °)+0. In this case we may choose the neighborhood
I so that { stays in a simply connected subset of €~ {0} as (x, {) ranges
over I; we may define =3 Arg{, and set

w=u+iv=e""w.
It is clear that ', v’ have the same properties (listed above) as u, v. Let

us set also
a=a(l+i)e*, ('=(e " V=(1-0)1+]).

In this notation,
4.6) p=awWw+{w)=ad(+A)u+iv)u —il'v).

Because of (4.4) we have {'=|(|< 1 and therefore A’ is real positive in I;.
Summarizing, we may always assume that (4.3) holds, either with A=1
at (xo, &%) or else with 4 real >0 in the whole of I;.

Let us also point out that both the hypotheses and the conclusion in
Th. 4.1 are invariant under multiplication of P by elliptic operators (of
order zero). This follows from (1.17) and from the definition of the spaces
H#**. We may therefore assume a=1.

We introduce two pseudodifferential operators of order zero in €,
R, S, with principal symbols respectively equal to ReA and Im/ in I5.
We may write:

(4.7) P=(U+iV)(U+SV—iRV)+Z (inIy).

Here U and V are the self-adjoint operators in Q with principal symbols
equal respectively to u and v in I, already used in Sections 2, 3. The
operator Z is of order —1. The decomposition (4.7) is of the kind
P=XY+Z considered in Section 1. We have:

P+ P*
ReP= +

1
=U2+VRV+ReZ+7(USV+ VSU)

+%{U(I+R) V—V(I+R)U}.

First we exploit the fact that the principal symbol of R is >0 in I, by
(4.4), and that the one of S vanishes at (x,, ¢°). Consequently, if we take
I sufficiently “narrow” about its axis, the norm of S, regarded as a linear
operator in [? acting on functions of the form q(x,D)¢, qeS°([y),
@eCZ (), will be as small as we wish, whereas that of the inverse of R
will be bounded. Thus, for a suitable choice of I and of the constant
Co>0, we will have, for all those functions Y =q(x, D)@,

WU+ 1VI5< Co({U? + VRV +3(USV+VSUN Y, o
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But then there is 7,>0 such that, for a suitable choice of C;,>0 and
alln=no,

IUWIs+1Vl3

<C; ({UZ+ VRV+%(USV+ VSU)+- U, V]} 5, ¢) .
0

4.8)

This said, we observe that the principal symbol of
1 1

when restricted to X, is equal to

(4.9) Red(Z)—%(1—n+Rei){u,v}.
Letusset X=U+iV, Y=U+SV—iRV. We see that
(4.10) o([X,Y])=—(1+2){u,v}.

If we combine (4.9) and (4.10) and use once more the fact that ImA=0
at (x,, £9), we obtain, in view of (1.15):

(4.11) o (T)(xp, &%) = —(1+Red){u, v} (Relp+3—7'),

where n'=1(1+Rel)~'n. The hypothesis (4.1) implies that ¢(7)>0
at(x,, £°), hence ¢(T)>0 in a full neighborhood of (x,, £°), neighborhood
which we take to be Iy. A microlocal inversion of elliptic operators
yields at once, for an arbitrary real numbers s, a suitable constant C'>0
and all pe¥> (),

4.12)  lg(x. D)@]23= C'{(Tq(x, D) p,q(x, D)p)o+ [l 3}-
The conjunction of (4.8) and (4.12) yields at once (4.2).

5. Concatenations

Same notation as in Section 1. We set d =degree of X so that degree of
Y=m—d; degree of Z=m—1. We begin by an easy result, stated and
proved only in order to show that, under Condition (1.23) (in Th. 1.1), one
does not really need the full strength of the (stronger) Prop. 5.2.

Proposition 5.1. Assume that Z is elliptic (of degree m— 1). Then there
exist two pseudodifferential operators A, Q of degree d—1 and m—1
respectively, with (Q)=0 ([ X, Y]) on X, such that

(5.1) X(P—-Q)=P(X—A) (mod operators of degree — ).
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Proof. Let M be an arbitrary operator of degree m—2 and set
A=Z"Y[Z,X]-XM)
where Z~! is a parametrix of Z. We have

Z(X—A)=X(Z-M),
whence
PX-A)=X{Y(X—-A)+Z-M}=X(P-0Q),

where Q=[X, Y]+ YA+ M. Our requirements are evidently satisfied.
We remove now the condition that Z be elliptic.

Proposition 5.2. Whatever be the pseudodifferential operator Z of degree
m—1 in Q, there are two pseudodifferential operators A, Q of degree d—1
and m— 1 respectively, such that 6(Q)=0 ([X, Y]) and that

(52) P(X—A)=(X—A)(P—Q) (mod. operators of degree — ).
Proof. If we write P=(X —A) Y+(Z+ AY), we have:
[P,X-A]l=—(X—A)[X-AY]+[Z+AY, X - A],
so that, setting M =[X — 4, Y] —Q, we see that (5.2) is equivalent with
(5.3) (X—AYM=[Z+AY, X —A].
We see that M must be of degree m—2, which implies ¢(Q)=a ([ X, Y]).

It will suffice to construct 4 and M, which yields Q. Let us write

+o +o0
A~ ZA"’ M~ ZMk:
k=0 k=0

where the degree of 4, is d— 1 —k, and that of M,, m—2—k, and where ~
denotes an asymptotic sum as in [8]. For any n >0 let us also write

A(m:Z A, Mpy= Z M,

k<n k<n
Rp=[Z+AnY, X—Ap]— (X —Au) M.

Suppose that R, is of order <m+d—2—n (this is certainly true if n=0,
in which case A4,)=M,,,=0and R, =[Z, X]). Let us then write

R("+1)=R(n)+ [An Ys X_A(n+1)]
- [Z+ A(n) Y, An] -(X _A(n)) Mn +A4, M(n+l)'
The condition that R, 1, be of degree <m+d—n—3 translates into

(5.4) Omrdn2(Rm+[A4, Y, X]—XM,)=0,
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where we have used the notation o, to denote the principal symbol
for operators of order v. In going from the preceding expression of
Rn+1) to (5.4) we have neglected all terms of degree <m+d—n—3. Let
us momentarily use the following notation:

Z=0(X), ¥U=0(Y), 1m=0Ry) a,=0(4,), p=0(M,).
Eq. (5.4) means:
(5.5) rw—ila, %, X} —Z pn,=0.
We can find q,, homogeneous of degree d — 1 —n, such that
(5.6) rey—i{a,%,%}  vanishes of infinite order on X.
Indeed, if a vanishes to the /-th order on X, it can be written
a= Y o Hy*
j+k=1
with g; €€ (T*Q) having the appropriate homogeneity degree. We
have then
{a%, X} = Zk: l(j+ 1o, % {%, &} mod (%, @)+,
k=

and since {#, &} does not vanish anywhere on Z, this proves (again by
successive approximations) that we can choose a, so as to satisfy (5.6).
Then

ﬂn:‘g—l (r(n) —i {an@9 '%‘})

is a ¢ function, homogeneous of degree m— 2 —n. If we take 4, and M,
with respective symbols a, and u,, we see that (5.4) is verified, and the
induction on n works. Q.E.D.

Let us set P=R, P—Q=R, X,=X —A, where A and Q are chosen
as indicated in Prop. 5.2; (5.2) reads B, X,=X,F. We may repeat the
argument with B, in the place of P, etc. We construct in this way a sequence
of operators B, X; which satisfy

(5.7 BX;~X;B.

This corresponds, in our setting, to the notion of concatenation intro-
duced in [10] (Section IL.4).

6. Hermite Operators
In this section we describe the operators introduced by Vishik and
Grushin and Sjostrand, used, in a similar context, in [4,5,6, 3,9]. They
provide a good microlocal description of the range of an operator such as



On a Class of Pseudodifferential Operators with Double Characteristics 23

X of Section 1, and of the null-space of an operator such as Y (both image
and kernel are to be understood modulo C*):

In this section we deal with the case @=R"=IR" xR, setting n=
N — 1. The variable in Q will be denoted by (x, t), x=(x!, ..., x"); the dual
variable will be denoted by (&, 1), £=(&,, ..., &,). We are going to assume
that ¥ is the submanifold t=71=0 in T*Q=R"x (R~ {0}). We call &
the submanifold t=0 (i.e, R"cR"*') of the base, and we identify ' to
T Q'. The reader will notice that this is a particular case of the situation
considered in the previous sections —although, microlocally, it is a model
of that more general situation (this is not so locally since, in general, X
will not be a cotangent bundle of a hypersurface in the base).

We shall call Hermite operator of degree m any linear operator
A: €™ (Q')— %> (Q) defined by an integral formula

6.1) Af(x, )=2n)"[e*a(x, t, &) f(E)dE,

where f stands for the Fourier transform of f and where ac¥*(QxR))
satisfies the following condition:

(6.2) Given any pair of integers j, k=0, any pair of n-tuples a, B and
any compact subset K of Q, there is a constant C>0 such that

() (o) () s

V(x,t)eK, eR".

< C(1L+jgm=e-u-bi,

We shall denote by s™ the space of “symbols” a satisfying (6.2) and by
©™ the space of Hermite operators of order m,

Example 6.1. Let a(x, t, £) be an element of ¢~ (£ x R") which coin-
cides with exp (—4¢| t?) for | large (i.e., for |¢| larger than some number
C>0). Then ae S°.

Example 6.2. This generalizes the example 6.1. Let be®™(T*Q)
have the following kind of homogeneity or, rather, of semihomogeneity:

(6.3) b(x,p ¥t p&)=pmb(x,t,£), p>0,

and if, moreover, as a function of t, b(x, t, £ is in the space & of Schwartz
(¢ functions rapidly decreasing at infinity), uniformly with respect to &
when the latter remains in the unit sphere, then bes™ at infinity (as
usual, this means that any ¢® function a which coincides with b for
l¢/> R >0 belongs to s™). The requirements on b are equivalent with the
following property of its Fourier transform b(x, 1, &) with respect to t:

(64) a(x,7,&)=b(x,|¢|"*1,¢) is positive-homogeneous of degree m—3
with respect to (&, 1), is € for (¢,7)+0 and vanishes of infinite order at
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The following statements are proved in a similar way as the analogous
statements for pseudo-differential operators (see also [2, 9]).

(6.5) Consider a sequence of operators A;e S™, my\, — 0. Then there

J
exists Ae@™, m=sup m;, such that A~Y A; (i.e., A=) A;e@™ with
j 7 0

my— — oo) .
(In the present article the intervening Hermite operators will always

be asymptotic sums A~ Y A; of the kind in (6.5) where the symbols a; of

J
the successive terms A; will be semihomogeneous (in the sense of Example
6.2) of respective degrees m—j/2 (thus their degrees will differ by half-
integers).)

If Ae G™ is defined by a(x, t, &) as in (6.1) we shall define the principal
symbol o (A) of A as the class of a mod s™~'/2. In our case we will be able
to regard it as a semihomogeneous function (in the sense of (6.3)) of
degree m. It determines 4 mod. @™~ /2. We have:

(6.6) Let Ac @™ and let Q be a pseudodifferential operator of order m' in
Q'. Then we have:

AQe@™™,  o(4Q)=a(A)a(Q).
(6.7) Let A€@", Pe A *¥(Z) (Def. 2.1). Then:
PAe@+i-k2,

We can complement (6.7) with the following information. Let o;(P) de-
note the unique differential operator on R:

A 0N
6.8) a(P)= Y ¢, 5)11(5;) ,
J+i' sk

where, for each (j,j),¢c;; is positive-homogeneous in ¢ of degree
d—(k—j+j')/2, defined by the requirement that

P—oy(P)e A %*+1,
Then we have:

(6.9) a(PA)=ay(P) [o(A)].

In particular, if k=0 (in which case the differential operator oy(P) is
simply multiplication by the homogenous symbol ¢ (P)), we have:

(6.10) a(PA)=(c(P)l;) 6(A).
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Also:

(6.11) Whatever selR,keZ, AcS™ can be extended as a continuous
linear map

HE™4(@)— #3542 4(Q, 3).
This is proved for k=0 in [8]. It follows from the inclusion

eyﬁs-}»lxlz.k(gz, Z‘)*J Hfoc(g)

oc

when k<0 (Cor. 2.2) and from (6.7) for k> 0. It follows from (6.7) that this
also holds microlocally, i.e., if fis a compactly supported distribution in
@ which belongs to H*~'/# near (x, £)e T* ', then Aue #5, ™**/** near
(x,0,&,0) (whatever the integer k). In particular, WF(Af)c WF(/)
(WF stands for wave-front ; WF(f) is a subset of T*( but we have identi-
fied T* Q' with the submanifold X of T* Q).

We continue to list the relevant properties of the Hermite operators.

(6.12) Let Ay, A, be two Hermite operators of respective orders m; +1/4,
m,+1/4. Then A¥ A, is a pseudodifferential operator of order m;+m, on
', with principal symbol given by

+ ©
o(AfA,)= [ a(4;)a(A4,)dt.
We recall that, in our situation, o (4) will be a semihomogeneous function
of t, ¢, rapidly decreasing when |t|— + 0, so that the integral makes
sense.
Let H; (j=0,1,...) denote the Hermite operator of degree 1/4 de-
fined by the “complete” symbol

(6.13) (El/m)'* A (e 1E13),

J
where #(u)=(2/ j!rl/z(;—u— ) exp (—u?/2) is the j-th Hermite func-

tion. Let us also set

0
X(FH—‘IDXL

where |D,| is the pseudo-differential operator with total symbol ||
(the behaviour of |D,| near &= 0 is irrelevant here). We have the following

formulas, which follow immediately from the properties of the Hermite
functions

(6.14) H¥H,=6; ;1,
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where J; ; is the Kronecker index and I the identity operator:
(6.15) XoH;=Q2G+1) D))} H,,;
(6.16) X$H;=Q2jID,)* H;_, .

Let us denote by f(£, t) the Fourier transform of f(x, t) with respect to
x and define an operator E by

617  Ef(x,0)=—-Q2mn)" je‘*'ﬁfe-*'€'<'2—52>f(§, s)dsdg.
R? o

Let us set E'=E*(I — Hy H¥). Then we have
(6.18) E'Xo=X}E*=I,
(6.19) XoE'=E'*X}=I-H,H}.

Thus, I — Hy, H¥ is an “orthogonal” projector on the range of X, and
H, Hf is the ,,complementary projector” onto Ker X§.

More generally, let Xe 4! (Z) be a pseudodifferential operator
with symbol 6 (X)=b(t +i t a), where a, b are elliptic, with degrees 1 and 0
respectively, and Rea>0 on X. Then there exists a Hermite operator Ky
of degree 1/4 such that

(6.20) o(Ky)=(a/n)'* exp(—at?/2), a=als;

(6.21) K% Ky~1, the identity mapping on distributions in ’;

(622) X*Kx~0.

The operator K¥ essentially describes the range of X mod C* near Z,
in the following sense: if g is any distribution in Q and (x, £) any point of Z,
there exists fe 2'($2) such that Xf—ge%* in a conic neighborhood of
(x, ¢) if and only if (x, £) does not belong to the wave-front set of K5 g
(i.e, K¥ge¥™ near (x, &)). In fact, it is shown in [2,9] that the more
general X has a left-parametrix Ey such that

thus generalizing what is true for X, above.

Let us also mention the following fact, which reduces the case of more
general X to that of X, 2: the space G™ is invariant under changes of
coordinates in the base  which preserve that submanifold €', given by

. 0 ..
t=0, and also the direction of the vector field a0 on €. This is easy to
check. What is more difficult is to show that, if ¢ is a canonical transfor-

2 This result has been established by the first author but is not yet published; it will not
be used hereafter.
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mation in T*Q which preserves X, A (resp. B) a Fourier integral operator

=1
on Q (resp. Q') associated with @ (resp. @ |;) of degree zero, then

AGS"Bc=G™.

7. Proof of Theorem 1.1

Same notation as in Section 1, in particular for Q, 2, P, l,. We are
going to prove a stronger version of Th. 1.1, namely:

Theorem 7.1. Same hypotheses as in Th. 1.1. The following assertions
are then equivalent:

(7.1) Whatever seR and the point (x,, E%e T*Q, there is a conic open
neighborhood I, of (xq, £°) such that

(1), VfeZ'(Q), if PfeHs, (@) and WF(f)< I, then fe Hi:™ ' (Q).

(7.2) Whatever the integer k =0, the function l,—k does not vanish at any
point of X.

(7.3) Whatever seR and keZ, the operator P defines a microlocal

isomorphism of #5F™**2 onto H#5.K.

(7.3)* Same as (7.3) but with P* substituted for P.

Before proving Th. 7.1 a few remarks are in order. Observe that (7.1)
is much weaker than (1.20). For instance, it is satisfied by strictly hyper-
bolic operators (which of course do not satisfy the hypotheses (1.3), (1.4),
(1.5)). The advantage of (7.1) over (1.20) is that it is microlocal. By (1.16)
we know that (7.2) is the same for P and P*. The meaning of (7.3) is the
following:

(14) Whatever seR, keZ and (x,,E%)eT*Q, there is a conic open
neighborhood I, of (xo, ¢°) such that, to every ge #;5 there is fe #5™ et
unique mod €, such that Pf—ge%® inI,.

Of course (7.4) is equivalent with the following:

(1.5)  To every ge D' (R) there is fe Z'(Q), uniqgue mod € (), such that
Pf- gefg‘” (Q). Furthermore, given any conic open subset I' of T*Q, if
geAkin T, then fe #5r™** 2 inT (s, k arbitrary).

According to (7.5), if PfeH;, we will have fe 5 ™>cHit™ "
This shows that (7.3)=(1.20), and also that (7.3)=(7.1). It sufﬁces
therefore to show that (7.1)=>(7.2) and that (7.2)=>(7.3). Before embarking
on the proof, let us observe that all the statements are microlocal. We
shall therefore be reasoning in a conic open subset I' of T*Q which inter-
sects X (in the complement of X P is elliptic, and there the various state-

ments are well known). Throughout the argument we are really dealing
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with microfunctions, that is to say, with distributions “in I'” modulo C*
functions “in I"”. If I is sufficiently “thin” we may find local canonical
coordinates (x', ..., x", t, &, ..., &,, ) which transform the whole situation
in that of Section 6, where Q=R"*!, X=T*Q' with Q=R"=
{(x, )eR"*'; t=0} (thus X is defined by t=1=0).

All the statements under scrutiny are unchanged if we multiply P by
an elliptic operator, on the right and on the left, or if we replace P by
CPC~!, with C an elliptic Fourier integral operator associated with a
canonical transformation @ and C~!, one of its parametrices (£ must
then be replaced by @(2)).

1°)y (7.1)=>(72)

We shall apply right away the remarks we have just made. As is
shown in [2] the canonical coordinates (x, ..., x", t, &, ..., &,, T) can be
chosen in such a way that, if we write P= XY + Z, the principal symbol
of Yis equal to g (t —t|£|), with g elliptic. But since we may write

P=XA"'A(Y-B)+(Z+XB),

with A elliptic and deg B<deg Y—1 and, writing X instead of XA/,
Y instead of A(Y—B) and Z instead of Z + X B, we may assume, not only
that Q=R"*!, ¥ =T*IR" but also, (cf. loc. cit.), that

0
(7.6) ¥Y=—-+tID.

On the other hand, we may always write X =AY + BY*, where 4, B
are suitable pseudodifferential operators of order m —2 (totally unrelated
to those which were so denoted above, and which may now be forgotten).
We have:

(7.7) o([X, Y]Dlz=0(B)lz-a([Y* Y]I;=—2|la(B);-

We see that B s elliptic near . We may multiply P by an elliptic operator
of order 1 —m whose symbol, near Z, is equal to

(—2Kla(B)ls) "
We are thus reduced to the situation where P is of order one and
X=AY-(2D])"'Y* degA=<I1.

In this situation we have o ([ X, Y])|;=1, [pb=0(Z)|;.
Let then H; (j=0, 1, ...) be the Hermite operators associated to the
Hermite functions, as indicated in Section 6 (the symbol of H; is equal fo
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(6.13)). We have, by virtue of (6.15) and (6.16),

PH,= AY?H,—(2|D,)y"' Y* YH;+ZH,

(78) —(Qj(j— ) AH, ,+(Z—])H,.

We introduce the matrix Hermite operator

J+1
J
(79) G;= @H,-:%““(IR")X--~><<€c°‘(lR")—>(€"°(lR"“).
j=0
Let us also set
(7.10) a;=(2j(j—1)* a (Al

With such a notation, we may write

(1.11) PG,=G,A;+Ry,

where R, is a Hermite operator of order = —1 whereas A, is a triangular

(J+1)x (J+1) matrix whose entries are pseudodifferential operators
in Q. The symbol ¢ (A4,) is the matrix (o;) (i,j=0, ..., J) whose diagonal
entries are given by

o;=lp—j (=0,...,J),

and whose only other possibly nonzero entries are

0j_2,;=0, Jj=2,....,J.

If (7.2) does not hold, i.e., if I, is equal to some integer k=0 at some
point (x,, £%)e X, A4, is not elliptic at (o, £9) as soon as J = k. Then, given
any conic neighborhood I of (x,, £°) we can find a distribution f in Q" with
the following properties:

(112)  feH ) 2(@), f¢HL(Q), WF(N<I5  but A;feH(Q).

loc

If we apply (6.11) we see that R fe Hp, (). On the other hand we have
G, A;feH, (),

also by (6.11) where we take s=%, m=7} (the Hermite operators H; are
of degree 1). Thus
PG, feH).(Q).

Since the Hermite operators “decrease” the wave-front set, we have
WF(G,f)c I, where I is an arbitrary conic neighborhood of I5=2
in T*Q. Finally we observe that we have G, f¢HP (Q), otherwise (by
(6.12)) we should have G¥ G, f=f(by (6.14)) also in Hj,(2). This contra-
dicts (7.1'), if we recall that now P is of order one.
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2°)  (1.2)=(7.3)

In this part of the proof also the idea is to decompose the functions
(or rather the distributions) space under study into the orthogonal sum
of the range of X” (J-th power of X) and the kernel of X*’, and to use a
description of these subspaces by means of Hermite operators. Here again
we shall exploit the fact that, in this decomposition, the matrix represent-
ing P will be approximately triangular, with “good ” diagonal coefficients.
Actually we shall prove the assertion by induction on J=0,1,...: we
shall prove that, if we make the assumption that the assertion is true when
Re [, <J—1, then it is also true when Re [, <J. We know that it is true
when Re [p < — 1 (that is to say, for J =0). Indeed, in that case, Re [, < -4
and consequently the subelliptic estimate (4.2) holds (if I; is sufficiently
“small”). By virtue of Th. 3.1 and of Remark 3.1, we see that (7.3) holds in
this case.

By virtue of Prop. 5.2 we see that we can modify X so as to have
PX ~ X (P—Q), which means essentially that the range of X is stable
under P. Let K=Ky be the Hermite operator associated with X at the
end of Section 6. Modulo C®, K K* is a projector on Ker X* whereas
I—KK* is a projector on the range of X. Then, in the corresponding
“orthogonal ” decomposition (the quotation marks recur, due to the fact
that everything here is modulo C* or modulo operators of order —o0),
P can be represented by a triangular matrix

p (A B )
0 C
(here, ~ means =mod an operator with C* kernel), where
A=(I-KK*)P(I-KK*)~P(I- KK*),
(7.13) B=(I— KK¥*)P(KK*),
C=(KK*)P(KK*)~KK*P.
Thus P will satisfy (7.3) or (7.3)* if and only if both diagonal entries A
and C satisfy the analogues on their respective domains.

We shall reason throughout in a conic open set I; =« T*Q whose
projection in the cosphere bundle is sufficiently small. All the statements
which now follow must be understood in I .3

Since (Prop. 5.2)6(Q)=a([X, Y]), we have [,_,=1p— 1, and therefore
(7.3) holds for P — Q by the induction hypothesis.

Suppose that f=X g mod C* and that Pfe#.*. Then X(P—Q)ge
H#5:¥ and consequently, (P — Q) ge #5F"-*+1. By the induction hypothesis,

3 This represents a further microlocalization: according to the remarks at the beginning
of the proof we have already used a microlocalization, to reduce the situation to Q=R"*!,
I=T*R".
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we derive from this that ge#5r™+1**+3 which implies fes#3}m™k+?
(we recall that the order of P is m; also, in accordance with the statements
in Section 6, we are tacitely assuming that Xe#*:!),

Suppose now that h=Xgmod¥> and that hes#:5* Then ge
A%+ and thereexists f; e #5 ™+ ¥+ 3 such that (P — Q) f; =g mod C*®
Then f=X fie #:+™**+2 and satisfies

Pf=PXf,=X(P—Q)f,=hmod C*.

This proves that the first diagonal entry A satisfies (7.3) on its domain
(and terminates the role of the conic set I).

In what concerns the second diagonal entry, C, let us introduce
(7.14) Lp=K*PK;

L; is a pseudodifferential operator of degree m—1 on Q'. Writing, as
usual, P=XY +Z and using the fact that K* X ~0, we obtain

(7.15) Lp~K*ZK,
and, consequently, by (6.6), (6.9) and (6.20),
(7.16) o(Lp)=0(Z)=0([X, Y]Is lp,

which shows that L, is elliptic. Let E be a parametrix of Lp. We have
KK*~K EK* PK K*~KK* PKE K*.

This, together with (6.11), implies easily that C satisfies (7.3) on its domain.
The proof of Th. 7.1, and therefore also that of Th. 1.1, is complete,

8. Remarks about the Operator L,

If Condition (1.23) (=(7.2)) is not verified, it does not necessarily mean
that P is not hypoelliptic or not locally solvable. In the “abstract™ set-up,
necessary and sufficient conditions for the latter to take place can be
found in [9]. A similar approach in the present situation shows the
following. The inductive proof, presented in Section 7, uses the concatena-
tion of operators B, which satisfy F, X;~X; P, and leads to the con-
sideration of the associated pseudodifferential operators on the “bound-
ary” @,

Ly =K%,BKy,.

We know that P, satisfies (1.23) if j is large enough and therefore the micro-
local behavior of P is completely controlled by the operators L, . Obser-
ve that o(Lp)=0([X, Y]|s-lp,=0(Lp)—jo([X,Y])ly. Thus, at any
given point of X all the Lp are elliptic, except possibly one of them: at
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that point, the microlocal behaviour of P is completely determined by the
corresponding operator Lp,. For all practical purposes, we may assume
that the index j in question is zero, in other words that P=P and that it is
thefirst Lp ,Lp, which is not elliptic. There is nothing more to say about P
unless one makes further assumptions, for it is quite clear that L, can be
any pseudodifferential operator on Q' (of order <m—1). The following
can be asserted (the proof of this assertion is analoguous to those in Sec-
tion 5, and we leave it to the reader):

(8.1) Lp~O0if and only if P~XY (i.e, Z~0) for a suitable choice of X
and Y.

By Prop. 5.2 we have seen that, if we choose X in a suitable manner,
we may find a pseudodifferential operator Q of degree <m—1 such that
PX =X (P—Q) which implies, of course, that P preserves the range (or
image) of X. Similarly, we can choose Y such that, for a suitable pseudo-
differential operator Q’,

(82) YP~(P+Q)Y,

which means that P preserves the null space (or kernel) of Y (in all this,
images and kernels must be understood modulo C* functions: we are
really talking about microfunctions in a small conic open subset of
T*Q).

We can then construct a Hermite operator Ky analoguous to K but
with X replaced by Y*, and define

EP:KipKy.

We know that gelm X <> K% g=0 (both properties, and all the forth-
coming are mod C*) and that P preserves Im X ; the projector on Im X
is I — Ky K¥, whence

(8.3) K¥P(I-Kyx K¥)~0.
Similarly, since P preserves Ker Y(mod ¢*), we have:
(8.4) (I—KyK¥) PKy~0.

By combining (8.3) and (8.4) we get

(8.5) K¥PKy~LpK¥Ky~K{KyLp.

It follows from (6.12), (6.20) and from the standard formula

+ 00
(A/n)t [ e=*?dt=1 if Rei>0,
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that A= K% Ky is elliptic of degree zero in '. Thus (8.5), which reads
(8-6) LPA""’ALlP,

shows that the similitude classes of Lp and Lp. are the same (the similitude
class of an operator S is the set of all operators T which canbe written in
the form QSQ~'; as we deal here with pseudodifferential operators, Q
must be elliptic). We notice that, in defining L, and Lp, we chose X and Y
independently of each other —submitted only to the proviso that X be
the hypoelliptic factor and Y the “solvable” one (i.e., the one with large
kernel). Note also that the choices of the Hermite operators Ky, K,
were arbitrary —provided that the appropriate relations held. We may
summarize this as follows:

Proposition 8.1. The similitude class of Lp only depends on that of P.
If X or Ky is changed, Ly is replaced by CLp C~* with C, an elliptic pseudo-
differential operator on Q'

We recall that we are reasoning microlocally and that we may there-
fore identify 2 to the cotangent bundle of a smooth submanifold Q' of Q
with codim Q'=1.

In fact, if we use the final remark in Section 6 we may even show that
if we replace P by BPB~' where B is an elliptic Fourier integral operator
associated with a canonical transformation preserving X, L, gets re-
placed by CL, C~" where C is an elliptic Fourier integral operator on Q'
associated with the canonical transformation induced on X=T*Q' by
the one in T*Q.

Indeed, let us choose
X'=BXB™', Ky =B*'K,C*,
where C is an elliptic Fourier integral operator (on ') such that
(C*C)'~K%B~ ! B* 'K,.
We obtain; by virtue of this choice and of (8.3),
Lgpp-1=K% (BPB ')Ky.=CK¥PK: ' C~'~CL,C.

For the sake of completeness, we wish to mention here the composition
laws (modulo regularizing operators) for Hermite operators. Their
proofs are similar to those for pseudodifferential operators, and we do not
give them here. In the formulas below, ¢ denotes the total symbol; as
usual, this can be interpreted as an element of an appropriate symbol
space, or else as an asymptotic sum of semihomogeneous functions. Let
K,K' be two Hermite operators, 4 a pseudodifferential operator on
R"*! B one on IR" (we are reasoning within the “flat™ framework of
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Section 6; here N =n+ 1). We have (with the notation of Section 6):

|l + o
(8.7) o(K*K')=) ;—, (@/oxy | {(0/0¢&)a(K)} a(K')dt,

i— ||
(8.8) 5(KB)=Y ’7“7 [(0/28F 5 (K)] (6/8x)* o (B);

j=lal—a

8.9) g(4K)= }, — 1 L0/0c) ap 4 (x, O] {t?(0/0r) (0/0x)* o (K)}

@, p.q

where g(4)~ Z a, ,(x,&)*? 1% is the (formal) Taylor expansion of g(A4)

P, q
about X (defined by t=1t=0).

Together with the constructions in Section 6, with those of [2] and

with the calculus of Fourier Integral operators ([3, 8]), the above rules
provide, in principle, a tool for computing explicitely (by successive
approximations) the pseudodifferential operator L, (for an analogous
construction, cf. [7]).
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Involutions on Homotopy Spheres
J. P. Alexander (Austin), G. C. Hamrick (Austin), and J. W. Vick (Austin)

In this paper we study differentiable orientation preserving involu-
tions on S"*+* with non-trivial k dimensional fixed set. Define a cobordism
relation between involutions T, and T, by requiring that there exist an
involution T on §"** x I whose restriction to the ends yields T, and T,.
The set of cobordism classes becomes a group .<Z(n+k, k) by taking
connected sum about a fixed point. We assume throughout that
5£k=<n-3.

By Smith theory the fixed set of T, Fix(T;), is a differentiable k-
manifold with the Z,-homology of a sphere, and Fix(T) is a cobordism
between Fix(T,) and Fix(T)) such that H,(Fix(T), Fix(T); Z,)=0 for
i=0, 1. We call such a manifold a Z,-cobordism and make the set of Z ,-
homology k-spheres into a group 6> under this relation via connected
sum.

Let 6, denote the group of homotopy k-spheres studied by Kervaire
and Milnor [10]. To calculate 6 we study the natural map 6, — 6@’
and prove

Theorem 1. There is for each k an exact sequence

0— 4,—0,—60>—B,—0

=)
““\ImJ odd

{ @ CHDDP®Z,)DDZ,), k=4m—1
B.~

in which

and

n(m)—1

0, otherwise

where G=Z ,/Z, n(m) is the number of partitions of m and Z ,, denotes
the integers localized at 2.

This result may be combined with results of Jones [9] and the Bries-
korn-Hirzebruch examples to prove:

Theorem 2. Every homotopy sphere Z* of odd order in 0, may be
written uniquely as a connected sum of an odd order element of bF, | and
a homotopy sphere that bounds a Z,-disk. Thus each such Z* is the fixed
set of an involution on S"**.

3
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Smith theory also says that if an involution on S"** extends to the
disk D"*+*+1, then the Z,-sphere fixed set in $"+* must bound a Z,-disk.
We use this necessary condition to establish:

Theorem 3. The non-trivial elements of bE,, | do not bound Z,-disks.
Thus any involution on a standard sphere leaving such an element fixed does
not extend to the disk.

In particular the Brieskorn-Hirzebruch involutions give non-zero
elements of o/ (n+k, k). It has indeed been shown by Browder and Petrie
[5] and Bredon [13] that some Brieskorn-Hirzebruch examples yield
elements of infinite order.

We analyze the fixed sets more thoroughly by exploiting the natural
homomorphism .« (n+ k, k) — 6%’ that assigns to an involution its fixed
set.

Theorem 4. If V* is a Z,-sphere, there is a homotopy sphere Z* belong-
ing to the 2-primary component of 0, and an involution on a homotopy
sphere Z"*+* belonging to the 2-primary component of 6, , with fixed set
Vk43* where n=2mod4. If V* has odd order in 0>’ we may take
Tk=S* gnd T"+*=§"+*,

The paper is divided up as follows. In Sections 1 and 2 we develop
the properties of Z,-spheres analogous to those for homotopy spheres
studied in [10]. In Section 3 we study the homomorphism 6, — 6’ and
prove Theorems 1, 2 and 3. In the last section we analyze the homo-
morphism s/ (n +k, k) > 6{*’ and prove Theorem 4.

In regard to Theorem 1, the referee has pointed out that in his thesis
[14], P. Lynch studied framed G-homology cobordism classes of framed
G-homology spheres and their relations to framed homotopy spheres.

1. Mod 2 Cobordism

Let V{* and V} be differentiable oriented Z,-homology spheres of
dimension k. V] is Z,-cobordant to V, if there exists a compact oriented
manifold W**+! such that

(i) W*+! is oriented diffeomorphic to ¥V, U —V,, and

(i) H (W, V;;Z,)=0 for i=1,2.

The set of equivalence classes under this relation is denoted by 6{*). As in
the case of homotopy spheres [10], the operation of connected sum
gives 62 the structure of an abelian group.

Recall from [1] that if M* is an oriented differentiable manifold, an
odd framing of M is a null homotopy of the composition

M*— BSO —%>BS0,,,
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where v is the classifying map for the stable normal bundle and ¢is locali-
zation at the prime 2 [12]. If M¥ and M} are odd framed manifolds, then
M, is odd framed cobordant to M, if there exists an odd framed W*+!
such that

(i) W is oriented diffeomorphic to M, U —M,, and

(i) The odd framing on W extends the odd framings on M, and M,.

If V* is a Z,-sphere, then the only obstruction to the existence of an
odd framing of V is a class in H*(V; m,_,(SO,,)). Where SO,,, is the
localization of SO whose homotopy is given by the following table

k mod 8 1 23 4 56 78
m_180,) Z,Z,0 Z, 0 0 0 Z,,

where Z ,, denotes the integers localized at the prime ideal generated by 2.
Using results of [1] this obstruction must vanish, so we have

(1.1) Lemma. If V* is an oriented differentiable Z,-sphere then V*
admits an odd framing. []

The cobordism group of oriented odd framed manifolds Q%
defined and computed in [1] is associated with the Thom spectrum of
the bundle over SO,,/SO given by the mape: SO,,/SO — BSO, where ¢
is the inclusion of the fibre in the fibration SO ,,/SO —— BSO —- BSO,,,.
There is an associated “J homomorphism”

J': (SO ) — QfF

which assigns to any homotopy class the induced odd framing of the
sphere.

Given a class [ V] in 6% we choose an odd framing for V, producing
a representative of a cobordism class in Q. This class is well-defined
modulo the image of J', so for each k there is a homomorphism

?,: 02 Q> /Im J'.

If we denote by bP{?, the subgroup of 8{* consisting of all classes re-
presented by k-dimensional Z,-spheres which bound compact manifolds
admitting an odd framing, then bP2), is equal to the kernel of &,.
Since every homotopy sphere is a Z,-sphere, there is a natural homo-
morphism

i 9,‘—>9;‘2)
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which takes bP, , , into bP{?,. There is also the homomorphism

j: QF/Im J — Q@ /Im J'
studied in [1].
(1.2) Lemma. For each k there is a commutative diagram

0——bP,,— 0, —“QfIm J

0——bP? —— 0P — 2 Q@) /Im J’

where the rows are exact sequences. []

2. Mod 2 Surgery

In order to analyze the diagram in (1.2) and obtain information about
the groups bP?, and 6%’ we develop some surgery techniques for Z,-
spheres and odd framed manifolds which parallel those of Kervaire and
Milnor [10] for homotopy spheres and framed manifolds. We will give
only a few proofs since many of the arguments are similar to those in [10].

Since all of the Stiefel-Whitney classes of an odd framed manifold
are zero, the following is not difficult to show:

(2.1) Lemma. Every odd framed manifold V* is odd framed cobordant
to a simply connected manifold. Furthermore, if V is a Z,-sphere then we
can make the cobordism a Z,-cobordism. [

Let M*+! be an odd framed manifold with dM = V* (possibly empty)
such that both M and V are simply connected. Let ¥ denote the Serre
class of finite abelian groups of odd order. By [11] the following are
equivalent:

(1) n,(M)e€ for 1=gq<r

(i) Hy(M)e% for 1=q<r
and either of these implies that n,(M)~ H.(M) mod %.

Suppose we have used surgery to make M %-connected through
dimension r — 1. There is a subgroup I of H,(M) whose quotient is a group
of finite odd order, and I is generated by spherical classes. Let ¢: S*— M

represent a generator of I;. Since v,, has odd order in KO (M), so does the
k+1
stable tangent bundle t,,. If r<[%] then ¢ is homotopic to an

imbedding. Now ¢*(t,,)=0in KNO(S’) since KO* has no elements of odd
order; hence, 0=¢* (1)) =15 @v, and v, must be stably trivial. It is
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therefore possible to alter M by surgery to produce M’ with H,(M')e%
for 1Zg<r.

We must check that the trivializations chosen in each surgery will
result in a new manifold with odd order normal bundle. So suppose

¢: ST x DT M

is a differentiable imbedding. Let 4=¢(S" x D**!~"). The odd framing
on M induces an odd framing on A:

A € M —BSO

I L

CA = CM—BSO,,,

where CX stands for the cone on X. The obstruction to lifting the bottom
composition to BSO is an element of

Zy/Z r=3mod4

r+1 . ~ ~
H™*'(CA, A; n,(SOm/SO))~7t,(SO(2,/SO)~{ o

Let y(¢) denote this obstruction. If =3 mod 4 then y(¢)=s/t, where ¢
is an odd integer and (s, t)=1. Pick a map y: S"— 8" x D¥*'~" which is of
degree t from H.(S") to H,(S" x D¥*'~"). By results of Haefliger [7] ¥ is
homotopic to an imbedding.

(2.2) Lemma. If v, denotes the normal bundle to this imbedding, then v,
is trivial.

Proof. For r <k + 1 —r the result follows since 7(S” x D*+'~") is trivial.

1
=0mod 2, v, is stably trivial so it is determined by

1
=1mod 2, [10,

k
In the case r= +

its Euler class. This is clearly zero. When r=
Lemma 8.3] shows v, is trivial. [J

Denote the imbedding given by the composition
ST x Dk+1—rl)sr X Dk+1_'—¢)M

by t-¢ and let A,=tp(S"x D**'~")= A. By the commutativity of the
diagram
A, € A € M —BSO

t =

Ll

cA, s cA<s CM— BSO,,,

the obstruction to lifting CA,— BSO,,,, y(t ¢), is t times the obstruction
to lifting CA— BSO,,,, y(¢), and therefore is zero. Thus 4, may be given
an actual framing compatible with its odd framing induced by M. By
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restricting t ¢ to a smaller disk we get a proper imbedding
Y:S"x DT 4 M.

In [10] it is shown that the framing over 4, may be extended over the
handle attached using this imbedding.

Using the above notation we have proven:

(2.3) Lemma. Given an imbedding ¢: S"x D**'="— M there exists an
odd integer t such that

W=M U Dr+l ka+l—r
top

is an odd framed manifold extending the odd framing on M. []

Following the program in [10], for odd dimensional manifolds we
can establish:

(2.4) Theorem. Let M be a compact oriented odd framed manifold of
dimension2£+ 1, 2 2, suchthat M =@ or M is a Z,-sphere. By a sequence
of odd framed surgeries M may be reduced to a manifold M, which is
£-connected mod €. []

There are obstructions to completing this surgery in the even dimen-
sional cases. First let k+1=4¢ and suppose that M** has IM*’=V a
Z,-homology sphere and v(M*) has odd order in KO (M*’). By using
the preceding techniques we can show that M is Z,-cobordant mod Vto a
manifold W*¢ such that

(i) v(W) has odd order, and
(1) H (W, V;Z,)=0for 0=q=<2I/—1.
Let
Q:H,,(W;Z;,) QH, ,(W; Z ) Z,,,

be the intersection product on Z,-homology. Since W =V is a Z -
homology sphere, it follows that Q is a non-singular, even, symmetric
bilinear form.

(2.5) Lemma. W is Z,-cobordant mod V to a Z ,-disk if and only if there
is a subspace F< H, ,(W; Z,,) such that

(i) rank, , F=3rank, , H,,(W;Z,) and

(i) Q(x,y)=0 if x,yeF.

Proof. Let xy,...,x, be a Z,ybasis for FEH,,(W;Z,). By the
Hurewicz-Serre theorem mod &, the cokernel of

T (W)R Z 5> H, (W, Z,5)
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is a finite group of odd order. It is possible to choose the basis elements
{x;} so that they lie in the image of the natural map ., ,(W)— H, ,(W; Z ;).
Suppose x; is represented by a map 4;: $2“— W. Since W is simply connect-
ed and x; - x;=0, we can imbed S/ in W with a trivial normal bundle.

Now extend {x,,...,x,} to a basis by adding {y,,...,y,} where
y;€Image {H,,(W; Z)>H,,(W;Z,)} and x; y;=é; @, o;=1mod2.
The diagram [10, p. 527] shows that surgery to kill x, also kills y,, but
adds a finite odd torsion group. That is

H,, (Wi 2)x H, ,(W; Z)/<xy, y, > DZy,

where f, =1 mod 2. After r surgeries we have H,,(W,; Z) isomorphic
to a finite odd torsion group or H,,(W,; Z,)=0. This implies W, is a
Z,-sphere. [J

Denote by G the Grothendieck group of even, symmetric bilinear
forms over Z,, with odd determinant, modulo the subgroup generated
by those forms admitting a self-annihilating subspace of half the dimen-
sion. It follows from symmetry considerations that any such form must
have even rank, hence even index. Given an element g of G we may re-
present g by a symmetric integral matrix with even entries on the diagonal
and odd determinant. Using this matrix as a plumbing schematic, we
produce a parallelizable 4 /-manifold M with dM = V an element of bP2).
From (2.5) this is a well-defined homomorphism which clearly maps G
onto bP2.

In the next section the natural map bP,,—bP,?’ will be shown to
be a monomorphism. With this in mind, we have the following result on
the structure of bE{%.

(2.6) Lemma. bP{?’~K ® (®Z,) ® (DZ,) where bP,,= K and K/bP,,
RZ,.

Proof. Let V=0WebPB?2. Since the Grothendieck group G maps onto
bP/2 we may use invariants of bilinear forms to classify V [8]. Specifically,
V is classified modulo bP,, by the following invariants of the bilinear
form Q: H,,(W: Z,) @ H,,(W; Zp)— Z,,:

(i) rank of Q mod 8

(ii) index of Q mod 8

(iii) det Q mod squares in Z ,,

(iv) the Hasse-Minkowski symbols of Q.

These are all Z, and Z, invariants. The element V,ebP? realizing the

matrix ( f ;) has index 2 and 4V, is Z,-cobordant to the Milnor

manifold generator for bP,,. The difficulty in obtaining a precise calcula-
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tion of bP} lies in determining the relations among these invariants and
is complicated by the fact that (iv) is not a homorphism. []

If the dimension of M is 4k+ 2, there is a Kervaire invariant which
appears as the obstruction to completing the surgery.

(2.7) Lemma. The Kervaire invariant of an odd framed manifold is a
cobordism invariant in Q52 ,.

Proof. Let B{v,, ,> be the space obtained by killing the Wu class
Uk, in BSO. Browder has shown [4] that the Kervaire invariant may be
defined in the cobordism theory corresponding to B (¥4, 2> Now the
fibre of the localization B{v,, ,> —%~ B{v,, 27(2)1s homotopy equivalent
to §0O,/SO and we have that odd framed cobordism maps naturally
into this theory. [J

Denoting this invariant by ¢(M)eZ, we have the following analogs
of theorems in [10].

(2.8) Theorem. Let M be an odd framed manifold of dimension (44 +2)
such that dM =@ or OM is a Z,-sphere. Then if c(M)=0, it is possible to
alter M to be (2£ + 1)-connected by a sequence of odd framed surgeries. []

(2.9) Corollary. If V, and V, are Z,-spheres of dimension (4k+ 1)
which bound odd framed manifolds W, and W, such that c(W)=c(W,),
then V, is Z,-cobordant to V,. []

3. Computation of Mod 2 Cobordism

In this section we apply the surgery results of § 2 to analyze the groups
60> and bP(?, defined previously.

(3-1) Lemma.bB), , =0 and @,,,,: 0%, — Q%2 /ImJ' is an epi-
morphism for each k.

Proof. This follows immediately from (2.2) since there is no obstruction
to completing the surgery. [J

(3.2) Lemma. i: bP,, — bB? is a monomorphism for each k.

Proof. Consider the collection of all odd framed 4k manifolds having
boundary a standard sphere. The signatures of these manifolds form a
subgroup of the integers. Let g, be a generator of that subgroup. Similarly,
let o, be the least positive index of a stably parallelizable 4 k-manifold
with standard sphere boundary so that bP,,~8 Z/s, Z [10].

It is apparent that g, divides ¢,. The lemma will follow if we can show
that g, =o0,.

Let W** be an odd framed manifold with standard sphere boundary.
Fill in the sphere with a 4k disk to produce a closed manifold W**
having I(W*¥)=I(W**). Since W** is an almost odd framed manifold,
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it must admit a spin structure. Furthermore all of its decomposable
Pontryagin numbers vanish because the lower dimensional Pontryagin
classes have odd order.

As observed by Brumfiel [6], any such manifold has the property
that a,(2k—1)! j, divides the indecomposable number p, (W *¥), where jj,

: B : ;
is the denominator of I;;— B, is the k-th Bernoulli number, and g, equals

1 or 2 according as k is even or odd.
By the Hirzebruch signature theorem

22k(224-1_1) kak(W4k)
2k)!

(W) =1(W*)=
So there exists an integer m with

22221 —1)B,-m- a,(2k—1)!j,
(2k)!

B
| D2kt 92k—1 k
=m [2 12 1)- a,- num (—4k)]'

I(W4k) —

In particular the integer g, can be written in this form for some integer m.
Kervaire and Milnor [10] have shown that

B
—2k+1(92k~1_ ). g4 . ( k)
Oy ( )-a,-num 1K)

hence o, divides g, . It follows that o, =g, and i is a monomorphism. [

From §2 we see that bB) ,will either be trivial or cyclic of order 2.
Similarly the cokernel of ®,,,,: 03, ,— Q%2 ,/Im J' will either be
OorZ,.

(3.3) Lemma. The following are equivalent :

(a) there is an odd framed (4 k + 2)-manifold W with non-zero Kervaire
invariant having W a standard sphere;

(b) the cokernel of @, ,: 0%, , —QF2,/ImJ" is Z,;

(c) the cokernel of Wuy, 32 044225, 2/ ImJ is Z,;

(d) there is a framed (4k+ 2)-manifold W' with nonzero Kervaire
invariant having OW' a standard sphere.

Proof. We show a=>b=-c=d=>a. Given W, attach a (4k+ 2)-disk
to the boundary to give a closed manifold W with non-zero Kervaire
invariant. As in (1.1) the odd framing on W extends to W, so W represents
a non-trivial element in the cokernel of @, _ ,.
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Since the Kervaire invariant is additive, W must have even order
in Qy?,/ImJ. It was shown in [1] that the homomorphism j:
QL /ImJ QY /ImJ' is a 2-primary isomorphism. Thus there
exists an element of Qf, _ ,/Im J represented by a manifold having non-
zero Kervaire invariant. Call this manifold W’. Then the cokernel of
Vier2 18 Z,. _

Removing a disk from W' gives the desired manifold W', so c=d,
and it is evident that d=a. [J

Recall that for each k there exists a frames (4k+ 2)-manifold with
non-zero Kervaire invariat having homotopy sphere boundary and that
this homotopy sphere is a standard sphere if and only if bP,,, ,=0.
Similar remarks hold for bE}', ,, so we see by (3.3) that bP,,, ,~bP?, ,
for each k.

To see that the isomorphism is induced by i, let £ be a homotopy
sphere bounding a framed manifold W with non-zero Kervaire invariant.
Let B be any Z,-cobordism between X and a Z,-sphere V. The framing
over W may be extended to an odd framing over Wy, B. Since the inclu-
sion maps induce isomorphisms

H (W,X;Z,)—=>H,(WUB,B;Z,)«~—H,_(WUB,V,Z,)

the Kervaire invariant of Wu B must be non-zero. If V is diffeomorphic
to the standard sphere, then bB{),=0, hence bF,,,,=0 and [2£]=0.
This shows i is a monomorphism, so we have established:
(3.4) Corollary. i: bF,, . ,—bP}) ; is an isomorphism for each k. []
We now summarize the previous results.

(3.5) Theorem. For each n there is a commutative diagram

0——bP,,—— 6, —= QF/ImJ ——coker'¥, ——0

T

0—— bR, A—*Bf’i—»ﬂf‘z’ﬂm J'——coker®, ——0

with exact rows, where coker ¥, is either O or Z, and i: bP, , —bP2)

is monic for n=3 mod 4 and an isomorphism for n£3 mod4. []

(3.6) Corollary. The Brieskorn-Hirzebruch examples of involutions on
standard spheres leaving non-trivial elements of bP,, fixed do not extend
to the disk.

Proof. The composition bE,,—0,,—6%) is monic. Hence no non-
trivial element of bF,, bounds a Z,-disk. Therefore none of these actions
may be extended to the disk. [



Involutions on Homotopy Spheres 45

We now analyze the homomorphism i: 6,—6'? by applying the
snake lemma to the following diagram

> Al

]
li

image ¥, ——0

n+1
! f‘
0 >bP%, 69— image ®,———0
|
!
H, > B, > B,

The top and bottom rows are the kernels and cokernels of the respective
vertical homomorphisms. It was shown in [1] that j is a 2-primary iso-
morphism with kernel isomorphic to Q5 /Im J,.4,. Since H,, is 2-primary
by (2.6) it follows that A, ~ 4, for each n.

From the computation of the cokernel B/, in [1] we see that for n#3
mod 4, H,=0 and B,=0 so that B,=0. Since B}, , is odd-primary,
B,,_, splits as a direct sum of H,, , and Bj,_,. This establishes the
following description of the groups 6.

(3.7) Theorem. For each n there is an exact sequence
0—-4,-0,——>0»—>B,—0

in which A,~ Q8 4,/Im J o, and

n

. -1
"710 otherwise e

where G=Z,/Z and n(k) is the number of partitions of k. [

4. Applications to Involutions
Lowell Jones proved the following in [9]:

(4.1) Theorem.If 2k+2<rand K is a Z ,-disk of dimension k, then there
exists an involution T: D" — D" with fixed point set diffeomorphic to K. [

His proof can easily be modified to give:

(4.2) Theorem. If T, is an involution on S"** leaving Vg fixed, n>k+2
and W*+1 is a Z ,-cobordism from V, to V, then there exists an involution T
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on S"**x I such that

(1) Tgnsnyoy=To, and

(i) Fix(T) is diffeomorphic to W. [J

There is a corresponding theorem for involutions on D"** as long as
the cobordism of the fixed sets W**! has W=V, U W'U V, where W’
is an s-cobordism from 0V}, to dV;.

Let D’ be the set of cobordism classes of Z,-disks with homotopy
sphere boundary, where the relation is given by Z,-cobordism of disks
restricting to an h-cobordism of their boundaries. D{*) becomes an
abelian group using connected sum along the boundary.

(4.3) Lemma. The following sequence is exact

"'_’Hk“L*Gﬁz) J!D}f’ 2 0,_, (.

where j[V*¥]=[V*—D¥] and 0[4*] =[84*].
Proof. This follows easily from the definitions. [

(4.4) Lemma. Let T, and T, be involutions on S"**~! such that there
exists an involution T on S"**=' x I having

(l) TIS"+k_1x{i):7; for l=0, 1, and
(ii) Fix (T) is diffeomorphic to Fix (T,) x I.
Then Ty, is equivariantly diffeomorphic to T, .

Proof. This is an application of the s-cobordism theorem with bound-
ary. Let N be a tubular neighborhood of Fix (T,) in $"**~!, identified
with the normal disk bundle of Fix (T;), so that T, |, is the antipodal map
in each fibre. Then $"**~'=M UN where M=S""*"T—N and T,
is free. By (ii) there is an equivariant imbedding g: N x [ > S§"**~1 x|
such that g(N xI) is a tubular neighborhood of Fix (T), where the
involution on N x [ is given by T, x identity.

g defines a product structure on 3(S"**~'x I —g(N x I))~ 0N x I~
0M x I. Taking the quotient space under the action of T, there is a product
structure on 0(S"**=Tx I—g(N x I)/T)=dM/T, x I. Since Wh(Z,)=0,
the s cobordism theorem with boundary says that S***~! x I —g(N x I)/T
is difffomorphic to M/T, x I, extending the given product structure on
OM/T, x L

Therefore there exists an equivariant difffomorphism h: M x [ —
S"+¥=Tx I —g(N xI) where the action on M x[ is T, x identity. Since h
and g agree on the common boundary, they may be pieced together to
give an equivariant diffecomorphism f: §"**~1 x [ - §"+*~1x ] where
the action on the left is T, xidentity and, on the right, is T Then f:
S"HE=1x {1} — 8§"**=1 x {1} gives an equivariant diffeomorphism be-
tween Ty and 7,. [
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Define an equivalence relation on involutions on D"** with k dimen-
sional fixed set as follows: T,~ T, if there exists an involution T on
D"**x I such that

(i) TIDn+kX {i} = 7: fOr i:O,I
(i) Fix(T|gn+x-1, ) is diffecomorphic to Fix(Tj|gnsw-1) X 1.
There is an immediate consequence of (4.4).

(4.5) Corollary. If T, and T, are equivalent involutions on D"**, then
Tolgn+x-1 is equivariantly diffeomorphic to T;|gn+x-1. [

Denote by .« (D"**, k) those equivalence classes of involutions having
fixed set of dimension k such that the boundary of the fixed set is a
homotopy sphere. .o (D"*+*, k) becomes an abelian group via connected
sum along the boundary. There is a well-defined homomorphism
P A (D"+¥ k) — D assigning to an involution T its fixed point set.

(4.6) Lemma. 7y, is an isomorphism if n>k+2.

Proof. Lowell Jones’ theorem (4.1) shows that y, is onto. Suppose the
fixed set of Ty, is Z,-cobordant to (D*, $*=!) with an h-cobordism along
the boundary. Then the disk version of (4.2) implies that T;, is equivalent
to an involution T, where Fix(T;) is a standard disk. The proof will be
complete if we can show:

(4.7) Lemma. If T is an involution on D"** with D* as fixed set, then
T is diffeomorphic to the standard action.

Proof. Let x,eD*< D"** and suppose ¢: D"**— D"*¥ is an equiv-
ariant imbedding of D"** with the standard action into D"** with involu-
tion T such that ¢(0)=x,. Remove this disk so that D"*¥— ¢ (D"*) is
diffeomorphic to S"**~1 x I where the action on S"**~! x {0} is diffeo-
morphic to the standard action.

As in the proof of Lemma (4.4) there is an equivariant diffefomorphism
¢': §"tk=1x [ — S"+*¥=1 x I where the action on the left is the standard
action on S"**~1 x I leaving S*~! x I fixed and the action on the right is
the restriction of T. Using ¢ and ¢’ together gives a diffcomorphism of
D"** with the standard action to D"** with action . [J

Two other groups of involutions play an important role. Let .o/ (£"*+¥,
2*) be the group of diffeomorphism classes of involutions on homotopy
spheres with homotopy sphere fixed set and .o/ (2"+*, k) be the group of
equivalence classes of involutions on homotopy spheres with k-dimen-
sional fixed set, where the equivalent relation is given by: actions T; and
T, on X"+* are equivalent if there exists an action T on X"**x [ such
that T|gnu, =T, i=0,1.

(4.8) Lemma. There is an exact sequence
—»d(Z"‘*‘", Zk)_"_,ﬂ(zn+k, k)i,d(Dn+k’ k)_é,d(z‘n+k—l’zk—l)_,...



48 J. P. Alexander et al.

where o is the natural map, B[Z"*%, T]=[Z"*F—¢(D"**), T] and
S[D"+* T]=[S"+**=', T]. Here ¢: D"**— I"+* is an equivariant im-
bedding of D"+* with standard action (leaving D* fixed) as a neighborhood
of a fixed point.

Proof. This follows easily from the definitions. []

Assume now that n>k+2. We can summarize our progress in the
following commutative diagram with exact rows:

—>M(Z"“",Z“)—"—»LM(Z"*",k)—”»d(D"*",k)—"»d(Z"*““,Z""‘)L
\

1% A » Jml

gk : 9§(2) . D}CZ) - ek— 1 i
where ¢,, ¥, and 7y, assign to an action its fixed point set.

It is clear from the diagram that any element of 6, that lies in the
kernel of i is the fixed set of an action on S"** that extends to the disk
D"+¥+1 From the computations in [1] and the Brieskorn-Hirzebruch
involutions described in [3] we have the following:

(4.9) Theorem. If Z* is a homotopy sphere of odd order in 0,, then
there is an involution on S™** with fixed set diffeomorphic to X*. Hence
coker ¢, is a 2-primary group.

Proof. For k=3 mod 4, any element of odd order is in the kernel of
i. For k=4/—1, an element of odd order is either in the kernel of i or
else comes from b P, ,. By [3] all of these occur as fixed sets in $"+*. [

(4.10) Lemma. There is an exact sequence
0.— coker ¢, — coker Y, 2> ker ¢, _, —»ker ,_, —0

where p,[M]=3d0v; "o j[M].

Proof. This follows by diagram chasing, using the fact that y, is an
isomorphism. []

The kernel of ¢, _, is easily identified with the group o7 (Z"*+*~1, §¥-1)
of involutions on homotopy spheres with standard fixed sets. These
groups have been studied by Browder and Petrie [5] and are known to
be finitely generated.

(4.11) Theorem. If k=3 mod 4, every element of b B?) is the fixed set
of an involution on a homotopy sphere X" +* where n=2 mod 4.

Proof. As in §2, for any V*ebR?, we get a bilinear form over Z,,,
which may be represented by an integral matrix. In the usual way, we
may plumb disk bundles over spheres to produce a parallelizable mani-

fold W*+! with W equivalent to V*.
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If instead, we imbed these spheres as fixed sets of standard involutions
on higher dimensional spheres and extend the involutions to the disk
bundles, we may plumb equivariantly to produce a manifold M with
involution fixing W, so that M is a Z,-sphere. Using equivariant surgery
it is now possible to modify M to make it a homotopy sphere, retain-
ing the fixed set V. For details see [2]. The equivariant plumbing approach
was suggested to us by P. E. Conner. [J

(4.12) Corollary. If n=2 mod 4 then coker y/,/image coker ¢, is divisible.

Proof. If k%3 mod 4 the homomorphism i is onto, thus this quotient
group is zero. If k=3 mod 4, then by (3.7) 6;*/image 0, is a direct sum of
an odd primary part which is divisible and a 2-primary part arising from
bE?,. By (4.11) this 2-primary part is in the image of y,. Therefore
coker Y, /image coker ¢, is odd primary and divisible. [

(4.13) Corollary. If n=2 mod 4 the four term exact sequence of (4.10)
breaks up into two isomorphisms, i.e.

coker ¢, ~cokery, and ker ¢,_,~kery,_,.

Proof. This follows from (4.12) since the only divisible subgroup of
a finitely generated group is zero. [J

We are now able to prove our main result.

(4.14) Theorem. If V* is a Z,-sphere, there exist homotopy spheres
>* and Z"*+* belonging to the 2-primary component of 0, and an involution
on X"** with fixed point set V*# X* where n=2 mod 4.

Proof. First suppose k=3 mod 4 or k=3 mod 4 and V* is 2-primary.
V¥ represents an element [ V] of coker ,. By (4.9) and (4.13) there is a
2-primary homotopy sphere Z* such that [ —X*] is mapped into [V¥].
Thus [ V¥4 2*] is the zero coset in coker ¥, and there is an involution on
a homotopy sphere Z"** with fixed set V*# Z* Since V* is 2-primary,
we are free to multiply by a suitable odd number to insure that Z"+* is
2-primary.

If k=3 mod 4, recall from [3] that every element of bR, , is a fixed
set in a standard sphere. Suppose V* has odd order. It follows from (3.7)
that modulo the image of bE_ ,, V* is divisible. Let m, be the order of
0, and m, be the order of 6, . There exists an element U*e 6 such that
m;m, - U*=¥*modulo bE,, ,. Now realize U*4 Z* as a fixed set in some
Z"*: as above. Then multiplying by m, m, realizes V* as a fixed set in
SO

(4.15) Corollary. If V*€0@ has odd order, then there is an involution
on S"** with fixed set V¥, where n=2mod 4. [

We close with an application of the isomorphism ker ¢, ~ker ,.

(4.16) Theorem. If X"** is a homotopy sphere and T is an involution

on I"*x I leaving each component of the boundary invariant such that
4 Inventiones math., Yol 24
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Fix(T;) =Fix(T|gn+x ) for i=0,1 are diffeomorphic homotopy spheres,
then T, is equivariantly diffeomorphic to T, .

Proof. Let Zf be the fixed set of 7; and denote by [T;] the class

represented by T; in o/ (Z"*¥ k). It is apparent that o takes (Z"** Z¥ T,
into [T;] where the triple is an element of o (X" +%, Z¥).

Now by the hypothesis, [7;]—[T,] =0, so the difference (Z"*+*, ¥,

T,)—(Z"+* 2%, T;) is the zero element in the kernel of ¢,. Since the
equivalence relation here is equivariant difftomorphism, it follows that
T, is equivariantly diffeomorphicto 7,. [J
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Differentiable S* Actions on Homotopy Spheres

Kai Wang (Ambherst)

§ 0. Introduction
The purpose of this paper is to prove the following

Main Theorem. There are infinitely many differentiably inequivalent
free differentiable S' actions on standard (2n— 1)-spheres for n=4.

Throughout this paper we are working in the differentiable category.
The first result in the area is due to W.C. Hsiang and W.Y. Hsiang.
They constructed an infinite family of free S' actions on the standard
11-sphere. A joint paper of Montgomery and Yang followed soon. They
gave complete information on free S' actions on homotopy 7-spheres.
In particular, they proved that there are infinitely many free S' actions
on the standard 7-sphere. Lately, Brumfiel gave a complete calculation
of free S* actions on homotopy spheres and listed the homotopy spheres
which support free S' actions in dimensions up to 11.

On the other hand, W.C. Hsiang applied surgery to construct in-
finitely many inequivalent free S' actions on homotopy (2n— 1)-spheres
for n=z4. We will call these “Hsiang’s actions”. It is reasonable to
conjecture that among the Hsiang’s actions there could be infinitely
many actions whose total spaces are the standard spheres. This is the
main motivation of this research.

It is well known that any homotopy sphere is obtained by gluing
$2P=!'x D24 and D*” x §29~! along the boundaries by a diffeomorphism
f of §2P~1x §24-1 [f the diffeomorphism f is also equivariant with
respect to the linear S' action, then we can glue S?”~!x D?? and
D?? x §24-1 equivariantly to get a free S action on a homotopy sphere.
As these actions are interesting to us they deserve a special name:

“decomposable actions”. For a more precise definition see Defini-
tion 2.1.

The advantage of the decomposable actions is this: Given a family
of decomposable actions, we get a family of equivariant diffeomorphisms.
Then we can construct further actions from the compositions of these
equivariant diffefomorphisms.

This paper is organized as follows: In § 1 we will show that in this
way we can construct actions on standard spheres. In §2 we will state
a necessary and sufficient condition for a free S' action to be de-
o



52 K. Wang

composable. It is proved in §3 using the techniques of Livesay and
Thomas. It turns out that all the Hsiang’s actions in dimensions greater
than 11 are decomposable. This is collected in §4. Let 2(S*P~! x D*7, A)
be the group of diffeomorphisms of S27~! x D?? equivariant with respect
to the linear action. In §5 we will prove that 2(S?P~! x D?4, A) is finite
for p<24g. In §6 we will prove the main theorem.

After this paper is complete, the author was informed that Burghelea,
H.T.Ku and M.C. Ku had also proved the same theorem. During the
Amherst Conference, Yang showed me another proof of the theorem
when the spheres are of dimension 4n— 1. Our approach is completely
different from the others and has further applications (see [22, 23]).

We omit all the discussions of S* actions. But the corresponding
results are also true of which the proofs are completely analogous to
S! actions.

Much of the material of this paper appeared first in the author’s
doctoral dissertation and was announced in the Proceedings of Con-
ference on Transformation Groups (Ambherst, 1971).

The author would like to thank his thesis advisor Professor M. Rothenberg for his
help and encouragement. He also would like to thank Professor R. Lashof and Professor

A. Liulevicius for introducing the theory of characteristic classes to him and Professor
F. Adams for suggesting the proof of Lemma 2.6.

§ 1. A Basic Lemma

We need to use some results in [13]. Let D(S?x S be the group
of pseudo-isotopy classes of orientation preserving diffefomorphisms of
S? x $9 such that the restrictions to x x S? are homotopic to the inclusion
for x a fixed point in S”. It is always assumed that p=gq.

Define subgroups D,, D,, Dy and D, of D(S?xS% to consist of
those elements represented by f: S? x §4— SP x §? satisfying

(D,): f extends to a diffeomorphism of S? x D9+,

(D,): f extends to a diffeomorphism of D?*' x §9,

(Dy): f|DF. x §%=inclusion,

(D,): for some (p+g)-disk D= S? x 8%, f(D)=D and f|(S” x §— D)=
inclusion.

Lemma 1.1. (see [13]). (a) D, is isomorphic to I'’*9~', where I'?*%~!
is the group of pseudo-isotopy classes of (p+ q)-disk which is the identity
on the boundary (see [11]).

(b) D, and D, are abelian.

(c) Dy is normal in D(S? x §9).

(d) D(S?xS$9)=D, - D5 and D, n D, ={identity}.

(€) D,=D,, D,=D;, Dy=D, D, and D, D, = identity}.
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Lemma 1.2. u-v"-u~'eD, for any veD, and ueD(S? x §%) where m
is the order of I'P*171,

Proof. Since D, is normal u-v-u~'eD,, there is weD, and reD,
such that u-v-u~'=w-r. Since D, is abelian

m -1

u-v"ul=-v-u"Yt=wm.

Hence u-v™-u~'eD,.
Lemma 1.3. Let f;, j=1,2, be diffeomorphisms of S?xS? so that
Z(f)=S"Px D11y, D"“xS“ are homotopy spheres. Then X(f,) and

2( f2 are dszeomorphzc if and only if there are diffeomorphisms g of
SPx D*' and h of D*' x § so that f,=h-f,-g

Proof. Easy.

Lemma 1.4. Every element in D, for p<2, (respectively, D, for <2 p)
contains a representative which is a bundle map.

Proof. Let g be a difffomorphism of §”x D7*!, g|SPx0 is homo-
topic to the inclusion. By the theorem of Haefliger [8] they are isotopic.
By the isotopy extension theorem there is a diffeomorphism G of
§?x D*! which is isotopic to the identity such that G|S? x $9=identity
and G - g|S? x O=inclusion.

Let DI*'={xeD%*'|| x| <a} where a is a small positive number.
Then S?x D2*! is a tubular neighborhood of $7x 0 in S? x D?*! and
50 is G - g(SP x D4*'). Then by the uniqueness theorem of tubular neigh-
borhoods there is a diffefomorphism H of S? x D*' which is isotopic
to the identity such that H|S? x $?=identity and

Py pi+l _H- G2  opy pa+l
SPxD S?x D2

pro identity SPXO

is a bundle map. Note that SPx D?*!-interior (S?x Di+') is diffeo-
morphic to S? x §9x [0, 1]. Up to diffeomorphisms
H-G-g|$"x8*x0=H -G-g|S"x8%=¢g
and
H-G-g|S?"xS'x1=H -G-g|S?x §2
is a bundle map. Hence g is pseudo-isotopic to a bundle map.
Lemma 1.5. Let f;, j=1,2, be diffeomorphisms of S?x S$% which are
pseudo-isotopic. Then X(f,) is diffeomorphic to Z(f,).
Proof. Easy.
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Lemma 1.6. For u: S7— SO(p+1), define b,: DP*'x S9— DP+!x §2
by b, (x, y)=(u(y) x, y). Then

(a) Every bundle map of DP*' x §% over the identity can be constructed
in this way.

(b) The pseudo-isotopy class [b,] of b, depends only on the homotopy
class [u] of u.

Let by,,=[b,]. Then

(©) bpuyp;=bpuy " byy-

Similar assertations hold for d,;: SPxDI*!'— SPx DI*! where
v: SP—>80(g+1) and d,(x, y)=(x, v(x) y).

Proof. This is essentially proved in [4].

Lemma 1.7 (Basic Lemma). For q<p<2q, let {/}jen be an infinite
set of orientation preserving diffeomorphisms of SP x S? such that filxx 81
is homotopic to the inclusion. Then there exists an infinite subset { Jisen
of {f;}jen such that Z(f, - fj0 - f;,) is diffeomorphic to Z(f).

Proof. We may assume X (f), jeN, are the same homotopy sphere
as the group of homotopy spheres is finite [11]. Then choose diffeo-
morphisms g; and h; as in Lemma 1.3 such that Ji=h; 1, - g; and which
will be fixed for the rest of the argument.

By Lemma 1.6, there are w;em,(SO(p+1)) such that b, ,=[h;]. Since

(SO(p+ 1)) is finitely generated let e,, ..., e, be its generators Then
u; —e’; J...eg) where t ; are integers. We choose a map from the
mﬁmte set { fYjen to sZm, the direct sum of s copies of Z,,, where m is
the order of I'7+4-! , by

Ji— @, jmodm,... .t jmodm).

Since sZ,, is finite, there are infinite number of { fi}jen mapping
into the same element. Let {f },.y be such a set, i.e.

t; . =t;, . (modm)

L Jk L, Jo
fori=1,2,...,s and keN.
Let ¢; y=(t; ;,—1; ;)/m and b=>bZ* ... b¢* Then

Lfo-fig ' 5 d=001- LA™ 07 [ - [fol ™' - [/o] - [g;,] " [g;,]-

By Lemmal2, [fo]-[f,1°"-o" [f,J[fol 'eD,. Hence by
Lemma 1.3, Z(f, - f;;' - f;,) is diffeomorphic to X (fp).

§ 2. A Criterion on the Decomposability

Let (M, G, F), or (M, F) if there is no confusion, be an action of a
compact Lie group G on a smooth manifold M, ie, F: GxM—>M
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such that if me M and g, heG,
(a) F(g, F(h,m)=F(g-h,m),
(b) F(e,m)=m where e is the identity of G,
(c) Fisa C® map.
The action F is called free if for any me M

F(g,m)=m implies g=e.

Let S'={geC|lgl=1}, S '={u=(u,,...,u,)eC"||lu|=1},
D*"={u=(uy,...,u,)eC"||u|<1}. Let gu=(gu,,...,gu,) for ges'
and ue C™. We define S! actions (S2P~! x §2971, A), (S?P~! x D?%, A) and
D??P x §29-1 A by the equation

A(g, (u, v))=(g u, gu)_

Let f be an equivariant diffeomorphism of (S?P~!'x §24-1 4). We
can define an action A(f) on X (f) where

Z(f)=8*""tx D*y, D?P x g3t

so that A(f)|S?P~1x D?9=A4 and A(f)|D?*? x $*?~'= A which is clearly
a free S! action.

Definition 2.1. A free S' action (£2"~!,F) on a homotopy sphere
22m-1 is decomposable if there is an equivariant diffeomorphism f of
(S27P~1x §24-1 A4) such that (X2"~', F) is equivalent to (X(f), A(f)) for
p+q=n.

In the next section we will prove the following theorem.

Theorem 2.2. Let (2?"~' F) be a free S' action. If (Z*"~.F) is

equivalent to (X(f), A(f)) for an equivariant diffeomorphism f of
(S27-'x §29-1  A) then

p(E2"-YF)=(1422y  (mod z?).
Conversely, if
p(E*"YF)=(1+z*)" (modz"+V2)),
then (22"~ F) is decomposable, where z is a generator of H*(£*"~'/F, Z)

and p is the total Pontryagin class of the orbit space, n=4.

Let h, denote the canonical real line bundle over RP*"*' and h,
denote the canonical complex line bundle over CP". Let ¢: KO(X)— K(X)
be the complexification and r: K(X)— KO(X) be the realification. Let
w=r(h.—1)e KO(CP") be the generator.
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Theorem 2.3 (Sanderson [17]). KO(CP") is the truncated polynomial
ring over the integers with one generator w and the following relations:

(@) If n=2t, then »'*'=0,

(b) if n=4t+1, then 2w?*'*'=0 and w?*'+*=0,

(c) if n=4t+3, then w?*'+*=0.

Lemma 24 (Adams [1]). Let n: RP?"+'— CP" be the canonical
projection. Then n* he=c hg.

Lemma 2.5. Let o=r(hc—1)e KO(CP*'*"). Then »*'*' is not fibre
homotopy trivial.

Proof. Let m: RP3+*3— CP**! be the canonical projection. If
w?'*! were fibre homotopy trivial, then n*w?'*! would be fibre
homotopy trivial. But n* w=2(hz— 1), so

71'*(1)2'+1=(7r* (U)Zr+l=24l+1(hk_ 1)_

Since KO(RP®'+3) is a cyclic group of order 24'+2, n* w?'+!1%0. But
J: KO(RP")— J(RP") is an isomorphism [2, 3] so J(n* w?'*1) %0, i.e,
n* w?*+! is not fibre homotopy trivial.

Let the Pontryagin character KO(X)— K(X)- " H*(X,Q) be
defined to be the composition of the Chern character Ch and the com-
plexification ¢ and denote it by Ph. Since both ¢ and Ch are ring homo-
morphisms so is the composition. The following proposition is well
known [9].

Proposition 2.6. Ph: KO(X)® Q0 — ZH*'(X, Q) is an isomorphism.

Let P2" be a homotopy complex projective space of dimension 2n.

Lemma 2.7. Let f: CP"— P2?" be a homotopy equivalence and let
i CP¥— CP" be the usual inclusion such that j=f-i is an imbedding
of CP* into P?". If

p(P?")=f*(CP")  (modz**Y), (1
then v(i(CP*), CP")< f*v(j(CP*), P*") where v(N,M) is the normal
bundle of N in M, f is the homotopy inverse of f and z is a generator
of H*(P*", Z).

Proof. i*: HY(CP")— HY(CP*) is an isomorphism for ¢<2k and
zero for ¢>2k. Hence (1) implies i* p(CP")= j* p(P?"), so

Ph(i* T(CP") = Ph(j* T(P?")).

For k+4t+1, KO(CP" has no torsion, so i* T(CP")<j* T(P?"). For
k=4t+1, by Lemma 2.3, either

*T(CP")<j*T(P*") or i*T(CP")+j*T(P>")~ 'R ?'+!,
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But the left hand side is fibre homotopy trivial [3], and the right hand
side is not fibre homotopy trivial. Thus we proved the lemma.

§3. The Proof of Theorem 2.2.

Let M=5??"'xD?1/4 and N=D??xS5%%"!/A. Suppose (£*"~',F)
is equivalent to (X(f), A(f)) for an equivariant diffeomorphism f of
(S2P~1x §24-1  A). Let f be the map of M to dN induced from f. Then
32"='/F=M u;N. Hence we have an embedding j of CP?~" into Z*"~'/F
and the normal bundle is equal to gh,.

* T(Z*"1/F)=qh.+ T(CP*~") < nh,.
J*PEYF) = (1422

Since j*: H'(X?"~!'/F)—H'(CPP~') is an isomorphism for i<2p
and zero for i>2p,

p(Z*"YYF)=(1+z*)" (mod z?).

Now we will adopt the techniques of Livesay and Thomas [14] to
prove the converse.

Let P?"~2=x2""1/F which is a homotopy complex projective space.
The bundle S'— 2?"~'— P2"=2 is homotopically equivalent to the
classical Hopf bundle [9]. Let p=[n+1/2] and g=n—p. Let & be a
homotopy equivalence of CP"~" to P?"~2.2|CP?~! is a homotopic to an
embedding. By the homotopy extension theorem, & is homotopic to a
homotopy equivalence g so that g| CP?~! is an embedding. Since p(P?"~?)
=(1+z2)"(mod z?), v(CP?P~', CP"~ )£ v(CPP~!, P?"=%). Infact v(CP?~',
CP" ') is bundle isomorphic to v(CP?~', P?"~?) although for the case
n=odd it is not so obvious but the proof is well known. Hence g|M is an
embedding or equivariantly, we have an equivariant embedding

(S2P~1x D?9, 4) =L (Z2"~1, F).
By the h-cobordism theorem it is easy to show that for n=3,

2"~ _ g(interior $*7~'x D?%)~ D?? x §24~1,
Consider

(SZp_l)(qu,A)C g (ZZn—l,F) h :(DZPXS2q_1,U)

where we define an action on the right hand side solid torus by U=
h=1.F.h, Let §24-1 & §2a-1x §2a-1c §2p-1x §24-1 = §2P~ x D24 which
is an A-invariant submanifold and is mapped by h~'-g onto a U-in-
variant sphere S29-! on the right. Notice that on the boundary of
D*?x §24-1 U is equivalent to 4. Equivariantly collar $27~"'x §?¢~! in
(D*?P x §24=! U) and push S2¢~! a little away inside the boundary. U is



58 K. Wang

equivalent to A on an equivariant tubular neighborhood K of this
interior copy of Sz?~!. Interpreted in the orbit space (D?? x $2¢~'-inte-
rior K)/U is an h-cobordism between S2P~!xS§29-!/4 and 0K/A,
hence diffeomorphic to (S2P~!x §29-1)/4 x [0, 1]. Therefore U can be
taken equivalent to 4 by a diffeomorphism k: D27 x §29-1 — D?P x §24-1
and finlly we have decomposed (Z*"~!, F) as (£(g="-h-k), A(g~' - h-k)).

Remark. Let (22!, F) be a decomposable free S' action. Then we
may always assume that (22"~', F) is equivalent to (X(f), A(f)) for an
equivariant diffeomorphism f of (S?7~'x §2971, 4) with p=[n+1/2].

§4. Corollaries

It is easy to check that all Hsiang’s actions in dimensions greater
than 11 are decomposable. Hence we have

Corollary 4.1. There are infinitely many topologically inequivalent
decomposable free S' actions on homotopy (2n—1)-spheres for n=17.

Corollary 4.2. There are only finitely many topologically inequivalent
decomposable free S' actions on homotopy 9-spheres.

Proof. Since the Hirzebruch L-genus of a manifold is a homotopy
type invariant of the oriented manifold, it is easy to show that if there is a
free ' action on a homotopy 9-sphere which is decomposable then its
orbit space must be tangential homotopy equivalent to CP*. But Sullivan
[19] had proved that there are only finitely many such tangential homo-
topy complex projective spaces.

On the other hand, we can generalize the technique of Hsiang in [9]
to prove

Corollary 4.3. There are infinitely many topologically inequivalent
non-decomposable free S' actions on homotopy (2 n—1)-spheres for n>5.
(See also [21].)

§ 5. The Group of Pseudo-Isotopy Classes of Equivariant
Diffeomorphisms of (S2P~! x D?4, 4)

Lemma 5.1. Every equivariant diffeomorphism of (S?P~!x D2, A),
Jor p<2gq, is equivariantly pseudo-isotopic to an equivariant bundle map.

Proof. Let g be an equivariant diffeomorphism of (S27~! x D29, A)
and g be the induced map on the orbit space N=S52?"!x D?*9/4. Since
S2P-1x D29 4, N is (2 p—1)-universal and both g|(S*”~!x0)/4 and the
inclusion are classifying maps for §' — §?7~! — CP?~!, they are homo-
topic. By the theorem of Haefliger they are isotopic, or equivariantly,
i: §27—1 §2P-1x D24 i5 equivariantly isotopic to g|S*?~1: §2P-1
S2P-1x D?4 By the equivariant isotopy extension theorem [16] there is an
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equivariant diffeomorphism G of (S>7~! x D?%, 4) which is equivariantly
isotopic to the identity and G|S*?~! x $29~!=identity and G - g|S??~'=
inclusion.

Let D?29={ueC’||u| <a} where a is a small positive number.
§2P-1x D24 is an equivariant tubular neighborhood of $?7~! in §27~!x
D?*9, G-g(S?P~'x D?9) is also an equivariant tubular neighborhood of
$2P~Lin §27~! x D249 By the theorem of uniqueness of equivariant tubular
neighborhoods [16] there is an equivariant diffeomorphism H of
(82P~'x D?4, 4) which is equivariantly isotopic to the identity and
H|S??~1x S29-1=identity. Furthermore, H-G-g: $?P~!x D*1— §?4-!
x D?% is an equivariant bundle map. Note that $??~!x D*%interior
(S27='x D29) is equivariantly diffeomorphic to S?P~'x §29-1x[0,1]
with the product action. Hence g is equivariantly pseudo-isotopic to an
equivariant bundle map.

Let S' be embedded in SO(2q) along the diagonal. Define an S
action F on SO(24q) by F(g,x)=g-x-g~' where geS' and xeSO(2 g).
Let u: (S*P~',4)—(SO(2q),F) be an equivariant map, i.e., u(gx)=
g - u(x)-g~'. Define b,: S*7~! x D*9— §?P=1x D*9 by b, (x, y)=(x, u(x) y).
Itis clear b, is an equivariant bundle map. In fact every equivariant bundle
map of D?7— §2P~1 x D29 §2P~! gver the identity can be constructed
in this way.

Lemma 5.2. The equivariant pseudo-isotopy class of b, is determined
by the equivariant homotopy class of u.

Proof. Let h,: (S*?~', 4)— (SO(2 q), F) be an equivariant homotopy
between u and v. Then H,: $2P~! x D*?— $?7~! x D24 defined by H,(x, y)
=(x, h,(x) y) is an equivariant pseudo-isotopy (in fact, an equivariant
isotopy) between b, and b,.

Let [S27~!, SO(2 q)]*' be the set of equivariant homotopy classes of
equivariant maps of (277!, 4) to (SO(2 g), F).

Lemma 5.3. [S27~!,S0(2 q)]"' is finite.

Proof. Let u: $?»~'—S0(2 q) be an equivariant map. For k large,
let S?7-'<S2k~! be the usual inclusion. Then

(u,i): (S?P~', A)—(SO(2q)x S**~!, F x A)
is an equivariant map. Note that (SO(2 q) x S**~', F x A) is free. Hence
we have the following commutative diagram:

§2p-1 (u, 0) SO(2q)XSzk—1 )4 §2k—1

CPP~' 0, 502 g)x g §?*~1 —2 5 CP*~1,
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Conversely, let 7: CP?~'— SO(2 q) x5 S**~! be a map such that 7* - p*:
H?*(CP*~')— H?(CP?~') maps generator to generator. Then there is
an equivariant map from S2P~! to SO(2 q) x S**~! which covers B.

Let [CPP~',50(2 q) x5 S**~']~ be the set of homotopy classes of ©
such that v* - p* maps the generator of H?(CP*~!) onto the generator of
H?(CP"~"). We will show by induction on p that [CP?~!, SO(2 q) x & S?*~]
is a finite set.

For p=2, CP'~S2. Consider the fibration

S0(29)—>S0(2g) x5 S+~ ' —=5 CP*-!
and the exact sequence of this fibration
s 1,,(SO2 q) —> 7,,,(SO2 q) X $**~ )57, (CP*~')—
o 1,(S0(29) —>7,(SOQ2g) x5 S**Y) =5 q,(CP*Y) — ...

So [CP', SO(2q) xg S**~1]™ =ker n, =i, n,(SO(2 q))=0. Moreover, as
it is well known that 7,,(SO(29)) is finite, n,,,(SO(2q) x5 S?*~1) is
finite. It follows that the homotopy classes of homotopy extensions of
each element in [CP™, SO (2 q) x5 S**~'] to CP™*! is finite [18]. Hence
[CP™+1,80(2 q) x S**~'] is finite, or equivariantly, [S??~!, SO(2 g) x
§2%-17%" is finite.

Let p: SO(2¢)xS**~'—S0(2q) be the projection. Then the map
Py [S2771 SO q)x §2*~115 — [§27-1,S0(2 ¢)] S! in onto. Therefore
[$27-1,50(2 ¢)]% must be finite.

Let 2(S*P~'x D*% A) be the group of equivariant pseudo-isotopy
classes of equivariant diffefomorphisms of (S2?~!x D?9, 4). Now the
following theorem is clear.

Theorem 5.4. For p<2q, 2(S**~'x D9, A) is finite.

§ 6. The Main Theorem

Proposition 6.1. Suppose q<p<2q Let f;, j=1,2, be two equivariant
diffeomorphisms of (S*P~' x $24=, A). Then (X (f,), A(f})) and (2( f3), A(f3))
are equivalent if and only if there exist equivariant dtffeomorphzsms g of
(S2P='x D*4, ) and h of (D*? x S*971, A) such that fy=h-f, g

Proof. Let
(827~ x D%, A)="5 (Z(f), A(f)ﬁu(D“’xS“ ', A)
be equivariant decompositions such that f;=k;'-r. Suppose that

(Z(), AUD)=(Z(f2), A(fy)). Let Z2r+24- '—Z(f) ]—1 2. Since r; are
the classifying maps of S'— §?7~!'— CP?~! 7|CP?~! and r2|CP"
homotopic. Therefore 7|CP?~! and rleP” ! are isotopic, or equ1-
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variantly, r|S??~!' and r,|S?P~' are equivariantly isotopic. By the
equivariant isotopy extension theorem, there is an equivariant diffeo-
morphism H of £27+24=! which is equivariantly isotopic to the identity
and H - 1r|S?*~'=r,|S27=1. Both r,(S??~! x D*%) and H - r,($*?~! x D?9)
are equivariant tubular neighborhoods of r,(S2?~') in 227+24-1 By the
theorem of uniqueness of equivariant tubular neighborhoods, there is an
equivariant diffcomorphism G of X?P*24-' which is equivariantly
isotopic to the identity such that G - H - r, (S~ ' x D*9)=r,(§*7~! x D*9)
and r; '-G-H-r, is an equivariant bundle map. Let g=r;'-G-H -
and h=k;'-H™'-G~'-k,. Then g is an equivariant diffcomorphism of
(S27~1'x D24, A)and his an equivariant diffecomorphism of (D27 x §24~1, A)
such thath-f, - g=f,.

The converse is trivial.

Theorem 6.2. Let 22"~ be a homotopy sphere which supports a free
decomposable S action. Then it supports infinitely many differentiably
inequivalent free decomposable S' actions for n=7.

Proof. Let f, be an equivariant diffeomorphism of (S*7~' x §2971, 4)
such that (2 (f,), A( /o)) is equivalent to the given action. By Theorem 2.2,
we may assume that p=[n+1/2]. By Corollary 4.1, there are infinitely
many equivariant diffeomorphisms {f;|j=1,2,...} of (§??~' x §24', 4)
which define inequivalent actions. By Theorem 1.7, there is an infinite
subset {f; [s=1,2,...} of {f;]j=1,2,...} such that Z(fs -fj"1 -f,) is
difftomorphic to Z(f,), i.e, 22"~". Note that the f,-f,'-f; are equi-
variant diffeomorphisms of (S27~'x §24!, 4). Hence we have infinitely
many actions

A ={Z(fo 17" ;) Alfo fi7 H Si)ls=1,2, ...}

It suffices to show that each equivalence class of actions in ./ is finite.
Suppose not, then there are infinitely many actions in ./ which are
equivalent to one another, i.e., there are infinitely many actions

(Z(fo St S Alfe-fi7 1)) s=0,1, ...
in .« such that
(o STt fi) Alfo - Si7 VSN~ (E o Tt - fik Al S5t ip))-

By Theorem 6.1, there exists equivariant diffeomorphisms g, of
(S2P='x D29, 4) and h, of (D?? x §297', 4) such that

fO .f}(;l .j;o:hs'fo 'f;'g_l fxs 8s-

By Theorem 5.4, for some a+b, h, is equivariantly pseudo-isotopic to
h, and g, is equivariantly pseudo-isotopic to g,. It follows easily that f; is
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equivariantly pseudo-isotopic to f;, . But (Z(f; ), A(f;)) is not equivalent

to

(Z(f,,» A(£,)). This is a contradiction. Hence we have proved that

there are infinitely many differentiably inequivalent decomposable
free S! actions on 22"~ 1,

In particular, we take £2"~'=§2"~! together with the known results,

we have:

Main Theorem. There are infinitely many differentiably inequivalent

free S* actions on standard (2n—1)-spheres for n=4.

Remark 6.3. In fact the actions can be chosen to be topologically

inequivalent (see [23]).
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Formule de Poisson
pour les variétés riemanniennes

J. Chazarain (Nice)

0. Introduction
La formule de Poisson classique

Ye=2nY 5(t—2nk), (%)
keZ keZ
peut s'interpréter comme une relation entre d’une part, le spectre Ape=i?
(k=0,1,...) du laplacien —d*/dx* sur le tore plat R/Z et d’autre part,
les longueurs 2kn (k=0,1,...) des géodésiques périodiques de cette
variété, c’est a dire les cercles.
On se propose de généraliser cette formule de Poisson a des variétés
riemanniennes M compactes connexes. Notons — 4 le laplacien de M

et soit .
0=1,<A, 4,5,

la suite des valeurs propres de cet opérateur; on leur associe la distribution
S défine par
S(t)=3 Y exp(iy/A0).
k=0

D’autre part, on désigne par .# I'ensemble des longueurs (et de leurs
opposées) des géodésiques périodiques de M; on a alors un premier
résultat sur les singularités de la distribution S:

le support singulier de S est inclus dans £ “{0}.

De plus, si & est un ensemble discret de R et si les géodésiques de
longueur donnée s’organisent en de «bonnes variétés», on obtient la
généralisation de () sous la forme

,72 exp(+iyA = Y T, (au sens de 2'(R)) (%)
k

=20 leZ v {0}

ou T; désigne une distribution a support dans un petit voisinage de [ et
qui admet en [ une singularité que I'on décrit au moyen de développements
asymptotiques.

5 Inventiones math., Vol 24
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Ce travail est inspiré par des résultats récents de Colin de Verdiere
[5,6] qui concernent une généralisation de la formule classique

Y exp(—k¥/z2)=)/nz Yexp(—n?k*z)  (Rez>0)  (x4)
kel

kel

au cadre des variétés riemanniennes (sous les mémes hypothéses que pour

oY
() Y exp(—AJz)= ) fiz)exp(—zI*/4) (F) (xx)
k20 le¥* U0}

ou le signe (#) indique que cette dernicre égalité¢ a lieu en fait en un
certain sens qui est défini au moyen d’une transformation de Fourier non
linéaire. Cet auteur démontre () par une méthode assez technique qui
est basée sur la forme explicite de la solution élémentaire de 'opérateur
de la chaleur J/0t—4,..

Dans ce travail, on utilise au contraire une paramétrix de l'operateur
des ondes [J=0%/0t>— A4, ce qui permet de faire intervenir les géodé-
siques périodiques de facon trés naturelle a partir des bicaractéristiques
de et a "avantage de donner une démonstration pratiquement sans
calcul de (). De plus, cette méthode se généralise au cas d’'un opérateur
elliptique auto-adjoint sur une variété compacte.

Ce travail est résumé dans une note aux Comptes rendus [4].

1. Spectre du laplacien et opérateur des ondes
On sait (cf. par exemple, Berger-Gauduchon-Mazet [1]) que le
laplacien —A d’une variété riemannienne compacte est un opérateur
auto-adjoint positif dans I*(M, dv) ou dv désigne la densité canonique
de M. Cet opérateur elliptique a une résolvante compacte et par consé-
quent son spectre est constitué¢ d’une suite de valeurs propres

0=4g<A S48 S=S-

que l'on répéte selon leur multiplicité. Ce spectre est caractérisé par la
distribution SeZ’(R) définie par

S=4Y exp(+i )% 0)=3F( ¥ 0+ V/4) (L1)
k=0 kz0

qui est une distribution tempérée (car le nombre de valeurs propres
inférieures a 7 est a croissance polynomiale en 1), paire, a valeurs réelles
(on renvoie & Hormander [8] pour les notations concernant les distribu-

tions, la transformation de Fourier ...).
Rappelons que dans une carte de M, le laplacien —A4_a pour symbole
principal

g(x, &)= Z gij(x) ¢ éj

i,j=1
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ou
Y g(x)dx dx’

désigne la métrique riemannienne et n la dimension de la variété M. On
définit 'opérateur des ondes sur I'espace IR x M par

O=20%/0t*— A,

et on luiassocie le noyau du probléme de Cauchy;c’est a dire la distribution
E,(t, x)eZ'(R x M) solution du probléeme de Cauchy suivant

0?2
((’tz —Ax) E (t,x)=0

E li_o=6(x—Y) (1.2)

0
57 Eslioo=0

ou y est arbitraire dans M; notons que les restrictions ont un sens car
t =0 est non caractéristique (cf. Hérmander [11]).

On sait que I'on peut représenter le noyau distribution associé
E(t, x, y)e Z"(R x M x M) sous la forme

E(t,x,y)= Y wi(x)w,(y) cos(}/4 1)
k=0
ou (wy),», constitue une base orthonormée de fonctions propres de 4.
D’ou la relation entre S et E

S()= [ E(t, x,x)dv(x) (1.3)

M

(cette écriture formelle, sera précisée plus loin, griace aux résultats sur le
spectre singulier de la distribution E).

De (1.3), on déduit qu’il suffit de connaitre une paramétrix du pro-
probléme de Cauchy (1.2) pour connaitre les singularités de S, cest a
dire qu'il suffit de raisonner modulo C”.

I1. Support singulier de S

On sait que 'on a une représentation globale d’une paramétrix du
probléme de Cauchy (1.2) en utilisant les opérateurs intégraux de Fourier
de Hormander [9] (voir aussi, Duistermaat [7]). De fagon plus précise,

on utilise le
5%
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Théoréme. Il existe un opérateur intégral de Fourier F: M — R x M

qui est tel que . .
Fel *(RxM,M;C)

O-F=0

F|,_,=Identité de M (2.1)
d =
~gEF|f=OEO

ou C est une relation canonique dans (T* R x M\ 0) x (T* M\ 0) définie
par

le point (t, t; y, n) est sur la bicaractéristique
C={(t,1; y,n; x, &) |de [ qui passe par I'un des points (0, 1,; x,&); (2.2)

ou To= il’ g(xvé)

On utilise sans les rappeler les notations de [ 7] pour tout ce qui concerne
les opérateurs intégraux de Fourier.

Rappelons qu’une bicaractéristique de [ passant par (0, 7,; x, £)
est une application seR — (t(s), 7(s); y(s), n(s))e T* R x M0 qui vérifie
I’équation differentielle

dt dt

P R

dy ¢g dn _ og (2.3)
_E_?“E(y’") 75 = Ty (¥m)

(t,T; yv ’1”5:0:(09 TO; xu é)

et la condition t2 — g(y, #) =0 (on trouve immédiatement que 1= Cte=1,
ett=21,5)

Remarquons que la densité canonique dv sur M, permet d’identifier
les densités d’ordre § et les fonctions au moyen de I'isomorphisme

feC*(M)i>f1/dveC*(M,Q,).

On désigne par F(t,x, y)e 2 (R x M x M) le noyau distribution de
'opérateur F, alors on sait que le spectre singulier de F (noté ici S.S.F
et que Hérmander [11] appelle « wave front set» WF (F)) vérifie I'inclusion

SS.Fe{(t,t; y.n; x, Ol t; p,m;x, —=EeCy=C".

On remarque ici que 7= )/ g(x, ) +0 puisque (x, &)e T* M N0, alors, il
découle des théorémes sur le spectre singulier (cf.[11]) que 'on peut
définir la restriction de la distribution F a la varié¢t€ R x Dc R x M x M
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ou D désigne la diagonale de M x M. Il vient
S.S.(Flrx p)={(t, T3 x, n = O)(t, 75 x,1; X, £)e C}

et par intégration sur le compact M on en déduit

S.S. (Ai F(t, x, x) d”(x))c{(t’ L (t,t;x,¢&x,8)eC

il existe (x, &) tel que I'on ait}

Mais d’autre part, comme F est une paramétrix, on a aussi
S—([ F(t,x, x)dv(x))e C*(R) (2.4)
M

et par conséquent on en déduit que le support singulier de la distribution S
vérifie I'inclusion

supp. sing. S {t

il existe (x, &)e T* M\ 0 tel que } (2.5)
(t,7; %, & x,&)eC ou 1= +1/g(x, §)J. '

Si on se reporte a la définition (2.2) de C, on constate que les valeurs de ¢
qui apparaissent dans (2.5) sont O et + les temps de parcours pour aller de
(x, &)a (x, &) sur une bicaractéristique, c’est a dire les périodes des bicarac-
téristiques périodiques au sens de la

Définition 2.1. Une bicaractéristique s— (t(s), 7(s); x(s), £(s)) de O
est dite « périodiquey, si sa projection s— (x(s), £(s)) est une application
périodique. Les temps de parcours d’une ou plusieurs boucles s’appellent
les périodes de la bicaractéristique. Notons £+, I'ensemble de ces
périodes >0 et posons &=L+ u(—ZL™).

Enutilisant la structure riemannienne on peut donner une inter-
prétation plus géométrique de ces périodes. Pour cela, calculons la
longueur I de la courbe s — (x (s)) pour un temps de parcours correspondant
a une période t>0. Avec le paramétrage par s, on obtient I'expression

t/210 dx
I= —
J 7 ds,
? dx d
par définition, on a s =G, (_x,_x) ou G, désigne la forme
ds ds’ ds

bilinéaire associée a la métrique sur T, M. Notons G ' I'isomorphisme
canonique associ¢ T* M — T, M, de (2.3) on déduit

dx _q
E—sz -£(s)
d’ou
2

d
XN _4g(x,6)=412,

ds

6 Inventiones math., Vol. 24
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et finalement
I=t.

D’autre part, il est bien connu que les projections sur M des bicarac-
téristiques de [J sont précisément les géodésiques de M; on peut alors
énoncer la

Proposition 2.1. Lensemble ¥ <R~ {0} des périodes des bicarac-
téristiques périodiques, peut également s’interpréter comme I'ensemble des
longueurs (et de leurs opposées) des géodésiques périodiques de M.

L’inclusion (2.5) permet de formuler le

Théoréme . La distribution S= ) cos(l/l/k t) est C* en dehors de
lensemble {0}U.Z. kZ0

II1. Etude des singularités de S
Soit le.# que l'on suppose étre isol¢; on se propose d’étudier la
singularité de la distribution S au point . Pour cela, on se donne une
fonction 8 C¥ (R) a support dans un petit voisinage de | qui ne rencontre
pas I'ensemble %~ {I} et vérifiant 6(/)=1. La singularit¢ de S en [ est
caractérisée par le comportement asymptotique en t de I'expression

@S)@) =<5, 0(1) e~ (3.0)

Comme on raisonne module C®, il revient au méme, grace a (2.4),
d’étudier le comportement asymptotique de I'expression

I()= [ O(t)F(t,x,x) e~ dt dv(x). (3.2)

RxM

Tout d’abord, remarquons que l'on peut se restreindre a étudier le

comportement pour T— + 00 car (9/§ (— ‘L’)=9/§ (7) puisque S est a valeurs
reelles, de plus S étant paire il suffit de considérer le cas ou le £*.
Pour étudier I'intégrale (3.2) on est amené a expliciter la distribution
OFel *(R x M xM; C) en se reportant a la définition donnée par
Hormander dans [11]. Cette distribution s’écrit comme une somme finie

6F=) F, (33)

acA
(A est un ensemble fini car OF est & support compact) ou les F, sont des
distributions définies au moyen d’intégrales oscillantes. A cet effet, on
commence par définir un recouvrement de la relation canonique C par
des domaines C, de cartes T, associées a des fonctions de phases de la forme

O, (t, x, 1, )=, (t, x,n)—y-n
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ou y-n=) y,(y)n; et les (y;(y))=1x,(y) sont les coordonnées du point y
dans une carte M, de M. De fagon plus précise, I'ouvert C, est difftomorphe
a un ouvert conique Z_de J/—e¢, I4+¢[ x M x I (avec I, un cOne ouvert de
IR"\. 0) au moyen de I'application T, définie par

(t,x, )€ Z, T (t, L5 X, @l ¥, — @}, )eC,= C (34)

avec y détermine par g,(y)=@,,(t, x,7) et ou ¢, désigne la dérivée en x
de ¢,. Ceci posé, la distribution F, est définie par I'intégrale oscillante

E(t, x, y)=rf (exp i ¢, (t, x, 7, ) a,(t, x, ) dn (3.5)
ou dn=(2mn)""dn et a, désigne un symbole de degré 0 dont le support
est une partie conique a base compacte incluse dans Z,. On a une telle
représentation de F, car la relation canonique C peut étre aussi considérée
comme un graphe local dépendant du parametre ¢ (cf. Hormander [11],
p- 170, et Chazarain [3]).

A la somme (3.3) correspond pour I(7) I’expression
I(n)= Y L(v)

aeA
avec

L()= [ E(t x,x)e ™ dtdvo(x),

RxM

soit encore, compte tenu de (3.5),
Iu(‘[)z 5 (exp [l (pa(ts X, '1)_ ix- n— it t]) aa(ts X, '7) dt dU(x) dﬂ
Za
(3.6)
=1" | (exp i T D,(t, x, 1)) a,(t, x, Ty) dt dv(x) dn
Zy

ou 'on a posé @,(t, x, n)=@,(t, x,n)—x-n—t=a,(t, x,n,x)—t.
Pour étudier le comportement asymptotique de I,(t), on commence
par chercher les points critiques de la phase @,. Pour alléger, omettons
provisoirement I'indice a. Les points critiques de @ dans Z sont donnés

par les équations ,
(pt(t’ X, 'l)= 1,

¢;(tr X, ", X)= - ¢;(ta X, ", X), (37)
¢(t, x, 1, x)=0.

Par P'application T (définie en (3.4)) ces points critiques sont en bijection
avec des points de C de la forme

t,1;x,&x,&) ou =0t x,n)
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et compte tenu de la définition de C, cela signifie qu'il existe une bicarac-
téristique de [J qui relie les points (0, 1; x, &) et (¢, 1; x, &), ce qui prouve
que t est une période de bicaractéristique périodique; mais ¢ est dans le
support de 0; par conséquent on en déduit que

t=1. (3.8)
D’aprés (2.3) et (3.4) la phase ¢ vérifie I'équation
0> =g(x, 9L); (39)
en reportant dans (3.7); il vient
g(x,¢)=1. (3.10)

Désignons par W,*, la partie de C constituée par tous les points
(L 1;x,8;x,8)

qui sont obtenus comme image, par les diverses cartes T,, des points
critiques des diverses phases @,. Cet ensemble W;*, qui va jouer un réle
essentiel, admet une interprétation géométrique simple. Pour cela,
désignons par S*M le fibré en spheres conormales de M, c'est a dire

S* M ={(x,meT*M|g(x,n)=1}

et soit D* la diagonale de 'ensemble S* M x S* M. Alors les équations
(3.10) et (3.7) signifient exactement que

F={L1}xD*)nC. (3.11)

De plus, cet ensemble W;* est en bijection avec I'ensemble des bicarac-
téristiques périodiques de [J qui admettent | pour période et qui sont
parcourues dans le sens des ¢ croissants (celles qui sont parcourues dans
le sens des t décroissants correspondent a —1 dans {/, —1} et n’intervien-
nent que pour le comportement avec T— — oo et sont en bijection avec
I’ensemble W, défini de fagon évidente. On pose aussi W,=W,* U W,").

On retrouve ainsi le fait que si I n’est pas une période, les phases @,
n’ont pas de points critiques et par conséquent I(7) est a décroissance
rapide, ce qui implique que S est C* an voisinage de / et redémontre le
théoréme L. En revanche, si le & 'ensemble W, est non vide par définition
et il s’agit de déterminer le développement asymptotique de I(7). Pour
cela, on utilise une extension du théoréme de la phase stationnaire que
Colin de Verdiére [6] a déja utilisé dans un but analogue.

IV. Une extension du théoréme de la phase stationnaire

On développe dans ce paragraphe, les notions nécessaires a I’étude
des développements asymptotiques des intégrales du type (3.6).



Formule de Poisson 73

On commence par définir, suivant Meyer [12], la notion de variété
critique non dégénérée pour une phase.

Définition (Meyer). Soit Z une variété et ¢ une application C* de Z
dans IR. On suppose que I'ensemble des points critiques de & est une
sous variété connexe W de Z. Alors, on dit que W est une variété critique
non dégénérée pour la phase @, si pour tout point ze W le hessien ¢ (z)
induit sur I'espace normal N,=T,Z/T, W une forme quadratique non
dégénérée @"'(z)|y.

Pour ze W, on désigne par o la signature du hessien=sgn ®"(z)=
(nombre de carrés +) — (nombre de carrés —) et qui est aussi égale a
la signature de la forme induite ®”(z)|y.

Dans cette situation on dispose d’un analogue du lemme de Morse,

c’est le

Lemme (Meyer). Soit ®(u, v) une application C* de R? x R? dans R,
définie au voisinage de (0,0) et telle que 'ensemble des points critiques de
est donné par I'équation {v=0}. On suppose de plus que @,,(0,0) est non
dégénérée, autrement dit que la variété critique {v=0} est non dégénérée
pour @ au voisinage de 0. Alors il existe un difféomorphisme H

R?+93(u, v) _H, (x, y)eRP+4

de la forme x=u et y=h(u, v), tel que la nouvelle phase d=oH! vérifie

au voisinage de zéro 3
®(x, y)—P(x,0)=3"y-Q(x)-y

ot Q(x)=®" (x,0) et on a aussi det(H'(x,0))=1.
Démonstration. La formule de Taylor appliquée & ¢ donne
d(u, v)—P(u,0)=1"v- A, v) v

avec A(u, 0)= @, (u,0). On cherche une application

(u, v)— B(u, v)e Z(R7; RY)
défine au voisinage de 0 et telle qu’en posant x=u et y=B(u, v) - v=h(u,v)
on ait Plu, v)— D(u,0)= 3+ Q() - .
Il vient pour B I’équation suivante

'B(u, v)o A(u, 0)o B(u, v)— A(u,v)=0,

on remarque que pour v =0 on a la solution B(u, 0)=1, ensuite le théoréme
des fonctions implites donne une solution B définie au voisinage de O car
A(u, 0) est inversible. Enfin, on vérifie immédiatement que det (H'(x,0))=1.

Enongons maintenant une généralisation du théoréme de la phase
stationnaire.
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Théoréme (Colin de Verdiére [6]). Soit Z une variété riemannienne de
dimension d, soit ae C§ (Z) et soit une phase a valeurs réelles e C*(Z).
On suppose que les points critiques de ® situés dans le support de a consti-
tuent une sous variété compacte connexe W de Z dont on note v la dimension.
On suppose de plus que W est une variété critique non dégénérée pour @ et
soit ¢ sa signature.

Alors on a le comportement asymptotique suivant

d—v

J(1)=[e'*®? a(z)dv(z)= (2_n) 2 ei%ﬂeiw(w'P(T) (4.1)
zZ T

ou p(t) admet pour T — 00 un développement asymptotique de la forme

p(r)zkzoak Tk 4.2)
avec )
ao= [ a(z)|det "(2)ly|~* dow(2) 4.3)

et dy v désigne la mesure induite sur la sous variété W.

Esquissons la démonstration. Comme W est une variété compacte,
on peut la recouvrir par un nombre fini d’ouverts de carte Z, dans
lesquels on peut utiliser le lemme précédent; une partition de l'unité
subordonnée a ce recouvrement permet d’écrire

J(0)= 3, J(0)
finie
avec

J (D)= [ a,dv.
zZ,
Dans la carte Z,, I'intégrale J, s’exprime par

J()=( | ' 22N g (x, y)e,(x, y)dxdy) ™, 4.4
Rd

Au moyen d’un changement de coordonnées linéaire en y (y — z) et
conservant x, on raméne la forme quadratique Q(x) a la forme canonique

V-0(x) y=(2f + +2) = (2], + - +23)=4(2)

ol j—h=c=sgn &' =sgn q. Notons que le jacobien de ce changement
de coordonnées est égal a

|det @”(z)|y|~*
quand on se place sur W. L’intégrale (4.4) s’écrit alors

dy

1z dxdz

[ eti19® g (x, 2) ¢ (x, 2)
Rd
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et une intégration partielle en x donne

| et g, (z)E(z)dz. 4.5)

Rd-v
On termine en appliquant le théoreme de la phase stationnaire usuel
(cf. par exemple, Hérmander [11]) a I'intégrale (4.5); d’ou le théoréme
en notant que
ag=Y ,(0)= [a(z)|det ®"(z)|y|* dvy(2).
a w

V. Développement asymptotique de I(7)

On se fixe €%, supposé isolé et on va appliquer les résultats précé-
dents aux intégrales (3.6) pour obtenir le développement de I(z).

Pour cela, on est conduit a introduire I’hypothése suivante sur
l'ensemble W, des bicaractéristiques admettant | pour période.

(H,) L’ensemble W,* est une réunion finie de sous variétés compactes
connexes W= U W,

. Jjeh
on pose v;=dim W, ;.

Ces variétés critiques W, ; sont non dégénérées! pour les phases
®,°T,”"; nous notons ¢; , la signature correspondante.

Commengons par montrer que I'on peut séparer dans I(t) les contribu-
tions des diverses composantes W, ; de W,*. Pour cela, on utilise le lemme
général suivant.

Lemme 5.1. Soit une «distribution de Fourier» Fel™(X;A) et un
recouvrement fini (V) de la variété lagrangienne A par des ouverts coniques.
Soit (r;) une partition de I'unité subordonnée a ce recouvrement au moyen
de fonctions homogénes de degré 0. Alors la distribution F se décompose

en F=YF,

j
ou F;,eI™(X ; A), avec S.S.(F;) V;. De plus, si a désigne le symbole principal
de F, celui de Fjest égalar; a.

Démonstration. Comme le support de r; est dans ¥, on peut toujours
trouver une distribution F{® dans I™(X; A), dont le symbole principal

est r;a et telle que S.S.(F(”) = V;. On définit alors
GO=(F-Y F™el™ !,

Le méme procédé appliqué a G'°, permet de trouver F{Vel™~! avec
SS.(F{V) <V et telle que

G(”:(G(O)“ZF}l)EIm_Z.

' Note ajoutée dans I'épreuve. Cela signific exactement que W, est une «non-degenerate
fixed manifold » au sens de Weinstein (Ann. of Math. 93, 396, 1973); pour les détails voir
notre exposé no 16 au Séminaire Goulaouic-Schwartz, Ecole Polytechnique (1974).
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On définit ainsi, des suites Fj”" avec des propriétés évidentes; d’ou le
lemme, en posant v
Fi~ Y FP.

k=0

Quitte 4 raffiner le recouvrement (C,) de C, on peut supposer que les
ouverts C, sont connexes et ne rencontrent jamais deux variétés critiques
a la fois. Soit (r,) une partition de I'unité subordonnée; alors le lemme
précédent permet d’écrire

F=Y E,
finie
ou F, a pour symbole principal r, a. Désignons par I (), I'intégrale (3.2)
relativement a F,. On a immédiatement

I0)=Y L,(0),

ou le signe = signifie ici I'égalité modulo un terme a décroissance rapide
en . Pour j fixé, on désigne par I; ,(7) les termes I,(t), quand C, rencontre
W, ;- On définit alors la contribution de W, ; par

L(0)=Y 1, (1); (5.1)
etona !
I(1)= ) I(7). (5.2)
Jjed1

On se propose maintenant, d’étudier le comportement d’un terme
I(7). Tout d’abord, on note que I; ,(t) s’exprime par une intégrale du
type (3.6), dans laquelle a2 désigne I'image du symbole r, a par la carte
T,. L’application du théoréme du paragraphe précédent a cette intégrale
(la généralisation aux intégrales oscillantes ne présente aucune difficulté)
donne 'expression

Zﬂ:) (1=vy)2 ei% %a

11.,(,,(z)=e~f“(T Py(0), (5.3)

ou p; ,(t) admet un développement asymptotique

P~ Y Lt (5.4)
k20
avec pour le terme principal pga, I'expression donnée par (4.3), soit

W= axn|det@ly)| o) dn.  (5.5)

Ta L(W;,;nCx)

Notons que cette intégrale a bien un sens, car on intégre en fait sur le
compact T,” (W, ;N (supp. r, a)).
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P
o Py I—=0),a . , .
Pour regrouper les différents termes e * pj-)_, qui définissent la

partie principale de /;(t), on s’appuie sur la
Proposition 5.1. Lestermes non nuls de la forme

.
lzaj_u 0
& J.a

ont tous le méme argument j fixe.
On commence par démontrer le

Lemme 5.2. 1 existe un entier n, tel que lon ait sur T,” ' (W, ;n C,)

all,x,m=e 2 |a2(L x,n)l.

Démonstration du lemme. Rappelons (cf. Duistermaat [7]) que le sym-
bole principal, a, de F est une section de L® Q ; au dessus de C. Comme 4
est auto-adjoint, la premicre égalité de (2.1) implique que a vérifie I'¢quation

Lyey - a=0, (5.6)

ou Ly~ designe la dériveée de Lie associée a I'hamiltonien Hp remonté
sur C. De plus, les conditions initiales (2.1), entrainent que la restriction
a|o.1yx p+ €St identique & 1. Compte tenu de (5.6), on en déduit que la
restriction @l 1y, py~c—w,; €St une section constante la valeur de cette
restriction, lue dans la trivialisation de L définie par la carte T,, estdonc
une puissance entiére de |/ — 1 d’aprés la définition du fibré de Maslov
L; soit e'"™? cette valeur. Par conséquent, 'amplitude a’(l, x, n) a tou-
jours le méme argument sur le domaine d’intégration de (5.5), puisqu’elle
est 'image de r,- a dans la carte T,.

Comparons les arguments dans deux cartes qui se coupent, c’est le

Lemme 5.3. Soient deux indices o, f§ tels que

(supp. r,) N (supp. r)) N (W, j)#(b.
Alors on a
e('.%ol',+i"a%)=e(i%abﬁ+i"ﬂ%). (57)
Démonstration du lemme. 1l existe donc A€(supp. r,"supp. ;N W, ).
Soit V un voisinage conique de 4 inclus dans C,n C; et dans lequel r, et
1y ne s’annulent pas. On se donne une fonction r=0, a support dans V,
homogeéne de degré 0, C, et égale a 1 au point 4. On peut écrire

r
-i(r!z a)=—/(rga)=ra.
1 A
Désignons par G, une distribution de I"*(R x M x M ; C’), admettant
r-a pour symbole principal. En calculant I'expression (3.2) relative a G,
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dans les deux cartes T, et Ty, il vient I'égalité

~

eiaThe. | (rL) -al(l, x,n) |det(®] | )|~ * dv(x) dn

T (W, nCa) N (5.8)

~

L) a8, ,©) |det(@51)|* dv(y) ¢

i%a,,g (
Tt (Wi, jnCpg) '8

ou (L) désigne I'image de la fonction (L) dans la carte T,. Alors,
T,

’égalité (5.7) découle immédiatement de I'égalité (5.8) et du lemme 5.2.

Démontrons enfin la proposition 5.1. Tout d’abord, notons que
’égalité (5.7) est encore valable pour tous les indices a, f tels que
(supp.7, )N W, j#0 et (supp.r)n W, ;%0. En effet, W, ; étant connexe,
on peut relier de tels indices par des indices intermédiaires qui vérifient
la condition du lemme 5.3. Dans ces conditions, I’égalité (5.7) montre

que, compte tenu de (5.5), tous les termes
‘Z"J'“ 0
e i
non nuls, ont un argument indépendant de I'indice a.
On introduit alors un entier o; tel que la valeur commune des deux
membres de (5.7) s’écrive
i

e

95

L]

On dira que g; est la signature de la variété critique W, ; et on définit
Pentier (v;—o;) comme étant l'indice de W, ;.
Revenons & I'¢tude du comportement de I;(z). En combinant (5.1),
(5.3), et la définition de o;, on trouve
2n A~v)2 =,
) e

Le=et (S ), (59)

ou p;(r) admet un développement asymptotique de la forme

pi(t)~ Y phtk (5.10)
k20
Remarque 5.1. 11 est important de noter que p>0. En effet, on a
immédiatement

—iZg; iZa;

a% 4% 90
Ze Dj,a
a

=y { lad(l, x,n)| |det @ |y|~* dv(x) dn.

a Tg ' (Wi, ;nCa)

0 __
pj=e

D’ou, p}’ >0, puisque la restriction de aa W, ; est une constante non nulle.
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Regroupons ce qui précéde en un théoréme.

Théoréme II. Soit | un point isolé de I'ensemble ¥ des périodes de
bicaractéristiques périodiques. On suppose que I'hypothése (H)) est satis-

faite, alors le comportement asymptotique de 9/§ () est donné par

08(=I()= Y I,(x)
jedy

ou I; correspond a une composante connexe de dimension v; et de signature
o; de la variété critique, et on a l'expression
o 2R\ g m
—pitl J
o= ()T g

avec p; vérifiant (5.10).

VI. Formule de Poisson
Pour interpréter ces développements asymptotiques, il est commode
d’introduire une classe de distributions sur IR (en fait, une classe de
germes de singularités a ’origine) qui correspondent grosso-modo aux
distributions admettant un développement asymptotique en distributions
homogenes.

Définition 6.1. Soit relR, on désigne par H, I’espace des germes a
l'origine de distributions reelles sur IR qui sont C* en dehors de {0} et
telles que la transformée de Fourier T('c) d’un représentant d’un tel
germe, admet un développement asymptotique de la forme

T()=1"""2Y bt* (1> +). (6.1)
k=0
Par exemble, les germes définis par §(t=0), |¢|~"*+'/* appartiennent
respectivement a H, et H, pour r>0.
Avec cette définition, les formules (5.9) et (5.10) montrent que la
restriction de S a un petit voisinage V de I, peut s’écrire

SOl =Y e+ Tt +1) 6.2)

jehn
ou T; définit un germe dans e

Remarque 6.1. Si W;* se réduit a une seule variété connexe, la somme
(6.2) se réduit a un seul terme qui admet donc effectivement / comme point
singulier 4 cause de la remarque 5.1; dans ce cas on a donc leSupp.
Sing. S.

Avant de passer a la formule de Poisson, il reste a étudier ce qui se
passe si I=0. Notons tout d’abord que 0 est un point isolé dans ¥ L {0}.
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L étude de I(t), défini en (3.2), se fait de fagon complétement analogue
quand /=0. On sait que pour |t| petit, les phases ¢,(t, x, n) vérifient, en
plus de I’équation (3.9), la condition initiale
(Pa(t’ xsr,)|t=():x N
(cf. par exemple, [3]), de sorte que les équations (3.10) se réduisent ici a
gx,m=1
t=0.

La variété critique correspondante W, est donc donnée par

Wy =Wt u W, =({0,1} x D¥)u ({0, — 1} x D*).

On vérifie immédiatement que W, est une variété critique non dégénérée
de signature nulle, elle est compacte et constituée de deux composantes
connexes (du moins si n=2) Wyt et W,~ de dimension 2n— 1. Par consé-

quent, le développement de H/g(‘t) est donné dans ce cas par

2N
0S(t)=R2n) """ tp(r) (t>0) (6.3)
avec
p(= Y ptt
Kz 0
ou
p’= [ dxdn.
g(x,m)=1

De (6.3), on déduit le

Théoréme IIL. Le germe de distribution a l'origine défini par S est dans
lespace H,,_,.

On est maintenant en mesure d’énoncer la formule de Poisson pour
la variété riemannienne M.

Théoréme IV. On suppose que I'ensemble ¥ des périodes est une partie
discréte de IR et que pour tout |€ ¥ I'hypothése (H)) est satisfaite. Alors ona
la formule de Poisson suivante

Sexp(+iyit)= Y T, (ausensde 2'(R)) (*)
k20 le{0ju?
on la somme de droite est localement finie. Pour chaque 1, la distribution
T, est a support compact et s’écrit

. m
1—0aj;
— 4
T=)e* T,
jedi

et la translaté de —1 de T, ; définit un germe T, ;(t+ l) dans lespace H, ;
ou v; et ¢; sont la dimension et la signature de la variété critique W, ;.
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Démonstration. D’aprés le théoréme I et ’hypothése que & est discret
on peut, au moyen d’une partition de 'unité, décomposer S sous la forme

S= > T

le{0}u?

ou les T, sont des distributions a support compact et formant une famille
localement finie et qui sont telles que:

Supp. Sing. T, {I} et S—T,estungerme C* enl.

On applique ensuite les théorémes II et III pour avoir la structure du
germe de singularité en [ défini par T,.
Terminons par quelques remarques.

Remarque 6.2. Dans le cas particulier ou pour tout [ la variété critique
W,* est réduite a une seule composante connexe, la remarque 6.1 permet

d’en deéduire Supp. Sing. $={0} U Z. (6.4)

Alors, dans ce cas (générique, d’aprés [6]) le spectre du laplacien déter-
mine les longueurs des géodésiques périodiques, on renvoie, pour
d’autres applications de ce genre de relation entre le spectre de 4 et les
géodésiques, au travail de Colin de Verdiere [6].

Remarque 6.3. Si on suppose que l¢i{‘1ff|l——l’|>0, on peut faire en

sorte que la série du 2éme membre de (¥) converge dans %'(R). Ce qui
permet d’appliquer les deux membres de () a la fonction test

p,()=Vz/2n exp(—zt/4)
quand Re z>0. Il vient
(et VA, (1) = e~

et d’autre part, le développement asymptotique de T,(t) permet d’écrire

(T, p(0)y = fz) e~ "%

Ce qui démontre 1’égalité (xx)'; avec une convergence en tout point z tel
que Re z>0.

Remarque 6.4. Soit P, un opérateur elliptique de degré 2m sur une
variété compacte connexe M, qui définit un opérateur auto-adjoint
positif sur I'espace L* des densités d’ordre 1. Alors, les théorémes précé-
dents se généralisent aisément a cette situation, en remplagant ]/% par
(4)"/2™ dans S. Pour cela, on utilise I'opérateur des ondes défini par

0%/01> —(P)!im

en s’inspirant du procédé de réduction introduit par Hormander dans

[91.
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Remarque 6.5. 11 semble possible de faire une étude analogue dans le

cas plus complexe d’une varieté a bord car on dispose d’une description
de la paramétrix du probléme mixte hyperbolique pour I'opérateur des
ondes (cf. Chazarain [2]), ceci sera détaillé ailleurs.

Note. Hans Duistermaat vient de m’indiquer qu’il a obtenu indépendamment et

simultanément des résultats trés voisins (The Spectrum and Periodic Geodesics, lecture on
the A.M.S. Summer Institute on Differential Geometry, Stanford, August 1973).

10.

11.
12.
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Cobordism of Manifolds
with Odd Order Normal Bundle

J. P. Alexander (Austin), G. C. Hamrick (Austin), and J. W.Vick (Austin)

An oriented differentiable manifold M* admits an odd framing if the
composition M*—-BSO—%>BSO,, is null homotopic, where v
classifies the stable normal bundle and ¢ is localization at 2. An odd
framing of M is then a null homotopy of this composition. Under a
suitable relation these give rise to the odd framed cobordism groups
Q2 In analogy with framed cobordism, there is a Whitehead homo-
morphism

J': 1 (SO ) — QP

where SO,, denotes the localization of SO at 2.

In this paper we will compute the cobordism groups in terms of the
2-primary part of stable homotopy and determine the image of J'. The
motivation for this study lies in the fact [2] that all Z,-homology spheres
admit odd framings. In [2] the structure of 2" modulo the image of
J' is employed to analyze the groups of Z,-homology spheres and give
applications to involutions.

Section 1 gives some lemmas concerning localizations. The second
and third sections introduce the cobordism theory and the homo-
morphism J' and establish the main result:

Theorem. Qf P~ Q" @ B,, where B,=0 for k=3 mod 4,
Byy1= (®,Z(2)/Za

n(n) is the number of partitions of n, and Z,, is the integers localized at 2.

In the final section we show that the cobordism group is additively
generated by odd-framed lens spaces and spheres together with framed
manifolds.

1. Localizations

Let P denote any collection of primes. If 4 is an abelian group, we
may form the P-localization Ap=A® Z 4, where Zp) is the set of
rational numbers having denominator prime to each member of P. There
is a natural localization homomorphism ¢':4 — A ,. The group A4 is

7 Inventiones math., Vol 24
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said to be P-local if ' is an isomorphism. Following Sullivan [7] there
is an analogous geometric construction by which a simply connected
space X may be localized at P to form X p . Similarly there is a natural
map /: X — X p, which localizes homotopy and homology groups.

1.1. Lemma [7]. If X and Y are simply connected spacesand f: X — Y
is @ map that localizes the reduced homology of X, then Y is homotopy
equivalent to X p,. [J

1.2. Lemma. Suppose X is simply connected and let F be the fibre of
¢ made into a fibration
F—5X-—5X 4,

If F is also simply connected, there is an isomorphism H_(X,F )~ H « Xy
induced by the map : (X, F)— (X ), *).

Proof. Using the pair (X p),*) in the base, consider the relative Serre
spectral sequence for £
{EX }=H,, (X, F),

P+4q
where

E: ~H (X, *; H(F).
From the exact homotopy sequence of the fibration, we have a short
exact sequence

0— Bon (F]— A0
where 4 is the torsion prime to P in 7, (X) and B is the cokernel of
iy (X) =7, (X (p), which is isomorphic to m, ,  (X) ® Zp/Z. Thus
n,(F)is all torsion prime to P.

The Serre theorem implies that H, (F) is also torsion prime to P,
hence Eﬁ, ,=0 for ¢>0. Therefore the spectral sequence lives entirely
along the p-axis and the edge homomorphism gives the desired iso-
morphism. [J

1.3. Corollary. If F and X are as above, then X ,, is homotopy equiv-
alent to the cofibre of the inclusion i: F—»X. []

In the remainder of this paper we will be concerned with the case
P={2}.

2. Odd Framed Manifolds

If M™ is an oriented differentiable manifold, an odd framing of M is a
null homotopy of the composition

M —*> BSO (k) - BSO,,(k)

where v classifies the stable normal bundle of M and / is localization at 2.
Denoting by B,=S0,,,(k)/SO (k) the fibre of /, we have that odd framings
of M correspond to homotopy classes of liftings of v to B,. Let y, be the
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universal bundle over BSO(k) and denote by &, the bundle over B,
induced by the map from B, to BSO (k). Following Lashof [4] we use the
Thom spaces T'(£,) to define a spectrum T whose homotopy is isomorphic
via the Pontrjagin-Thom construction to the hordism group of odd
framed manifolds. In this section we will analyze the homology and
homotopy of this spectrum.

Note that by restricting to the fibre over the base point, there is a
standard copy of S* in T(&,). In this way the sphere spectrum S is con-
tained in T. We begin by studying the quotient spectrum T/S = { T(¢&,)/S*} .

For each k there is a cofibration
T(&,)/8*—2> MSO (k)/S* —£—~> MSO (k)/T(¢,).

The corresponding exact homology sequence is related via the Thom
isomorphism to the exact sequence of the triple (BSO (k), By, *):

— H(T(&,)/SY) —> A, (MSO (k)/S*) £+ H (MSO (k)/T(£,) —>

= ~ ~

— H,(B,*) —*> H,(BSO(k),*) > H,(BSO(k),B,) —>

By (1.2) j, must be localization at 2, hence B, is localization at 2.
Now consider the diagram

F,—> MSO (k)/S* £~ (MSO (k)/S¥) 5,

‘g

'
'
i

| ;
T(c'a)/é" —% MSO (k)/S* —- MSO (K)/T(Z,)

where  is localization at 2 and F, is the fibre of /. Since B, localizes the
reduced homology, it follows from (1.1) that there is a homotopy equiv-
alence h with £=ho f. Thus the composition #oa is null homotopic and
there exists a map g making the first square commute.

By using (1.3) we see that both rows produce long exact homology
sequences and we apply the 5-lemma to conclude that g induces an
isomorphism of reduced homology groups.

Therefore
g: T(&)/S*—> F,

is a homotopy equivalence.

Recall that the spectrum {MSO(k)/S*} defines a bordism group
Q3% represented geometrically by compact oriented manifolds with
framed boundaries [6].

7‘
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2.1. Lemma [6]. For n>1 there is a short exact sequence
0— Q50 Q50fr ., Qff 0.

Proof. This follows immediately from the long exact sequence relating
these groups and the fact that the characteristic numbers of a framed
manifold are zero. [

The exact homotopy sequence of the fibration ¢ shows that r,(T/S)
splits as a direct sum of the cokernel of £,: Q39" (29", and the
kernel of £, : Q597" (Q5r) .. For n=4k — 1 the cokernel is isomorphic
to @ Z,,/Z where n(k) is the number of partitions of k. For n#3 mod 4

n(k)
the cokernel is zero. The kernel is just the odd torsion in 3%, which

for =0 mod 4 is isomorphic to the odd torsion in " =7} _,.

For n=0 mod 4 we must determine the subgroup of the odd torsion in
Q" | which is the image of torsion in %" To do this we recall two
theorems of Stong.

2.2. Theorem [6]. A necessary and sufficient condition that an oriented
manifold with framed boundary have the same Pontrjagin numbers as a
closed oriented manifold is that the L genus be integral. [

Now let M"~! be a framed manifold. Pick a compact oriented manifold
W" with dW"=M""!, and take the L genus of W reduced in Q/Z. By
(2.2) this defines a homomorphism
L:Qr ->Q/Z.
2.3. Theorem [6, p. 215]. The homomorphism L’ coincides with the odd
primary part of the Adams invariant e, [1]. [

2.4. Corollary. For n=0mod 4 there is an exact sequence
Tors Q50 Qfr LS5 Q/Z.

Proof. Since the L genus of any torsion element is zero the composi-
tion must be zero. Suppose M"~! is in the kernel of L’. Let W" be an
oriented manifold with W"=M""". The L genus of W is integral so by
(2.2) there is a closed oriented manifold W" having the same Pontrjagin
numbers as W". The element (W"—W"eQ3% has all Pontrjagin
numbers zero, hence must be a torsion element, and its image in QI | is
M"_l. D

For each integer n let K, _, = Q" | be the odd part of the kernel of e,.
IfJ: m,_,(SO)— Q| is the classical J-homomorphism, then e,: 2,7 ; .4,
— @Q/Z splits out the odd part of the image of J [1]. Thus & o=
im J,,y) ®K,_,. Note that when n=1, 2, or 3 mod 4, the odd part of the
image of J is zero in Qf", 4. Therefore for these cases K,,_, 5 0 P

We now can summarize the results of the previous discussion.
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2.5. Theorem. The homotopy groups of the spectrum {T(&,)/S*} are
given by

®G)©OK, _ if n=4k—1
n,(T/S)~ (x(k) ) -
Kn—lzgrf:—uod) if n£3mod4,

where G =Z ,,/Z and n(k) is the number of partitions of the integer k. []

To pass from this information to the homotopy of T consider the
exact homotopy sequence

= My (T/8) > 7, (8) - 7, (T) - 7, (T/S) — -

Since the subgroup K, of m, _, (T/S) arises from the kernel of localization
it must inject into 7, (S)=Q!". Therefore for n%3 mod 4 there is a split
exact sequence

0-K,—»7,(S)—n,(T)—0

and since K, =m,(S),q we have

n,(T)=n,(S),;,-
If n=4k—1 it is evident that each copy of G in n,,_,(T/S) must go to
zero in m,,_,(S). This completes the proof of the following:

2.6. Theorem. The bordism groups of odd framed manifolds QfF®),
defined as the homotopy groups of the spectrum T, are isomorphic to the
2-primary part of stable homotopy if n£3 mod 4. For n=4 k—1 there is an
exact sequence

0Ky =73y — &2, — %))G_'O- O
T

The homology groups of the spectrum T may be computed directly.
Let k be large and consider the group H, ,(T(&,)). By the Thom iso-
morphism this is isomorphic to H,(SO,,,(k)/SO(k)). By (1.5) this group
appears in the exact cofibration sequence

= H, (SO, (K)/SO (k) — H,(BSO(K)) > H,,(BSO 3, (k) — ---

where /, is localization at 2. Since all of the torsion in H, (BSO(k)) is
of order 2 we conclude the following:

2.7. Theorem. The reduced homology of the spectrum T is given by

. %G ifn=4k—1
H,(T)~ 0 otherwise

where G=2Z,,,/Z and n (k) is the number of partitions of k. [
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3. The Homomorphism J’

In this section we study a homomorphism J': n"(SO}Z))—> Qfr@)
analogous to the Whitehead homomorphism J: 7,(SO)— Q,’. A much
more general treatment of J-homomorphisms in cobordism theory
has been given by Harris [3].

Given spaces A, B and C and maps f: A— B, g: A— C, the push out
of (f, g) is defined to be the space D= M U, M,, the union of the mapping
cylinders of f and g identified along the copy of A contained in each.
There is a natural way to define the unlabeled maps so that the following
diagram commutes up to homotopy:

A-L.B

Jg

C—D

If f:A'—> B, g': A’— C' is another pair of maps and x: A— A', f: B— B/,
y: C— C' have the property that fof =f"oa and yog=g o then there
is a natural map induced from the push out of (f, g) to the push out of
(', 8)

Let ¢: S"—>SO(k),, k large, represent an element of ,(SO(k),))-
Denote by f§ the composition

S"— S0 (K) 5, — SO(K) ,/SO(K).

Since p factors through SO(k),, we have that g*(¢,) is trivial and its
trivialization is uniquely determined up to fibre homotopy equivalence.
Denating by S(&,) the sphere bundle of £,, we may identify the sphere
bundle of g*(&,) with §"x S*~! and find a map « so that the following
diagram is homotopy commutative:

§"x $H1 25 §(8)
S"  —L5S0(K),)/SO(K)
There is also an obviously commutative diagram

" x $571 5 S(Z)
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where * is a point and =, is projection on the second factor. Now the
push out of (m,,7,) is §"oS*~'=8"** and the push out of (n}, 7)) is
the Thom space T(E,). The map of push outs $"+*— T(&,) represents
the element J'(¢)e Qf*?),

It is not difficult to see that this is related to the classical J-homo-
morphism by the commutative diagram

7,(80) —iQf
7,(S0, ) —2> Q@

From (2.6) it follows that for n=0,1 or 2 mod 4 the behavior of J' is
identical to that of J. Thus we concentrate our attention on the case

J': fgp_ 1 (SO = Z o — Q53
As before let G=Z,,/Z and define Z,4=Hom(G, G)~ ]—[Z where

the product is taken over all odd primes p.Since Z oq I8 @ TIiNg comalmng 5
it is a theorem of Milnor that H*(BSO; Z )~ Z,, [Py, p,,...] where
the p, are the Pontrjagin classes. Thus H**(BSO; Z,,) is a free Z_,-module
with basis the monomials of degree n in the Pontrjagin classes.

3.1. Lemma. The following is a sequence of isomorphisms of Z,
modules for each k>0
H*(BSO; Z,) & H**(S0,,/S0; Z,y) '~ H*~'(50,,/S0; G)
~ Hom(H,,_,(S0,,,/S0),G).
Proof. The exact cohomology sequence of (1.5) together with the
fact that H*(BSO,,,; Z,q)=0 imply the first isomorphism.

By tensoring the short exact sequence

0-Z—-2Z,—-G6G-0

with Z ; we produce an exact sequence of Z,, modules
0—2Z,,— Zod®Z(2)—> G—0.
Now Z,,®Z,,, isa rational vector space, thus H*(S0,,,/SO; Z,4® Z,,)) =0.

This gives the second isomorphism as the inverse of the corresponding
Bockstein operator.

The third isomorphism is a result of the universal coefficient theorem
since G is injective. []
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3.2. Lemma. If A, H*~'(S0)/SO; G) is the subgroup generated
by the Bockstein inverses of the monomials in the Ponirjagin classes, then
the Kronecker index gives an isomorphism

H,,_,(80,,/50)— Hom(4,, G).

Proof. From previous results we know that the Kronecker index

defines a monomorphism
0: Hy_,(50,/S0)— Hom(4,, G).

These two groups are both isomorphic to a direct sum of the same
number of copies of G, hence each group contains the same number of
elements of order g for each odd integer g. This implies that 6 is an
isomorphism. [J

The isomorphism of (3.2) gives us characteristic numbers for odd
framed (4 k—1)-manifolds. A null homotopy of the composition

M**=' >, BSO - BSO,,,

determines a lift f: M — SO,,,/SO of v. Evaluating f, [M] on the generators
of A, defines a collection of “numbers” in G, one for each monomial
of degree k in the Pontrjagin classes. The decomposable numbers may
be computed in the cohomology of M. Let (iy, ..., i,) be a non-trivial
partition of k, and a=p""(i*(p;,))e H**~'(S0,)/SO; G) (see3.1). Then
define an element of G by the Kronecker index

(f*@ Py, - Piy [MDD

where the p; are Pontrjagin classes of M. Note that if M has the Z,-
homology of a sphere, the decomposable numbers are independent of the

lifting f.
3.3. Lemma. The image of the Hurewicz homomorphism

H: 7y (SO4,/S0)— Hyy_((S0,,/S0).

is the dual of B~'(i*(p,) under the isomorphism of (3.2).

Proof. It is clear that the image of H is contained in the dual of
B~"(i*(p,) since all Pontrjagin classes of the sphere vanish. So it will
be sufficient to show that H has finite kernel.

Consider the commutative diagram with exact rows

0— 74, (BSO)— 74, (BSO ;) — T4y 1(80;)/S0)— 0

0— H,,(BSO)— H,(BSO,;))— Hy;,_(50,/S0)— 0.
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H" is a monomorphism and the cokernel of H' maps to the cokernel of H”
with finite kernel. Thus by the snake lemma, the kernel of H is finite. []

3.4. Lemma. The following diagram is commutative

7t4n—-l(S()(Z))—J'—’ Qt‘-t'rsz—)l _L H4n-l(T)
(]

7r4,,_l(S0(2)/SO)——-H—> H4,,_|(SO(2,/SO)
where @ is the Thom isomorphism.

Proof. This is a consequence of the fact that the image of the fundamen-
tal class of §"o§*~'=S8"** in T(&,) corresponds via the Thom isomor-
phism with the image of the fundamental class of S" in SO(k),,/SO(k).

Similarly we may view an element of the image of J’ as a sphere with
a given odd framing. Then both compositions yield the image of the
fundamental class of this sphere. []

3.5. Theorem. The composition
”4n—1(SO(2))i* QE{-EH‘L Hy,_,(T)
takes Z ,, onto that copy of G=Z,)/Z corresponding to B~'(i* (p,)).
Proof. This follows from (3.3) and (3.4) and the fact that 7, _,(SO,)—
Tyn_1(80,)/S0)is onto. [

Note that the image of J' in Q(?, is divisible by all odd integers,
so it must be a direct sum of the corresponding copy of G and a finite
2-torsion group. Thus from the commutative diagram

Tyn_1(SO) — Tan_1 (SO(Z))

k" JJ’
0—-K,,_ =4, (S)— 71y, (T)> &G0
n(n)
the odd part of the image of J must all be mapped into this copy of G.
This completely determines the structure of m,,_,(T) in terms of stable

homotopy.
3.6. Theorem. Qf{,fz_’lz("%(;) D3, 1, O

Together with (2.6) this gives the complete determination of the
cobordism groups of odd framed manifolds. It will be important in our
applications [2] to know the quotient of Qi modulo the image of J'.
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3.7. Theorem. If k+3mod4, then Q' fimJ ~Q,/imJ,,. For
each n>0 Q52 imJ'~( @ G)®(Q,_,,/imJ,). O

n(n)—1

4. Lens Spaces

In this section we will show that the homology of the spectrum T
may be generated by odd framings of lens spaces and spheres. It is a
consequence of (3.3) that all indecomposable characteristics numbers
arise from odd framings of spheres. We will show that all decomposable
numbers arise from appropriate connected sums of lens spaces.

Recall from §3 that for each k>0 there are isomorphisms
H**-'(S0,,,/S0; G) —5 H**(50,,,/S0; Zodh;— H**(BSO; Z,,)

and we denote by 4, H**~'(S0,,,/SO; G) the subgroup generated by
{B~'(i*(y)|y is a monomial in the Pontrjagin classes}. If /= M**~'—
§0,,,/SO arises from an odd framing of M, then by evaluating f, [M] on
the generators of A4, we arrive at the characteristic numbers (in G) of M,
one for each partition of k.

Now let p be an odd prime. If q,, ..., q,, are integers relatively prime
to p, there is a free action of Z, r on S**~! generated by « where

02y sees 2o =Ry Zps oo s Az 22

and A;=exp(q;-2ni/p"). The quotient space under this action is the
lens space L**~'(p"; q,, ..., q,,)- It is a smooth orientable Z,-sphere.

If x is the generator of H*(L**~'(p";q,...,q,))=Z,r then the
total Pontrjagin class of L is given by [5]

PL)=(1+q7 x*)(1+43 x*) ... (1+43; x°).

Thus the i-th Pontrjagin class p,(L)=uv,(q?, ..., 43,) x*' where v, is the

i-th elementary symmetric function of 2 k variables and the coefficient is
read modulo p".

It is not difficult to show that the decomposable characteristic
numbers of L may be computed directly in the following manner. The
Bockstein operator for the sequence 0—Z— Z, — G —0 defines for
each i an isomorphism

B: H*-Y(L; G)—=> H*(L; Z).

If (i,, ..., i,) is a non-trivial partition of k, then the corresponding number
for L in G may be computed as the Kronecker index

<ﬁ—l(Pi,) “Pi, -+ Piyo [L]>.
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Thus the number may be determined by taking the appropriate monomial
in the elementary symmetric functions v;, evaluating at (47, ..., g2,) and
reducing mod p” to give an element of Z,=Z,..<G.

For each non-trivial partition n=(i,, ..., i,) of k, let { =v, ... v,
be the corresponding monomial in the elementary symmetric functions.
Let X={4'|i=0} and Y= X x *** x X. Then each ¢ may be viewed as a

_—
2k fold
real valued function with domain Y since each v; is a function of 2k

variables.

4.1. Lemma. For any non-trivial partition mn, of k there exist elements

Vis--» Ym€Y and rational numbers r,, ...,r, such that
0 for n=*mn,
Zi:r,.é,,(y,-)—{l for n=n,.

Proof. As m ranges over the non-trivial partitions of k, the polynomials
¢, give a linearly independent set of homogeneous polynomials of degree
2k in 2k variables. One can show by a geometric argument that any
linearly independent set of polynomials of degree n in # variables must be
independent on any (n+1) lattice.

So pick a finite set Y'< Y on which the {£, } are linearly independent.
Let V be the rational vector space with basis the elements of Y’. By
extending linearly, the set {£,} is a linearly independent set in V' *. There
exist elements o, € V** such that

0 if n¥n
a"(é"')_{l if m=mn.

Under the isomorphism V** — V the image of o, is ) r,y;, and these
satisfy the conclusion of the lemma. [J =i

Multiplying by a large integer we have for each n, an integral linear
combination Y n, y; with

)0 if n#m,
Z”rfn(yi)—{#o

m
For sufficiently large r the integer ) m, &, (v;) is non-zero modulo p'.
i=1
We view ) n, y; as a connected sum of Z . lens spaces. Since the charac-
teristic numbers are additive, we have the following:

if n=m,.

4.2. Theorem. For any non-trivial partition n,, of k and any odd prime p
there is a connected sum of Z,, lens spaces whose m, characteristic number
is non-zero in Z .. =G for which all other characteristic numbers are zero.
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It is evident that all multiples of this non-zero element of Z .. may be
realized. In order to show that the entire subgroup may be realized, we
must give a procedure that divides by p.

Any lens space L=L**~'(p"; q,, ..., q,,) in the connected sum of (4.2)
is naturally the p-fold cover of the lens space L =L*~'(p"*';q,, ..., q5)-
It may be checked directly that p times the characteristic numbers of L
gives the corresponding characteristic numbers of L. Doing this for each
lens space in (4.2) and taking the connected sum of the resulting lens
spaces gives the desired division process.

We are now able to conclude the main results:

4.3. Theorem. Let £ <@ be the subgroup generated by lens
spaces together with the image of J'. Then the Hurewicz homomorphism

Q@ H(T)

maps the subgroup & onto H,(T). That is, any element of H,(T) may be
represented by a connected sum of lens spaces and spheres with odd

Sframings. [

4.4. Corollary. £ +image n§ =QY®. In other words, the cobordism
group is generated by odd framed lens spaces and spheres together with all
framed manifolds.

Proof. From (2.6) Q®/im = is divisible and it maps onto H, (T) with
finite kernel. The image of & in Q"m/lm 73, denoted Z, also maps onto
H,(T) by (4.3). Thus _fl’ is a subgroup of ﬁmte mdex in a divisible group,
hence & = Q¢ ®/im 7§ This implies QP =im 7+ %, O
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Subvarieties of Moduli Spaces

Frans Oort* (Amsterdam and Aarhus)

In this paper we try to decide along algebraic lines whether moduli
spaces of abelian varieties or of algebraic curves contain complete
subvarieties. In Theorem (1.1) we consider abelian varieties and curves
of genus three in characteristic p#0. In Section 2 we use monodromy in
order to show certain families of abelian varieties up to a purely in-
separable isogeny are isotrivial; probably the results (2.1) and (2.2) are
special cases of more general facts about l-adic monodromy. In Section 4
we answer a question raised by Manin concerning a possible generaliza-
tion of the fact that two supersingular elliptic curves over an algebraically
closed field (of characteristic p) are isogenous. We abbreviate abelian
variety(ies) by AV; we use X' for the dual, and X for the formal group
ofan AV X.

1. Moduli Spaces in Characteristic p which Contain Complete Curves

All moduli spaces in this section considered will be moduli spaces in
the sense of [21] with a field k as base ring.

Suppose k=C, the field of complex numbers; the coarse moduli
scheme A, of principally polarized abelian varieties of dimension g
contains a projective subscheme of dimension g— 1; this easily follows
from the existence and the properties of the Satake compactification of
A, as for example Shafarevich remarked (cf. [32], p. 111).

As Mumford pointed out to me, along the same lines it follows that
if k=C, and g=3, then the coarse moduli scheme M, or irreducible,
non-singular, complete algebraic curves of genus g contains a complete
algebraic curve; this can be seen as follows: let M, be the coarse moduli
scheme of good curves of genus g (stable curves of genus g whose Jacobian
variety is an abelian variety), and

Jj: Mg— A,
the Jacobi mapping; let 4, < A, =IP"be the Satake compactification, and
denote by C the closure of j (M,) in A,; each component of C ~j(M,) has
codimension at least two in C: this is seen to be true for components of
J(Mg)~j(M,) by counting moduli, and for components of C~j(M,) it
follows from A,~A4,= () A4,; thus we can intersect j(M,)=IP" with a
h<g

* The University of Aarhus is gratefully thanked for hospitality and excellent working
conditions. I thank the referee for some improvements such as a better formulation for
Theorem (2.1), and an alternative for the last part of the proof of Theorem (4.2).
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convenient linear space of dimension N —3g+4 which does not meet
CNj(M,).

By a result of Deligne and Mumford we know a natural compacti-
fication D of M, exists by the use of stable curves, cf. [2]; note that
D~ M; and M~ M, both have at least one component of codimension
one (consider irreducible curves of genus g having one node, or consider
a component U coming from curves consisting of an elliptic curve and a
smooth curve of genus g—1>1 connected by one normal crossing);
thus it is not clear the method above can be applied to this or another
compactification of M, (and note that j “contracts” U to a lower dimen-
sional j(U)c 4,).

Theorem (1.1). Let k be field, char (k)=p 0.

a) The coarse moduli scheme A, , of abelian varieties of dimension g
plus a polarization of degree d* has a projective subscheme of dimension
at least 3 g(g—1).

b) Suppose k is algebraically closed. The coarse moduli scheme M; of
complete irreducible non-singular algebraic curves of genus 3 contains a
complete algebraic curve.

Definition (1.2). Let X be an AV over a field k, char (k)=p; we say
the p-rank of X equals f, notation: pr(X)=f, if

X (K)=p’,
where K is an algebraically closed field containing k, and
X=Ker(p: X—X);

we say X is ordinary if f=dim X, and we say X is very special if f=0.

Let Y be a scheme over the prime field IF ,; we denote by F=Fy:
Y— Y the morphism obtained by raising all sections of ¢y to the p-th
power; the induced homomorphism

F*=h: H'(Y,0y)— H'(Y,0y)

is usually called the Hasse-Witt transformation.

Lemma (1.3). Let X be an AV over an algebraically closed field of
characteristic p of p-rank f; then the number of elements ve H' (X, Uy)

such that
hv=v  equals p’.

Proof. By duality of abelian varieties, the p-rank of X equals f if
and only if the semi-simple rank of h equals f, which, by [10], p. 488,
Satz 10, yields the result (also cf. [22], p. 143, Corollary).
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Lemma (1.4). Let S be an irreducible algebraic k-scheme, and X — S
an abelian scheme over S let f be the p-rank of the generic fibre; for any
field K, and for any seS(K),

pr(X)<f.

Corollary (1.5). Let X— T be an abelian scheme over a locally noetherian
k-scheme T, and n an integer; the set of points s of T with pr(X,)<n is a
closed set in T.

Lemma (1.6). Assumptions as in (1.4); let W be the closed subset of S
over which the fibre has p-rank at most f—1 (closed because of 1.5); then
either W is empty or each component of W has codimension one in S.

Proof of (1.4), (1.5), (1.6). The sheaf # = R'(X — S)(0,) is locally free
over S, thus each point of S has a neighborhood Spec(R) < S over which
H# |Spec(R) is a free coherent sheaf; let G=(G, p) be the affine space
of dimension g=dim(X/S) and note ¥ can be identified with the sheaf
of germs of sections in G; thus the Hasse-Witt transformation can be
viewed as a group scheme homomorphism; its kernel N:=Ker(h: G — G)
can be given by the equations (hv—v);=0, and if v=Y x;v;, then

(h U—U)i:}: X} hyj—x;;
J

N is quasi-finite over Spec(R), and N is smooth over Spec(R) because
the derivations d/0x; of the defining equations have value 1, if i=j, or 0,
if i#j, which implies smoothness. At a geometric point s of Spec(R),
the rank of the finite group scheme equals p" if and only if the p-rank
of X equals n, thus (1.4) is proved.

This implies (1.5).

For the proof of (1.6) we restrict to Spec(R)=S as above; suppose k
perfect and S reduced, let K be the field of fractions of R, and choose
L> K, a separable finite extension, so that N ® L is a constant L-group
scheme; let §” be the normalization of Spec(R) in L, and N'=N xS,
G'=G x5 S'; choose some coordinate system for G” over S, let v™eL
be all the coordinates of the non-zero points of N ®g L, and let W’ be
the union of all divisors defined by (the poles of the) ™ on S’; because S’
is normal each component of W’ has codimension one in S’, and for
s'eS’ the p-rank of the fibre of X'=X xS’ is smaller than f if and only
if seW’; thus W’ has the required properties, and because each fibre
of §’— Spec(R) is non-empty and finite, Lemma (1.6) is proved.

Remark (1.7). We should like to make (1.6) more precise in the
following sense. Consider the set of 2 x 2-matrices

()
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(consider the entries as unknown over some field k of characteristic p,
i.e. A can be considered as the generic point of four-dimensional affine
space), and consider those matrices, for which

b\ [a® b*
w,— (¢ =0:
Ad (c d) (c" d”) 0;

is the set of such points given by two equations? (and generalize: A is a
g x g-matrix, is the set of points A4 ... A"~ =0 given by g-equations?).
For example

c+0, a?*'+bcP=0=ca’+dc?

define a closed set in (¢ +0) for which 44”=0 (if d=0 it easily follows,
if d+0, then ad=bh c follows etc.), but if a=0=c, and d+0, then 44" +0,
although the matrix satisfies the two equations; in particular we were
not able to check [19], p. 79, lines 11 and 12 (probably the lower line
should read b, ,_y by_;+by,_2 b5, 1=0,2 misprint both in the Russian
version and the translation): consider p=35, and the curve given by

Y2=X+X3+1;

according to [19], p. 79, its Hasse-Witt matrix equals

A= (0 2)
o 2
thus 44 =0, although the coefficients of the curve satisfy the equations
which are supposed to define the formal type 2G, ,; however, basically
the claims in the middle of p. 79, [19], are correct: at every point of the

moduli space M, the closed set corresponding to curves with very special
Jacobian variety locally is given by 2 equations.

Proof of Theorem(l.la). Let W, , be the subset of points in A, 4
corresponding to very special abelian varieties; as there exists a proper
morphism from a fine moduli scheme to 4, ,4, by (1.5) we conclude W, 4
is closed in A, 4. Clearly W, ;is non-empty (W, ; is non-empty, contains
e.g. a point corresponding to C%, where C is a supersingular elliptic
curve: take an a,-covering of an AV corresponding to a point in W, 4,
this gives a point in W, 4, etc.). As each component of 4, ;has dimension
at least 1g(g+1) (cf. [24], Theorem 2.3.3), by (1.6) it follows that each
component of W, , has at least dimension lo(g+1)—g=%g(g-1); as
Ag 4 is quasi-projective and W, , is closed in A, 4, it follows W, 4 is
quasi-projective. Let R be a discrete valuation ring, which is a k-algebra,
with field of fractions K ; we want to show

Mo, (Spec(R), W, ;) —— Mor, (Spec(K), W, J); (+)
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this map is injective; suppose given we W, ,(K); then there exists a
finite extension K'>K and a (very special) abelian variety X over
Spec(K’) plus a polarization which (over K) defines the point w; by the
stable reduction theorem (cf.[9], 1.6; or cf. [25] for other references),
there exists a finite extension L>K', a discrete valuation ring UcL
and a smooth stable group scheme Y over Spec(U) with generic fibre
Y®L=X®L; consider the p-Lie algebra Lie(Y) of the group scheme
Y— Spec(U) (cf.[3], 11.7.2); the p-operation on Lie(Y) is nilpotent
because Lie(Y) = Lie(Y)®y, L=Lie(X ® L), and because X is very special;
thus the p-operation on the Lie-algebra Lie(Yy)=Lie(Y)®! (I is the
residue class field of U) is nilpotent; as Y is stable over Spec(U) this
implies Y is an abelian scheme over Spec(U). Thus the polarization on
X ® L can be extended to Y, and a commutative diagram results

Spec(K) ——— Spec(R)

N

w | Spec(L) — Spec(U)
/o
Wea=—— A a5
thus w can be extended to w': Spec(R) — 4, , and as W, ais closed in A4, ,
this morphism factors through W, ;; thus we have proved () to be an

isomorphism; by the valuative criterion for properness (cf. EGA, 11.7.3.8),
this implies W, , is proper over Spec(k), and (1.1a) is proved.

Proof of Theorem (1.1b). Denote by A, the coarse moduli scheme of
principally polarized abelian varieties A,= A, ,, and by

L=j(My), Rg=j(M)~ j(M,)

the subsets corresponding to Jacobians of irreducible curves, respectively
corresponding to Jacobians of reducible curves. We know I,UR, is
closed in 4,; moreover I; = A,,and I, U R, = 4, for g=2, 3 for dimension
reasons (cf. [27]). Note that R, is irreducible and has dimension 2,
because it is contained in the image of the natural morphism 4, x 4,— A4,
and that each component of Ry has dimension at most 4, because R,
is contained in the images of A, x A; xA; and 4, x A, in A, and
dim(4,)=1, dim(4,)=3. Moreover W, is zero-dimensional (the points
of W, correspond to supersingular elliptic curves, W, S 4,), and each
component of W, has dimension at most one: suppose V< W,, V irre-
ducible of dimension 2; V cannot be contained in R, , because the generic
point of R, corresponds to an ordinary AV; moreover I, is affine (this
follows from the fact that a curve of genus 2 is hyperelliptic, or, cf. [13]);
thus V' \(Vn 1) would be a closed set of dimension one, but W,nR,

8 Inventiones math., Vol. 24
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has dimension zero, contradiction, hence each component of W, has
dimension at most one. From this we deduce that each component of
W, R; has dimension at most one: it is contained in the image of
W, x W, — A,. But each component of W is proper and has at least
dimension 1 -3(3—1)—3=3 (use (1.1a)); as 4 is quasi-projective, and k
algebraically closed we can intersect with a linear space of dimension
N=2, L—IPY, A;—IP} such that LnW; is a (complete!) algebraic

curve, and LN Wy Ry=#; then _jl (LN W3)< M is a complete algebra-
ic curve, and (1.1b) is proved.

Remarks (1.8). If we could prove each component of W, has dimension
three, and if we could prove W, I, is non-empty (which looks very
plausible, true e.g. if char(k)=3, cf.[19], p.78, Example 2), then it
would follow that M, contains a complete algebraic curve.

It seems plausible that M, contains a complete rational algebraic
curve.

Note that M in case k=C contains a complete curve of genus 129
as was proved by Kodaira (cf. [15], n=2, m=2, m(2n—1)=6).

In case char(k)=2 the result (1.1a) (and probably also 1.1b) follows
from an algebraic construction by Mumford of the Satake compactifica-
tion (cf. Inventiones math. 3 (1967), p. 236, Main Theorem).

2. Families of AV over Curves
We denote by K° the separable closure of a field K, and by 7, X the
I-Tate-group of an AV X.

Theorem (2.1). Let k be a perfect field (no restriction on its charac-
teristic ), C a complete, smooth irreducible algebraic curve over k and X
an AV over K =k(C). Let | be a prime number, | % char (k), and suppose that

p: Gal(K*/K)— Aut(T, X)
has the property that
p[Gal(K¥K k*)] is a commutative subgroup

of Aut (T;X). Then there exists a finite separable extension L>K, an
AV Y over the algebraic closure of k in L, and a purely inseparable isogeny

t: YOL—>X®kL;

the extension LK can be chosen in such a way that it is unramified at
all places of C where X has good reduction. If moreover X is an abelian
scheme over C such that X® K=X and C has a k-rational point, i.e.
C (k) =, there exists an unramified k-covering D— C, an AV Y over k, and
a purely inseparable isogeny t: Y ®,D— X x¢D.
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Corollary (2.2). Suppose X is an abelian scheme over C, a curve with
all the properties stated in (2.1); suppose moreover genus(C)< 1; then for
a suitable k-covering D — C the last conclusion of (2.1) holds; if genus(C)
=0, then D —> C.

Corollary (2.3). Let k be a field of characteristic zero; any abelian
scheme X — C, with genus(C)<1 becomes constant over a suitable
unramified covering D— C, and hence any fine moduli scheme of abelian
schemes in characteristic zero does not contain a complete curve whose
normalization has a component of genus zero or one.

Remark (2.4). Because of the existence of Nmm (= Néron minimal
model) the existence of an abelian scheme X over a smooth k-curve C is
the same as the existence of an AV X=X® K over the function field
K =k(C) having good reduction at all discrete k-valuations of K. The
condition that Y®D and X xD are isogenous is the same as Y®L
and X ®g L being isogenous, where L=k (D). The t as indicated in the
last part of the theorem is an isogeny if it is an epimorphism with finite
kernel, and it is called purely inseparable if Ker(t) is an infinitesimal
D-group scheme (which is the same as t® L being a purely inseparable
isogeny of L-group varieties). Coverings will be considered between
smooth, irreducible curves; note that if D — C is an unramified covering
with genus(C)<1, then

genus(C)=genus(D),

because in the unramified case

2-genus(D)—2=(2- genus(D)—2) - n,

where n is the degree of the covering (the Hurwitz formula, e.g. cf. [5],
p. 215).

Proof of (2.2). The (étale part of the pro-finite completion of the)
fundamental group of an algebraic curve C with genus(C)<1 is known
to be commutative (in characteristic p, use a result by Grothendieck,
cf. [6], Exposé X, Theorem 2.6), thus if Gal(K¥/K k®) acts in an unramified
way on T, X (which is equivalent to X having good reduction everywhere
on C: the Néron-Ogg-Shafarevich criterion, cf.[31], Theorem 1 on
p.493) and if moreover genus(C)<1, the main condition of (2.1) is
satisfied because n, (C)=Gal(K%K k*) thus (2.2) follows from (2.1).

Proof of (2.3). The last conclusion of the theorem implies that all
geometric fibres of X — C are isogenous to Y ®k; this isogeny, being
purely inseparable, is an isomorphism if char(k)=0 because group
schemes in characteristic zero are reduced (hence Ker (t)® L, being local,
is trivial); moreover a polarization of a constant family is constant
(cf. [21], Corollary 6.2), thus (2.3) follows from (2.2).

8*

unram.?
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Remark (2.5). As Ueno pointed out to me, (2.3) can be proved with
topological-analytic methods: if C maps to a fine moduli scheme, the
universal covering of C (completeness is essential) maps to the universal
covering of that fine moduli scheme, which is a Siegel space, and analysis
shows this lifted map to be constant (cf. Kas, [14], p. 790).

Remark (2.6). On the other hand the conclusion of the corollary does
not hold in case char(k)=p=+0: let Z be an AV over k such that

(@) =Z',

where t denotes the dual abelian variety; e.g. Z is the product of three
supersingular elliptic curves; for a point a€IPg (R), where R is a k-algebra,

we define N
%, ®R— N,cZ'®R
as follows: let bg,b,, beHomy(a,,(x,)*) be linearly independent,
a=(ay:a,:a,), then
N,:=Im((ao bo, a; by, a; by): a,— Z'®R);

we define
X,:=(Z'/N,),

thus we have an exact sequence of group schemes over IP2:
0->N2X—=25>Zx P?2>0

(cf. [23], Theorem 19.1; here N® denotes the dual of N; note ad=w,);
choose a polarization on Z (and hence on Z x IP?), and lift it to a polariza-
tion A on X via 7 (and we can also choose a level n-structure on X);
let M be the moduli space of polarized abelian varieties (respectively of
polarized abelian varieties with level n-structure); then (X, 4) (plus the
level n-structure) defines a k-morphism

f:IB2—>M,

and we claim the image of f has dimension 2: assume k is algebraically
closed, suppose EcIP? is an irreducible k-algebraic curve such that f(E)
is one point on M this implies there exists a finite k-morphism g: E'— E,
and an AV Y over k, and an E-isomorphism

Y @ E'—— g*(X|E);
this yields a homomorphism
h: Z2Z@QE— g*X'|E)y =Y & E'
and for ee E'(k), the kernel of h,: Z' > Y"*
Ker(h,)= Ng();
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take a point eyeE’(k), let hy: Z'— Y* be the fibre of h at e,; the homo-
morphisms 4 and h, ®, E’ coincide over e,, thus (cf. [21], Corollary 6.2)
h=hy ®, E', which implies

Ker(h,)=Ker(h,,) forall ecE'(h);

as {bo, b,, b,} was a basis, different geometric points of IP? yield different
subgroup schemes N,=Z', a contradiction; thus f(E) is not a point
in M, and f (IP?) has dimension two; conclusion: M contains curves E,, E,
such that the normalization of E; has genus i (it is not difficult to choose
E;<IP? genus(E;)=i such that f|E; is birational). This example seems
to contradict [32], Theorem 5, in case char(k)=p=+0 and dim(4)=d>2
(in order to construct E, we can do the same procedure with (ocp)2 ez,
so in that case we can take d 22); in the proof of [32], Theorem 5 in case
of characteristic p+0 the trace A* need not be a subvariety of 4 (cf. [16],
VIIL3, Corollary 2 on p. 216).

Proof of (2.1). Suppose k', C', X’ as in the theorem. Because C’ is of
finite type over k', and X' is of finite type over K (and X’ of finite type
over C'), there exist k, C, X such that kck’, C'=CQ®Fk, X'=X®Kk'(C’),
and such that under the identification 7, X = T, X’ (choose a k-embedding
k*<k’®) the groups Gal (K*/K k*) and Gal(K"*/K’ k'*) have the same image,
and such that k is the perfect closure of a field finitely generated over its
prime field. Thus it suffices to prove (2.1) in case k has this property.

In order to prove the first conclusion of the theorem, we replace k
by a finite extension, again denoted by k, so that all places of C where X
has bad reduction become rational over the new field, and such that at
least one more point of C is rational over k (note that these properties
are satisfied already in the second part of the theorem) We choose
N=1?; the group scheme

X =Ker(xN: X > X)

is constant over an extension L>K, L=k(D); because (I, char(p))=1
this extension (or: the covering D— C, k(D)=L) can be chosen such
that it is separable and unramified at all places where X has good
reduction; we denote the new fields again by k, K, with K=k(C), and
we arrive at a situation where yX is a K-constant group scheme, i.e.
Gal(K¥K) acts trivially on yX (K*).

First Step. For every ac Gal(K*/K k°) all eigenvalues of p acAut(T, X)
are equal to one. This we prove as follows. Let M = C (k) be the set of
points where X has bad reduction. Let

Kkic LcK®,
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where L is the union of all abelian extension of K k°, of degree a power
of I, unramified at all places (discrete valuations) of Kk¢k* outside M;
clearly Gal(K¥/L) is a characteristic subgroup of Gal(KY/KKk’) (i.e.
invariant under every automorphism). Let

J=1Jacy (C)

be the generalized Jacobian variety of C constructed with M as conductor
(all multiplicities of points in M equal to one), cf. [30], Chap. 5; this is a
k-group variety, there is an exact sequence of k-group varieties

0— (G, )M ~'=H—J—Jac(C)—0

where Jac(C) is the (ordinary) Jacobian variety of C (and H has this
form because all points in M have multiplicity one and M<=C (k).
Because J is a k-group scheme, T;J is a Gal(k¥k)-module in a natural
way. Because Gal(K¥/L) is characteristic in Gal(K/K k), and abelian,

0— Gal(K¥K k¥) —— Gal(K*/K) — Gal(k/k) —— 0

Gal(L/K k%)= T,J ----#--»> Aut (T, X)

the action by Gal(k¥k) via inner conjugation inside Gal(K*/K) on
Gal(KYK k%) induces an action on Gal(L/Kk®); there exists a natural
isomorphism of Gal(k*/k)-modules

Gal(L/K k)= T, J;

this can be seen as follows: a finite abelian extension of K k* is induced
by an isogeny of a generalized Jacobian of C (cf. [30], VL.11, Prop.9);
if such an extension is contained in L, we can choose the support of the
conductor to be contained in M (cf. [30], VI.12, Lemma 1); in fact in
that case, the degree of the extension is a power of I, hence prime to
char(k), thus the conductor can be chosen contained in M (cf. [30],
p. 128, Example 1: if M < N, support(N)=support(M), then

Ker(Jacy (C)— Jacy (C))

is a unipotent group scheme, hence has no I-torsion points); the isogenies
x Ii: J— J are cofinal in the set of all isogenies over J of degree a power
of I (if G — J is an isogeny with kernel annihilated by x [, then its factors
multiplication by I on J), thus the natural action of I-power torsion
points on J on the corresponding coverings of C induce an isomorphism
(use [30], VL11, Proposition 10) between Gal(L/Kk’) and T,J; note
that the canonical morphism C~M —J is defined over k, because
moreover C(k)~M=+@, and it follows that the action of Gal(k¥/k)
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commutes with the isomorphism. Thus we obtain a commutative diagram
as indicated above.

Because k is the perfect closure of a field finitely generated over its
prime field, there exists an element o € Gal (k%/k) such that its action on T;J

r: Gal(k%k)— Aut (T,J)

has the property:
r(e)e Aut(T,J®Q))

has no eigenvalues equal to a root of unity and the characteristic poly-
nomial (of any power) of r (o) has integral coefficients (cf. [25], Lemma 3.2).
Let o'e Gal (K¥/K) be such that

Gal(K¥/K)— Gal(K k*/K)~ Gal(k%k), ¢'+a0,

and write p(c)=:Se Aut(T,; X); let aeT,J, pa=:4AeAut(T;X); choose
0> @, containing all eigenvalues of A and of S.

Consider a;:=(r(c7))(a), and A;:=p a;; because of the hypothesis
made, the matrices A; all commute; because of the way o acts on
Gal(L/Kk)=TJ, o

A;=8""AS', i€eZ

hence any two of these matrices have the same set of eigenvalues. Consider
all infinite sequences
U=(cees U_, Uy, Uy, Us,y o)

of eigenvalues of 4; let E:=T; X ®40, and let
E,:=() Ker(4;,—u)<E;

1134
fix ieZ, and consider Ker(4;—u)=E,,, where u is an eigenvalue; clearly
(’D Eiu = Z Eiu

(on E;, the transformation A; has eigenvalue u and on )’ E;, the map 4;
v¥Fu

has no eigenvalue equal to u); thus it follows (because the 4; commute,

and dim(E)< o) that the set U of sequence u with E,=0 is finite and

their sum is a direct sum
® E,— F:=() E)<E.
uelU uelU

Note that
S(Eu)= ES(u)’

where (S (u));:=u;,,, i.e. it is the shift to the left:
x€E,=SS 1S 'AS'Sx=Su; ; x;
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thus S(E,)<Eg,,, thus SFcF; because S is invertible SF=F, thus
S(E,)=Eg,; thus S induces a permutation

S: U-U.

As U is finite, there exists an integer n so that S"(E,)=E, for all ueU.
Let T=S5" let 1=0" let P be the characteristic polynomial of r(z);
note P has coefficients in Z, and P(1) =0 (because r (o) has no eigenvalues
equal to a root of units, hence r(z) does not have 1 as eigenvalue). Let 1
be an eigenvalue of A=p(a); choose ueU with u,=A4 (this is possible
because Ker(4 —1)=*0, etc.); as T(E,)=E,, for all xeE,,

(TT'ATH) x=Ax;

(P(@)(a)=0,

note that

thus p(P(z)(@)=1,
p(P(@(@)(x)=4"V x=1,

and P(1) being non-zero, this implies that 4 is a root of unity. Because
Gal(K%/K) acts trivially on yX (K*)= T, X/N(T,X),

A=1 (mod N)

(considered as Z,-linear maps), and A being an eigenvalue of A, we

conclude
A=1(mod I)

(in the ring of integers of @Q,(4)), thus 4 is an l-power root of unity.
Suppose A=1; in the ring of integers of @Q,(4) the element n=1-4

divides [, and
det(A—AI1)=0,

thus
n?¥4+n2¢- 1. N.g +---+7?*" " N.ag+- =0, a€Z,

which implies (because 7| N =1?):
n28=0 (mod n?&+1);

however, from A#1 it follows that « is a uniformizing element of @Q,(4)
(e.g. cf [35], 7.4.1), contradiction, and hence A= 1, which concludes the
proof of the first step.

Remark. In case |>2g+ 1, one can choose N=I: if Gal(K¥K) acts
trivially on ,X (K®), again 4 is a [-power root of unity, its degree over Q,
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is at most 2g because it is an eigenvalue of AeAut((Z,)*#) and [Q,({):Q,]
21—1 for any i-power root of unity not equal to one, thus it follows
that 1=1.

Last Step of the Proof. Consider
YVi=Trg, X,
i.e. this is an AV over k, plus a purely inseparable homomorphism
t: YR,K—->X

(with finite kernel) which has a certain universal property (cf. [16], VIIL.3,
Theorem 8 on p. 213, and Corollary 2 on p. 216); we want to show ¢ is
an isogeny (i.e. t is epimorphic); let Z be an AV over K defined by the

t
exact sequence YOK—'>X—>Z—0:

because t is purely inseparable, and [+char(k), we obtain an exact
sequence 0 B TH T 0,
the action of Gal(K*/Kk®) on T,Y is trivial and by the first step we con-
clude all images of p: Gal(K¥/K k) — Aut(T,Z)
have eigenvalues all equal to one, and this image is commutative; this
implies that if Z #0, there exists
0+ve() Ker(p(b)—1),

the intersection taken over all be Gal(K*/K k) (or all be T,J); we define

Z':=TrgpZ, thus T, Z2'>TZ;
by the Lang-Néron version of the Mordell-Weil theorem we conclude
(cf. [17], p. 97, Theorem 1) that ve T,Z’, thus Z'+0; let

2" =Z/Im(Z' ® K— Z);

by [16], I1.1, Theorem 6, we conclude there exists an isogeny

Y®K)@(Z'®K)oZ'-X,

thus the image of the K/k-trace of X contains the image of (Y® Z')® K
(universal property of the trace), the K/k-trace of X is t: YQ K — X,
thus Z'=0; thus Z=0, thus ¢ is epi, i.e. ¢ is a purely inseparable isogeny,
which concludes the proof of (2.1).

Remark (2.7). Probably the methods above can also be used to prove

the statements (2.1) and (2.2) with C replaced by (the function field of)
an AV over k.

Remark (2.8). In case genus (C)=0, the result (2.2) was proved by
Grothendieck (cf. [8], pp. 74/75, Proposition 4.4). Theorem (2.1) was
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inspired by the result of Grothendieck which says that an AV with
sufficiently many CM is isogenous to an AV defined over an algebraic
extension of the prime field (cf. [22], Theorem on p. 220, and cf. [26]).
Possibly these theorems are special cases of more general results.

Remark (2.9). It is not difficult to construct examples of non-trivial
families X — C over a complete elliptic curve over any given base field:
take an elliptic curve D, a point de D (k) of order (d)>1, and an AV Y over
k with ae Aut, (Y), with order (a)=order (d); let C=D/<{d) and let X be
the quotient of D x Y by the equivalence relation (u, y)~ (u+d, a(y))-

3. Subvarieties of Moduli Spaces Defined by Kodaira Surfaces'

In the previous section we showed that a fine moduli scheme of
algebraic curves in characteristic zero does not contain a complete
elliptic or rational curve (use Corollary (2.3) plus Torelli’s theorem which
says that the Jacobi-morphism from moduli schemes of nonsingular
irreducible curves to the moduli schemes of principally AV is injective);
in this section we follow a construction suggested by Parshin of certain
surfaces, so that we can prove:

Theorem (3.1). In any characteristic there exists a number g such that
the coarse moduli scheme M, of (irreducible and nonsingular) algebraic
curves contains a complete rational curve Ec M,.

By a Kodaira surface, or an irregular algebraic surface, we mean a
complete (nonsingular) algebraic surface M plus a smooth morphism
h: M — D onto a complete nonsingular irreducible algebraic curve D;
such surfaces were constructed by Kodaira (cf. [15], also cf. Kas, [14]).
The family h of curves parametrized by D defines a morphism M:D — M,,
where g is the genus of each of the fibres of M — D; we construct M and D
such that D — M, factors through a rational curve.

(3.2) Parshin’s Construction (cf. [28], pp. 1168/1169, and 1 163-1167).
Suppose given a field k, a smooth, irreducible, complete algebraic curve
B over k, two positive integers m, n both prime to char(k); then we arrive
at an etale covering D — B and a Kodaira surface M — D; moreover if
genus (B)=2, and m>1,and n>1, then no (etale) covering of D makes
the fibration M — D trivial (equivalently: at least two fibres of M — D
are non-isomorphic). The construction is performed as follows:

D,PcCe——JxB
Jn cartesian l(xn)xid

BxB—>JxB

1 1 thank Knud Lensted for drawing my attention to the paper by Parshin and for stimu-
lating discussion on this topic.
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consider J:=1Jac(B), let B— J be the canonical embedding of B into its
Jacobian variety (e.g.cf. [30], V.6 and V.9), and define i so that
i(b,b)=(0, b) (i.e. the “variable” point b is used to define the canonical
morphism i,: Bx{b} —J x {b}); let C be the pull-back of i(Bx B) by
multiplication by n on the B-group scheme J x B, and let

DUP=7(b,b)
be the fibre over (b, b) so that P: Bx B— C is the section defined by
P={0} x BcCcJ x B;

then C is irreducible (cf. [30], VI.11, Proposition 10), and = is an etale
covering because char (k) does not divide n; note that the degree of the
relative Cartier divisor D= C — B x B is n? #™* (8 _[ 50 bigger than one
if n>1 and genus(B)>0; because D is an etale covering of B x B, we can
choose an etale covering D — B

C «———CxzgD=:Y

Jn

Bx B a

= |

B «————D

and sections P: D — Y so that
DxzD=UP

(in case all points of ,J are rational over k, we can choose D=B);
we write P for the section PxzD: D—Y, and using D, P, P, and the
integer m we construct

a\\"
D

as follows: first, let { € D be the generic point, with fibre Y; over this point;
on this fibre there is a point P({) and a divisor é= Y. B({), thus there
results a canonical morphism

Y= Y~ Supp(8) — Jacs(Y)=J;

into its generalized Jacobian variety with respect to J, sending P({) onto
the zero point of O J, (and this morphism is defined over k((), because
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P({) and all B({) are rational over k({)); then we construct

J Jcartesian lx m

R

the etale covering M° — Y,° defined by multiplication by m on J; (again

twe know the covering is irreducible, and etale because char (k) does not
divide m); the curve M, is the unique smooth complete irreducible curve
containing M?; the minimal fibring h: M — D having M, as generic fibre
exists, it is smooth (use the fact that Y— D is smooth, and D UP etale
over Bx B, and apply [28], p. 1164, Lemma 10), and for every point d
of D, the fibre M, can be constructed as follows:

0
M;> Mg — Js)

||k

Y, o Ydo '—i“*Ja(d)ai(P(d))=0,

with Y2 = Y,~Supp é(d) (this follows because M, is the unique smooth
complete curve containing MY = M); note that if deg(d)>1, and m>1 then
the morphism

4 Ba: My— Yy

ramifies exactly at all points of &(d); this can be seen as follows: all points
in 6(d) have multiplicity one, thus J; 4 is an extension over Jac(Y,) with
kernel L=(G,,)**®~*; thus

LnKer(xm: Jsg— J50)F0;

because the unramified coverings of Y, correspond bijectively with
isogenies over Jac(Y,) (cf. [30], V1.12, Corollary on p. 128) it follows f8;
ramifies at each of the points B(d)e Y,;

P

B x {b} C——VYel M
~_| N A
B«—D

let d be a point of D mapping onto a point b of B; if genus (B)>0 and
n>1(so deg(é)>1), and m>1 then the composed covering M; — B x {b}
ramifies at the point (b, b).
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Lemma (3.3). Let k be a field, B and Z complete smooth irreducible
algebraic curves over k, and T a k-prescheme. Let

¢: ZxT—-BxT

be a family of morphisms of Z to B parametrized by T (i.e. ¢ commutes with
the projections on T); if genus(B)=2, then ¢ is locally constant on T.

Proof. One way of proving the lemma is the following: suppose
T=Speck[e], then all p: Z x T— B x T deforming a fixed (¢o: Z — B)=
¢ @ik arein 1-1-correspondence with I'(B, Dez (O, ¢o.Uy)) (here Der
stands for the sheaf of germs of k-Op-derivations), and one can show this
set of sections to be trivial in case Pez2 (0, Op) is a negative line bundle
(its degree is 2—2g). Another way of proving is the following. Because
the functor of morphisms from Z to B is representable (Grothendieck,
cf. Sém. Bourbaki 13, p. 221-20 (1960/61)), and smooth (B is a curve),
it suffices to prove the lemma in case k is algebraically closed and T is
connected and reduced (and this is the case which we need in applying
the lemma). Let te T'(k), and consider

Z=J Jac(Z)

J(&’t JW:=)-+U:

B=—%— Jac(B);

because of the Albanese property of the Jacobian variety (of B) the
morphism ¥, results, making commutative the diagram; let a,=y,(0);
because of the rigidity lemma ([21], Corollary 6.2) the morphism
A=Y, —a, (is a homomorphism which) does not depend on ; fix se T(k)
and consider

beB, (ib)—(ib+a,—a,)=:y,(b)

because
AjZ+a,=iB=1jZ +a,

we conclude we obtain a family of automorphisms
V:BxT—BxT, (b,t) (y,b,t)

(we identified B and B~iB); because genus(B)=2 we know B has only
finitely many automorphisms thus T being connected (and reduced), the
family y is constant, thus a,= g, for all ¢, thus @ is constant. Q.E.D.

Now suppose, notation as in (3.2): genus(B)=2, m>1and n>1; let
T—D be a covering, then Mx,T is not trivial; in fact, suppose
Mx, T~Z x T: then apply (3.3) to

(M—>Y—>C—>BxB)x,T,
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thus concluding that for each de D the covering
M,=Mx,T)=Z—Y,— C,— Bx{b}

with t+>di> b does not depend on t; however, we have seen that this
covering ramifies at b in the given situation, thus while ¢ runs through
T, the point b is not constant, and M, — B x {b} cannot be a constant
morphism; hence the fibring h: M— D cannot be trivialized by a covering
of D, and the construction and the claim in the first sentence of (3.2) are
established (the arguments essentially can be found on p. 1169 of [28]).

Proof of (3.1). Choose a curve B with genus (B) 22, and a (finite) group
Aut it
G = Aut(B) with 4: B> B/G~TP!

(such an example is easy to construct, e.g. take any curve B’ with
genus (B')>2; its function field k(B’) is a separable extension of k(IPY),
and take for B the normalization of B’ in some finite Galois extension
of k (IP!) containing k(B')). Using the construction explained above, with
the help of integers m and n (prime to char(k) and both at least equal to
two), we arrive at a Kodaira surface

M

h
B«—L{—D
q \\M

P'----»Ec—M,;

thus we obtain a morphism M: D — M,, with g=genus(M/D), and we
claim this factors through IP'; because h is not locally trivial in the etale
topology, the image M (D)=EcM, is not a point, but a curve, and
because of Liiroth’s theorem we conclude, IP'— E cM,, this to be a
rational curve; the proof of the factorization follows because: if d,eeD(k),
and gfd=qfe then My;~M,; indeed in that case there exists G with
fd=afe; the morphism
0: Bx{b}— Bx{ab}

extends to a commutative diagram

Bx {b} —— Jac(B)

B x {ob} — Jac(B)
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thus arriving at a morphism
04! G > Cop,0,B=F4,0,D,=D,,;
this results in an isomorphism
s e 0
0'* . Md —> Me ’

and because M, is the unique smooth curve containing M_ (and the ana-
logous statement for M2 and M,), we conclude M,~M,, and Theorem
(3.1) is proved.

4. Supersingular AV

In this section all fields considered will be of characteristic p+0.

Consider an elliptic curve E over an algebraically closed field k; the
following properties are equivalent:

a) E is very special (i.e. E has no points of order p);

b) End,(E) has rank 4 as Z-module (note k is algebraically closed);

c) the formal group of E is isomorphic to G, , (notation of [19], p. 35);

d) o, is a subgroup scheme of E (here a, denotes the kernel of the
Frobenius homomorphism F: G,— G,).

An elliptic curve E over a field [ is said to be supersingular if it satisfies
these properties over an algebraic closure k of /; note that a supersingular
curve is isomorphic over k with an elliptic curve defined over the field
IF ., the quadratic extension of the prime field; note that any two super-
singular curves are isogenous over an algebraically closed field (in fact
they are already isogenous over an extension of degree 12 of a common
field of definition, cf. [34], pp. 537/538).

Definition (4.1). An AV X over a field | is called supersingular if the
formal group X of X is isogenous over an algebraic closure k of [ to

G, 1) i.e. . N
(1,1)»18 L Qk~E®k,

where E is a supersingular curve.

Theorem (4.2). Let X be a supersingular AV over a field I; then X is
isogenous to E* over k, X®k~E' @k

where k is an algebraic closure of |, and E is a supersingular curve.

Remark (4.3). This gives a positive answer to a question posed by
Manin in the case g=2 (cf. [19], p. 79). In general the isogeny type of the
formal group of an AV does not imply the AV can be decomposed up
to isogeny in the same manner; e.g. there exists an abelian surface X
whose formal group is isogenous with G, @ G, ; such that X is a simple
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AV this can be seen as follows: consider the closed subscheme V<A,
corresponding to abelian surfaces with p-rank equal to one (notation as
in Section 1); as dim(A4,)=3, from (1.6) we conclude dim(})=2; an
abelian surface with p-rank equal to one has no positive dimensional
families of finite subgroup schemes, thus if such an abelian surface is
isogenous to a product of two elliptic curves, it can be defined over a
field of transcendence degree one over the prime field; thus the generic
point of V corresponds to a simple AV (this fact was already proved by
Honda, cf. [11], p. 93). More generally: for any isogeny type of abelian
varieties not equal to a power of G, ; there exist a simple AV having that
isogeny type (cf. [18]).

Notation (4.4). Let X be an AV over a field [; by a(X) we denote the

dimension
a(X):=dim, HOM (a,, X ® k),

where k is an algebraically closed field containing / (note that End, («,) =k,
a ring isomorphism, thus HOM(x,, G) is a right-k-module for any
k-group scheme G).

Lemma (4.5). Let X be an AV over a field | such that a(X)=dim X;
then X can be defined over a finite field.

Proof. Take a polarization on X over [, let its degree be d, choose a
large integer n prime to p so that A4, 4 , is a fine moduli scheme, g=dim X,
take a level n-structure on X (make a finite extension of [ if necessary),
and consider the corresponding point xe A, 4 ,(I). Let V' be the closure
of x in A, 4 ,, and let ye V'(k), where k is an algebraic closure of the prime
field; we want to show dim V=0, thus it suffices to show the tangent
space to V at y to be zero. Note that a(X)=dim(X) is equivalent by
saying that the p-operation in the Lie-algebra Lie(X) is zero. Let X be the
abelian scheme over V<4, , , induced from the universal family over
this fine moduli scheme; Lie(X) is a locally free sheaf of p-Lie algebras
over V, and clearly the p-operation is identically zero; let

t: Spec(k[e]) > V<A, 4n

be a tangent vector, =0, to V at y; then the fibre X,:=X x ¢ has the
property Lie(X,) has p-operation equal to zero; from this we are going
to conclude ¢ is a zero vector. Consider Y= X, the AV over k which is the
fibre of X at yeV; let ¥ =2 (Y; k[¢] — k) be the set of infinitesimal de-
formations of Y (notations of [24], p. 274 and p. 277), this set can be
canonically identified with the tangent space of the local moduli space
M of Y, i.e. ¥ =M (k[¢]), and the isomorphism class X, can be considered
as an element te.Z. Let G,=Lie(Y) be the Lie algebra of Y, and write
R=k[e], €2=0; consider the set X =X (Go; R— k) of infinitesimal
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deformation of G,:

A :={=classes of (G, @,)| G is a p-Lie algebra over R, and
©¥o: GRrk—> Go};

this is a k-vector space in a natural way (see below, or use [29], Lemma
2.10, exactness of the infinitesimal deformation functor of G, is im-
mediate); an infinitesimal deformation of Y yields the same for G,, thus
a natural ma

S Lo

results, which is k-linear (because the map which associates with Y’ over
R its Lie-algebra Lie(Y")e " is functorial). We claim:

a) the k-linear map ¥ — & is surjective, and

b) because a(Y)=dim Y, this map is an isomorphism.

To prove this, consider the group scheme Ny =Ker(F: Y — Y®), i.e.
N, is the group scheme of height one uniquely determined by its p-Lie
algebra G, . Consider the scheme N:= N, ®,R. By [4], I11.3.5 we have a

natural identification
f = Hszymm (NO ’ GO)

(symm denotes the symmetric cocycles; they correspond to the commu-
tative group scheme structures on N; a group scheme structure on N
lifting the one on N, can be identified with a p-Lie algebra structure on
Go ®R extending the p-Lie structure on G,: cf. [3], I11.7.3.5), moreover

g = Hszymm(Y’ GO)

(cf. [4], I11.3.7), and the map ¥ — " is induced by i: N, Y. After choice
of a k-basis G, k¥, one can make the following identifications, resulting
in a commutative diagram:

& Hszymm (Y, GO) (EXt ( Y, Ga))g

R

f Hszymm (NO ’ GO) (EXI (NO ’ Ga))g

Il
[
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I

(where Ext stands for the group of isomorphism classes of k-group
scheme extensions); the exact sequence

0—N,— Y-E,YP 0
results into an exact sequence

...— Ext(Y, G,)— Ext(N,, G,)— E*(Y?, G,)=0

9 Inventiones math., Vol. 24
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(the last equality because of [23], Lemma 12.8), thus Claim (a) is proved.
Because a(Y)=dim Y=g, we have No=(a,)%, thus dim, ¥ =g* (because
Ext(a,, G,)=k as k-modules, the action of k is via End(G,, G,), cf. [23],
Proposition 10.5); moreover dim, ¥ =g> (because dim, Ext(Y,G,)=
dim Y, cf. [30], VII.17), thus Claim (b) is proved. The fact that Lie(X,)
has p-operation zero, i.e. Lie(X,)=0e., implies via (b) that t=0.
Thus dim V=0, the point x€ A4, 4, is rational over the algebraic closure k
of the prime field, and X = X,; thus the lemma is proved.

Remark (4.6) (Mumford). From the lemma one can deduce that
abelian varieties of dimension two can be lifted to characteristic zero.

Proof of (4.2). Let X and I be as in the theorem; we assume [ is
algebraically closed; we can replace X within isogeny by an AV over [
(again denoted by X) such that X ~(Gy,)%; then a(X)=g, because
@, =G, y; thus by (4.5) we know X can be defined over a finite field K
(and this AV again is denoted by X); let f: X — X be the geometric
Frobenius of X over K, i.e. if K has g=p° elements, raising to the g-th
power of the elements of Oy isa K-endomorphism:

f=(XL> X .o XPIx> X)),

Let P be the characteristic polynomial of f. Because P is monic and has
integral coefficients (cf. [16], p. 187, Corollary 2; [22], p. 180, Theorem 4),
the zeros of P are algebraic integers. Let v be an extension of the p-adic
valuation on @ to €, thus v(p)=1. Let 4, ..., 4,, be the zeros of P in C.
By the Riemann-Weil hypothesis we know

IAl=V4q, 15i<2g

(cf. [16], p. 139, Theorem 2; [22], p. 206, Theorem 4). Because the isogeny
type of the formal group of X is (G, ) we conclude by a theorem of
Manin (cf. [19], 4.1) that

v(h=v(/q), 15i52g.

Thus the elements A;-q~* are integral, they form complete sets of
conjugates and they have absolute value one; this implies they are
roots of unity (e.g. cf. [1], p. 105, Theorem 2). Thus replacing K by a
finite extension (the new field again denoted by K, same for X, f and P)
we achieve 4;- g~ *=1, i.e.

P=(T-Vq**;

by a result of Tate, this implies X is isogeneous to the g-th power of a
supersingular curve (cf. [33], Theorem 2.d), which ends the proof of the
theorem.
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Alternative proof of (4.2): Let X be defined over a finite field having
q=p“ elements, and f its geometric Frobenius as above; if X ~ (Gy, )8, we
know Ker(f) equals the kernel of multiplication by p*? (if necessary,
extend K so that a is even), thus there exists a K-automorphism « of X
with

f=p"*-w.

Clearly « is compatible with any polarization on X, and because a
polarized AV has only finitely many automorphisms (cf. [20]), the order
of a is finite, i.e. replacing K by a finite extension we see the geometric
Frobenius of X has eigenvalues equal to g*, and we conclude by the
theorem due to Tate as above.

Corollary (4.7). The coarse moduli scheme A,=A, ,, of abelian
varieties of dimension two with a principal polarization (over a field of
characteristic p=%0) contains a complete rational curve.

Proof. By Theorem(l.1a) 4, contains a complete subscheme E
of dimension 3 - 2(2—1)=1 (which, by the way, contradicts a suggestion
by Grothendieck, cf. [8], p. 77, lines 18-20); suppose the base field k
is algebraically closed, suppose E is irreducible and reduced (if necessary
take one of the components of E); we now show E is a rational curve,
i.e. genus(E)=0. Let X, be an AV with a principal polarization A,
both defined over an algebraic closure of k(E) such that (Xo, 49) corre-
sponds to the generic point of EcW, ., cf. Sect. 1), and dim X 0=2, thus
the isogeny type of X, is 2- G,,1; by (4.2) we conclude there exists an
isogeny f: Z — X, with

222.G 4,

thus a(Z)=2, and Z defined over k (cf. 3.5); we may assume that Z — X,
is purely inseparable (replace Z by Z/(Ker B)eea), let its degree be p”,
write Z=X,, construct isogenies

Z=Xn"Xn—1—>"‘—’Xi+1_’Xi—*"'*’Xo

each of degree p (and thus each having o, as kernel); lifting back 1, we
obtain polarizations 4; on X;, 0<i<n; let E=E,, and let E.cA, ,.be
the closure of the point given by (X, 4,); let 0<m=<n be such that
dim(E;)#0 for 0<i<m and a(X,,)=2 (and thus dim(E,)=0 by 4.5).
We claim the isogeny correspondence between E;,;and E;,, 0<Zi<m—1
given by X;, ,— X; is birational (because a(X;)=1=a(X,,,) for 0<i<m—1
there is only isogeny a,— X; 1 — X; possible, thus the isogeny corre-
spondence is generically 1—1, and because of o) > Xi—> X, it is

birationa]); next we show E,, _, is a rational curve: let C be the isogeny
9‘
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correspondence containing X,,_;— Xos

/C\
Al,p(m~l)DEm_1 EmCAZ,p"'

a(Xm—l)=lvdin1(Em——1)=l dlm(Em)=0’ a(Xm)=2,

note that E,, is a point, a point of C corresponds to an embedding
a, =X, thus it follows that C is birationally equivalent with IP', thus
E,_, is a rational curve; hence E=E, is a rational curve by what is
said before, and the corollary is proved.

10.

11.

12.

13.

14.

15.

16.
17.

References

. Borevich, Z.1., Shafarevich, 1. R.: Number theory. New York-London: Academic Press

1966

. Deligne, P, Mumford, D.: The irreducibility of the space of curves of given genus. Publ.

Math. No. 36 (Volume dedicated to O. Zariski), IHES, 1969, pp. 75-109

. Demazure, M., Gabriel, P.: Groupes algébriques, 1. Amsterdam: North-Holland Co.

1970

. Demazure, M., Grothendieck, A.: Schémas en groupes, fasc. 1. Sém. géom. alg. 1963,

[HES. Lecture Notes in Mathematics 151, Berlin-Heidelberg-New York: Springer 1970

. Fulton, W.: Algebraic curves. Math. Lect. Notes Series. New York: Benjamin 1969
. Grothendieck, A.: Sém. géom. alg. 1960/61: Revétements étales et groupe fondamental.

Lecture Notes in Mathematics 224, Berlin-Heidelberg-New York: Springer 1971

. Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique. Chap. 1. Publ.

Math. No. 8, IHES, 1961. Cited as EGA

. Grothendieck, A.: Un théoréme sur les homomorphismes de schémas abéliens.

Inventiones math. 2, 59-78 (1966)

. Grothendieck, A, Raynaud, M, Rim, D.S., Deligne, P.:Sém. géom. algébrique, Groupes

de monodromie en géométrie algébrique (SGA 7,1). Lecture Notes in Mathematics 288,
Berlin-Heidelberg-New York: Springer 1972

Hasse, H., Witt, E.: Zyklische unverzweigte Erweiterungskorper vom Primzahlgrade p
iiber einem algebraischen Funktionenk&rper der Charakteristik p. Monatsh. Math.
Physik 43, 477-492 (1936)

Honda, T.: Isogeny classes of abelian varieties over finite fields. Journ. Math. Soc.
Japan 20, 83-95 (1968)

Hoyt, W.L.: On the products and algebraic families of Jacobian varieties. Ann. Math.
77, 415-423 (1963)

Igusa, J.-I.: The arithmetic variety of moduli for genus two. Ann. Math. 72, 612-649
(1960)

Kas, A.: On deformations of a certain type of irregular algebraic surfaces. Amer. J. Math.
90, 789-804 (1968)

Kodaira, K.: A certain type of irregular algebraic surfaces. Journ. Analyse Math. 19,
207-215 (1967)

Lang, S.: Abelian varieties. New York: Interscience 1959

Lang, S., Néron, A.: Rational points of abelian varieties over function fields. Amer.
Journ. Math. 81, 95-118 (1959)



19.

20.

21.

22.

23.

24.

25.

26.

27.

29.

30.

31
32.

33.

34.

35.

Subvarieties of Moduli Spaces 119

. Lenstra, H. W. jr., Oort, F.: Simple abelian varieties having a prescribed formal isogeny

type. To appear in Journ. pure applied Algebra

Manin, Yu.L.: The theory of commutative formal groups over fields of finite charac-
teristic. Russian Math. Surveys 18, 1-80 (1963)

Matsusaka, T.: Polarized varieties, the fields of moduli and generalized Kummer
varieties of Abelian varieties. Proc. Japan. Acad. 32, 367-372 (1956)

Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik, Neue F. Bd. 34,
Berlin-Heidelberg-New York: Springer 1965

Mumford, D.: Abelian varieties. Tata Inst. F. R. Stud. in Math. No. 5, Oxford Univ.
Press 1970

Oort, F.: Commutative group schemes. Lecture Notes in Mathematics 15, Berlin-
Heidelberg-New York: Springer 1966

Oort, F.: Finite group schemes, local moduli for abelian varieties, and lifting problems.
Comp. Math. 23, 265-296 (1971) (also: Algebraic geometry, Oslo, 1970, Wolters Noord-
hoff, 1972)

Oort, F.: Good and stable reduction of abelian varieties. Manuscripta math. 11, 171-
197 (1974)

Oort, F.: The isogeny class of a CM-type abelian variety is defined over a finite extension
of the prime field. To appear in Journ. pure applied Algebra

Oort, F., Ueno, K.: Principally polarized abelian varieties of dimension two or three
are Jacobian varieties. Journ. Fac. Sc. Univ. Tokyo, 20, 377-381 (1973)

. Parshin, A.N.: Algebraic curves over function fields, I. 1zv. Akad. Nauk SSSR, Ser.

Math. 32, 1145-1170 (1968)

Schlessinger, M.: Functors of artin rings, Transact. Amer. Math. Soc. 130, 208-222
(1968)

Serre, J.-P.: Groupes algébriques et corps de classes. Act. Sc. Ind. No. 1264. Paris:
Hermann 1959

Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math. 88, 492-517 (1968)
Shafarevich, I.R.: Principal homogeneous spaces defined over a function field. Amer.
Math. Soc. Translat. Ser. 2, 37, 85-114 (1964)

Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones math. 2,
134-144 (1966)

Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Scient. Ec. Norm. Sup,,
4 sér., 2, 521-560 (1969)

Weiss, E.: Algebraic number theory. New York: McGraw Hill 1963

F. Oort

Mathematisch Instituut
Roetersstraat 15

Amsterdam, The Netherlands

(Received June 15,1973)






Inventiones math. 24, 121 — 148 (1974)
© by Springer-Verlag 1974

Algebraische Eigenschaften der lokalen Ringe
in den Spitzen der Hilbertschen Modulgruppen

Eberhard Freitag (Mainz) und Reinhardt Kiehl (Mannheim)

Einleitung

In dieser Arbeit wird die Untersuchung der Spitzen Hilbertscher
Modulgruppen in mehr als zwei Variablen weitergefiihrt. Wir bauen auf
der Arbeit [3] auf.

Im Vordergrund werden algebraische Eigenschaften der lokalen
analytischen Ringe in den Spitzen stehen.

Wir wollen uns in der Einleitung damit begniigen, die Komplettierung
dieser Ringe zu beschreiben.

Gegeben seien:

1) Ein total reeller algebraischer Zahlkorper L.

2) Ein Gitter t< L vom Rang n.

3) Eine Untergruppe A von endlichem Index in der Gruppe aller
total positiven Einheiten, welche auf t operiert

A-tct.

4) Eine Gruppe G von Automorphismen von L, welche t und A in
sich iiberfiihrt.

Diesen Daten ordnen wir einen Ring R zu.

Zunichst sei t, die additive Halbgruppe aller total positiven Elemente
aus t vereinigt mit 0.

Wir bilden dann den formalen Gruppenring C[[t,]], welcher aus
allen Abbildungen

fit,—»C

besteht. Das Produkt zweier Abbildungen ist durch
ff@= ) fl@)f(

a+a'=a
erkldrt. Diese Summe ist endlich! Auf dem Ring € [[t*]] operieren die
Gruppen A und G. Der Invariantenring sei
R=C[[t,1]*°.

Dieser Ring R ist ein normaler lokaler vollstindiger noetherscher Ring der
Dimension n=[L :Q].
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Seine Tiefe (homologische Kodimension) kann berechnet werden.
Es kommen nur die Werte 1, 2, 3, 4 vor. Im allgemeinen handelt es sich
also um keine Cohen-Macauley-Ringe. Die Divisorenklassengruppe des
Ringes R wird bestimmt. Sie ist endlich, wenn L/@ galoisch ist und
wenn G die volle Galoisgruppe ist. Genau dann, wenn iiberdies G mit
seiner Kommutatorgruppe iibereinstimmt, kann man t und A so kon-
struieren, daB R ein ZPE-Ring ist. Mit Hilfe der Invariantentheorie
werden galoissche total reelle Korper L mit Galoisgruppe As (alter-
nierende Gruppe) konstruiert. Man erhilt dann Beispiele von 60dimen-
sionalen ZPE-Ringen der Tiefe drei.

Damit ist eine seit langerer Zeit offene Frage beantwortet, ob es ZPE-
Ringe der Charakteristik 0 gibt, welche nicht Cohen-Macauley sind '.

Wenn die Gruppe G nur aus der Identitédt besteht, ist der Ring starr
im Sinne der Deformationstheorie analytischer Singularitédten (n=3 vor-
ausgesetzt). Andere Beispiele starrer normaler Singularitdten, welche
nicht Cohen-Macauley sind, scheinen nicht bekannt zu sein. Obwohl die
obigen Resultate rein algebraisch formuliert sind, erfordert ihr Beweis
analytische Hilfsmittel.

Die vorliegende Arbeit steht im Zusammenhang mit Untersuchungen
von U. Christian.

Er hat sich mit der Frage nach den Automorphiefaktoren des
Stabilisators einer Spitze (auch fiir allgemeine Gruppen) beschiftigt.

Es besteht ein enger Zusammenhang zwischen diesen Faktoren und
der lokalen Divisorenklassengruppe (s. § 4).

§ 1. Gitter und Multiplikatoren

Ausgangspunkt unserer Untersuchung ist ein Gitter t von maximalem
Rang in R".
tcR"; Rangt=n.

Unter einem Multiplikator (von t) versteht man ein n-Tupel e=(g,, ..., &,)
von positiven reellen Zahlen mit der Eigenschaft

et=t.
(Das Produkt zweier Vektoren ist komponentenweise zu bilden
(al, ...,a,,) ‘(bl, ...,b,,)=(al 'bl, P« 'b").)
Fiir jeden Multiplikator ¢ gilt

da t maximalen Rang hat.

' Ein Charakteristik-p-Beispiel findet man im Ergebnisbericht von Fossum iiber Divisoren-
klassengruppen (Springer, 1973).
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Es sei AcIR*" eine diskrete Gruppe von Multiplikatoren. Mit Hilfe
der Logarithmusabbildung transformiert man A in eine diskrete Gruppe
log AcR".

Diese ist in der Hyperebene
‘xl + et + X" = 0
enthalten. Daher ist A eine freie abelsche Gruppe vom Rang <n—1.
Wir setzen im folgenden voraus, daB A Maximalrang hat.

Rang A=n—1.

Konstruktion von (t, A)

Wir fassen im folgenden €" als einen Ring auf. Zwei n-Tupel von
Zahlen werden komponentenweise addiert und multipliziert. Man hat
die Spur- und Normabbildungen:

§$:C"->C, Sz=z;+:+2z,
N:C"->C, Nz=z -2z,

Wir betrachten nun einen total reellen algebraischen Zahlkorper vom
Grad n. Es gibt n verschiedene Einbettungen von L in den Kd&rper der
reellen Zahlen ER, a—am, 1Zvss,
die wir zu einer Einbettung

L-R", a—(ay,...,a,)

zusammenfassen. Wir identifizieren der Einfachheit halber a mit
(ay, ..., a,). Damit ist L ein Unterring von IR". Dann ist der Ring t der
ganzen Zahlen in L ein solches Gitter vom Rang n in IR” und die Gruppe A
der total positiven Einheiten eine Multiplikatorengruppe. Diese hat
nach dem Dirichletschen Einheitensatz den Rang n— 1. Ist allgemeiner
tc L irgendein Gitter vom Rang n, so existiert einer Untergruppe A von
endlichem Index in der Gruppe aller total positiven Einheiten, welche auf
1 operiert.

1.1. Bemerkung. Es sei t < IR" ein Gitter und A eine diskrete Gruppe von
Muitiplikatoren
Rang t=n; RangA=n-1.

Der von den Multiplikatoren ¢ erzeugte Q-Vektorraum
L=Q- -4

ist ein total reeller Kérper vom Grad n.
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Es gilt

a) Die Einheitengruppe von L enthdlt A als Untergruppe von endlichem
Index.

b) Es existiert ein Vektor ac R*" mit der Eigenschaft

a-tcL.
Beweis. Jedem Multiplikator ¢=(¢,, ..., &) kann man das Polynom
P(x)=(x—&)...(x—¢,)
zuordnen. Dies ist das charakteristische Polynom der Abbildung
R"—>R", a—ea.

Da das Gitter t bei dieser Abbildung in sich iiberfihrt wird, ist das
Polynom P, ganzzahlig. Seine Wurzeln ¢, ..., &, sind daher algebraische
Zahlen. Ihr Produkt ergibt Eins, es handelt sich also um algebraische
Einheiten. Das Polynom P, kann unter Umsténden reduzibel sein. Dann
gilt aber
&j...&j,= 1
fir ein v-Tupel
1<j,<<j,€n, 1=sv=n.
Das Gitter
logAcH={aeR", Sa=0}

kann nicht in der Vereinigung von endlich vielen echten Unterrdumen
aus H enthalten sein. Daher existiert ein Multiplikator &, so dal das
Polynom P, irreduzibel ist. Die Komponenten &, ..., & bilden dann ein
vollstindiges System von konjugierten algebraischen Zahlen. Der Modul
Z [¢] hat den Rang n.

Wir wihlen nun irgendeinen Vektor
a=(ay,...,a)eR", a,+0 fir v=1,...,n

mit der Eigenschaft
1,...,1)ea-t
aus. Dann gilt
Zle]cZ-Aca-t.

Da auch a -t ein Modul vom Rang n ist, existiert eine natiirliche Zahl r
mit der Eigenschaft

ratcZ[e].
Hieraus folgt

Q[e]=Q-4=Q a-t,

und Bemerkung 1.1 ist bewiesen.
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Wir kénnen hieraus einfache Folgerungen ziehen.

Wenn eine Komponente a, eines Gittervektors aet verschwindet, so
ista=(0,...,0).

Wenn eine Komponente ¢, eines Multiplikators eeA Eins ist, so
gilt: e=(1,...,1).

Ein Vektor aeR" heiBt total positiv — in Zeichen a>0 — wenn alle
Komponenten positiv sind.

Entsprechend wird die Schreibweise
az0<a,20,...,a,20
verwendet.
Offenbar gilt fiir einen Vektor act:

az0<a>0 oder a=0.

§2. Fourierreihen
Es sei

H'=Hx--xH, H={zeC,Im z>0},

das kartesische Produkt von n oberen Halbebenen. Auf H" sei eine
Gruppe I' von Transformationen der Form

z—ez+a
gegeben.
Die Translationen in I definieren eine Untergruppe von R”

t={aeR",z—>z+a in I'}.

Wir setzen voraus, daB t ein Gitter vom Rang n ist.

Wenn die Transformation z—¢z+a in I’ liegt, so ist offensichtlich ¢
ein Multiplikator von t.

Die Gesamtheit dieser Multiplikatoren bildet eine Gruppe
A={ceR*", z—>¢z+a, in I fir ein q,cR"}.

(Der Vektor a, ist natiirlich nur modulo ¢ bestimmt.)

Wir setzen weiterhin voraus, daB A eine diskrete Gruppe vom
Rang n—1 ist.

Die Gruppe I operiert auf H" diskontinuierlich und fixpunktfrei.

Die Spitze oo

Im folgenden ist zu beachten, daB die Hyperfliche N y=1unter I
stabil ist und daf ihr Bild im Quotientenraum H"/I" kompakt ist.
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Dies gibt uns die Mdglichkeit, den Raum H"/I' durch Hinzufiigen
eines Punktes oo
X=H"T'u {xo}
so zu erweitern, daB folgende Eigenschaften erfiillt sind:
1) X ist lokal kompakt.
2) H"/T ist ein offener Unterraum.
3) Eine Umgebungsbasis von co bilden die Mengen

U/To {0} mit Us={zeH",N y>C}.

2.1. Theorem. Der Raum X trdgt eine Struktur als normaler komplexer
Raum, H"/I" ist eine offene analytische Untermannigfaltigkeit.

Einen Beweis dieses Satzes findet man in [6].

Eine in einer Umgebung U der Spitze coe X definierte Funktion ist
genau dann holomorph, wenn sie stetig ist und wenn sie in UnH"/I'
analytisch ist.

Den lokalen analytischen Ring in der Spitze oo bezeichnen wir mit

R=R(N=0x, o

Beschreibung von R mit Hilfe von Fourierreihen:
Jedes Element von R kann durch eine I'-invariante holomorphe
Funktion o
f: Us—C€, C hinreichend groB
reprisentiert werden. Eine solche Funktion ist insbesondere periodisch
fz+a)=f(z) fir aet
und kann daher in eine Fourierreihe entwickelt werden.

f@)=Y age(gz), e(.)=e2"

get0

Dabei ist
t°={geR", S(gx)eZ fir xet}

das zu t duale Gitter.
Die Invarianz
flez+a)=/(2)
bedeutet
ag.=ag-e(ga).
Die Funktion f ist genau dann in die Spitze oo stetig (und damit auch
analytisch) fortsetzbar, wenn

a,#¥0=g20
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gilt. Dies ist im Falle n=2 automatisch der Fall nach dem Gétzky-
Koecher-Prinzip oder nach dem Riemannschen Hebbarkeitssatz.

Es ist gelegentlich zweckmiBig, die Konvergenzbedingung zu ver-
nachlissigen und formale Fourierreihen

Y age(gz) mit ag=aze(ga)
get0,g20

zu betrachten. Diese bilden einen Ring R. Die Summationsbedingung
g 20 gestattet es ndmlich, solche Reihen formal zu multiplizieren

dage(g2)) bye(R'2)=Y ce(gz)
g g’ g

Die letzte Summe ist endlich.
2.2. Satz. Der Ring R ist die Komplettierung von R= 0y .
Insbesondere ist R ein lokaler, vollstdandiger, noetherscher, normaler
Ring der Dimension n.

Beweis. Die Menge der Spuren von Elementen aus t bildet eine zyk-
lische Gruppe
SH)=Z-ry, ry>0.

Mit Hilfe der Spur definiert man gewisse Idealketten
i, ={feR, a,=0 fir Sg<rr,}
m,=Rnnm,,
offenbar gilt
a) m; =m=maximales Ideal in R,
b) myom,>--,
c) m, - mycCm,,;.
Diese Filtrierung von R ist insbesondere grober als die m-adische

Filtrierung, welche durch die Potenzen des maximalen Ideals definiert
wird.

mcm, firr=12,....
2. . Hilfssatz. Der Ring R ist die Komplettierung von R in bezug auf die
Topologie, die durch die Filtrierung {m,} definiert wird.
(Satz 2.2 bezieht sich natiirlich auf die m-adische Filtrierung.)

Beweis. Die ,,Poincaréreihen®

B(2)=) e(gez+ga,), get’ g20

eed
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konvergieren in ganz H" und sind I'-invariant. Offenbar wird der Vektor-
raum R/r1, von endlich vielen dieser Reihen erzeugt. Die kanonische
Abbildung

R/m, — R/,

ist also ein Isomorphismus von endlich dimensionalen Vektorrdumen.

Die Schwierigkeit beim Beweis von Satz 2.2 besteht also im Vergleich
der beiden Filtrierungen {m,} und {m’}. Wir miissen zeigen, dal} sie
dieselbe Topologie definieren. Dazu bezeichnen wir mit

R=lim R/m"
JALY

die m-adische Komplettierung von R. Durch stetige Fortsetzung erhilt
man einen Homomorphismus

¢: R>R.
Mit Hilfe einer ,,Mitta_g-Lefﬂer-Schlqueise“ zeigen wir nun, daB der
Homomorphismus ¢: R — R surjektiv ist.

Da R/m" endlich dimensional ist, kann man eine Folge von natiir-
lichen Zahlen r,<r, <--- mit der Eigenschaft

m, cm?+m,,

finden.
Jedes Element feR 148t sich als Reihe der Form

f=Xfs fEem,

schreiben.
Man kann nun induktiv Folgen

aemi; gem,,
mit der Eigenschaft

h+-+fii=a+--ta+g

konstruieren. Die Reihe a, +a, +--- konvergiert in R. Thr Bild in R ist
gerade f.

Damit ist gezeigt, daB ¢ surjektiv ist. Insbesondere ist R ein noether-
scher vollstandiger Ring.

Um zu zeigen, daB ¢ auch injektiv ist, benutzen wir den bekannten
Satz, daB die Komplettierung eines nullteilerfreien analytischen Ringes
nullteilerfrei ist.

Hieraus und aus der Formel

dim R =dim R + Hohe (Kern @)
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folgert man R
Kern ¢ =0<>dim R>n.

Das Hilbert-Samuelpolynom P des Ringes R ist durch die Eigenschaft
P(r)=dim R/f"  fiir hinreichend groBe r

charakterisiert. Sein Grad stimmt mit der Dimension von R iiberein.

Es gilt dim R/v > dim R/,

Daher geniigt es zu zeigen, daB3

1 N
Fl— dim R/m,
unbeschrinkt ist.
Nun ist dim R/rﬁ, offenbar genau die Maximalzahl von nicht asso-
ziierten Elementen
get’, g=0, Sg<rr,.

(Zwei Gitterelemente a, b heilen assoziiert, wenn es einen Multiplikator
¢e A mit der Eigenschaft ea=b gibt.)
Eine einfache Abzdhlung von Gitterpunkten beendet den Beweis von
Satz 2.2.
§3. Die Kohomologie der Gruppe I

Ordnet man einer Transformation z — ¢ z+a den Multiplikator ¢ zu,
so erhdlt man einen Homomorphismus von I auf A, dessen Kern aus
den Translationen besteht

0-t->TI->A-1.

Wir werden im folgenden das Gitterelement a mit der Translation
z— z+ a identifizieren.

3.1. Bemerkung. Die Kommutatorgruppe von I ist eine Untergruppe
von endlichem Index von t.

Beweis. Die Kommutatorgruppe von I ist offenbar in t enthalten.
Der Kommutator zweier Transformationen

z—ez+a, und z—z+4a
ist die Translation
z—>z+(e—1)a.

Bereits fiir einen Multiplikator ¢+1 ist (e—1)t<t ein Untergitter vom
Rang n und damit von endlichem Index.

Wir benotigen im folgenden die Kohomologiegruppen H'(I, C).
Dabei operiert I” trivial auf C.
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3.2. Satz. Die natiirliche Abbildung
H' (A, €)—>H (I T)

ist im Falle 0Z r<n ein Isomorphismus.
Der Beweis ergibt sich aus der Analyse der Spektralsequenz
Hf(A,Hi(t,©)=H(;C), r=p+q.

Die Gruppe I' operiert auf dem Vektorraum O(U) der holomorphen

Funktionen
f: U—C, Us={zeH" N(Imz)>C}.

Die Kohomologiegruppen
H' (L O(Uc)=H' (Uc/I; 0)

wurden in [3] berechnet.
Die kanonischen Abbildungen

C—0U;) und I'> 4
induzieren Homomorphismen
H' (A, €)— H'(L, 0(Uy)).
Aus [3] iibernehmen wir
3.3. Satz. Die natiirliche Abbildung
H'(A, ©) — H (T, 0(Uo)
ist injektiv. Im Falle 0<r<n—1 ist sie sogar ein Isomorphismus.

Wir betrachten nun gewisse Erweiterungen der Gruppe I; indem wir
auch Permutationen der Variablen zulassen

(215 2)=(Zg)s ++» zc(,,)).
Es sei I eine Gruppe von Transformationen
z—e-0(z)+a.

Ordnet man jeder dieser Transformationen die Permutation ¢ zu, so
erhilt man einen Homomorphismus auf eine gewisse Untergruppe G< S,
der symmetrischen Gruppe.

Der Kern dieses Homomorphismus sei genau die oben untersuchte
Gruppe I Wir haben also die exakte Sequenz

1-T—>»I—>G-1.
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Die Gruppe G operiert in bekannter Weise auf I7 Bei dieser Operation
bleibt t stabil und ist daher ein G-Modul. Ebenfalls ist A=TI" /t ein
G-Modul.

Aufgrund von Bemerkung 1.1 hat man eine Einbettung von G in die
Automorphismengruppe des Korpers L

G—G(L/@).
Daher ist die Ordnung von G nicht groBer als n
|G|=n.

Wenn die Gruppe I' auf einem C-Vektorraum M linear operiert, so
erhilt man die Kohomologie H' (I, M) aus H'(I; M) durch Invarianten-
bildung:

H' ([, M)=H"(I; M)°.
Es ist zu beriicksichtigen, daB die hoheren Kohomologiegruppen einer
endlichen Gruppe, welche auf einem C-Vektorraum linear operiert, ver-

schwinden.
Dieses Prinzip kann man auf die Moduln M = C und O(Uz) anwenden.

(Wenn die Substitution z—¢eo(z)+a in I liegt, so ist eine gewisse
Potenz schon in I” enthalten. Hieraus folgert man Ne=1. Die Gruppe I’
operiert also auf Up.)

Wir ziehen aus den Sitzen 3.2 und 3.3 einige Folgerungen:

Man hat im Falle n>3 aufgrund der Sitze 3.2 und 3.3 natiirliche
[somorphismen.

Hom (I; €)= H'(I; €)= H'(4, ©)=H'(I; 0(U)).
Durch Invariantenbildung erhilt man
3.4. Bemerkung. Im Falle n>3 existiert ein natiirlicher Isomorphismus
Hom (I €)=H'([; 0(Uy).
In § 1 wurde der lokale Ring
R(N=0xq; Xc=UyT u{wo}
eingefiihrt. Auf diesem operiert die endliche Gruppe G und wir konnen

R()=R(I)¢
betrachten.
Dies ist der lokale Ring des Raumes

Ue/T' oo =Xc/G
im Punkt oo.

10 Inventiones math., Vol. 24
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Wir wollen nun die Tiefe t des lokalen Ringes R(I") ausrechnen.
Unter der Tiefe eines lokalen noetherschen Ringes R versteht man
die Linge einer maximalen Nichtnullteilerfolge

ag, .-, a.€m(R).

(Das Bild von ag; in R/ay, ..., aj-1) ist Nichtnullteiler fiir 0< j<1.)
[st X ein komplexer Raum, x€ X, so kann man die Tiefe  des lokalen
Ringes R=0
—UVX,x

folgendermaBen mit Hilfe der Kohomologie mit Tréger in x charakteri-
sieren Hiy(X,00)=0 fiir r<t

+0 fir r=1 [8].
Im Falle R=R(I"), n=2, erhilt man hieraus die folgende Beschreibung
des Ticke H(FOU)=0 fiir 0<r<t—2

+£0 fir r=1—1.

3.5. Theorem. Es sei n=3.

1) Die Gruppe G habe nicht die Ordnung n. Dann ist die Tiefe von
R(I') zwei.

2) Die Gruppe G habe die maximale Ordnung n. Dann ist die Tiefe von
R(T") drei, mit Ausnahme des Falles

G=Z2xZ/2% - xZ[2.

In diesem Falle ist die Tiefe 4.

3.6. Folgerung. Im Falle n>4 ist R(I") niemals ein Cohen-Macauley-
Ring.

(Ein lokaler noetherscher Ring R heil3t Cohen-Macauley-Ring, wenn
die Tiefe gleich der Dimension ist.)

Beweis von Theorem 3.5. Die Tiefe ist genau dann groBer als zwei, wenn

Hom ([, €)=H" (I, 0(Uc))
verschwindet. Nun ist

Hom (£} €)=Hom (I; €)°=Hom(t, ©)°.
Nach Wahl einer Basis von t erhilt man einen Isomorphismus
Hom(t, C)°=t°®C.

Wenn ein G-invarianter Multiplikator e<1 existiert, so kann G nicht
eine volle Galoisgruppe sein.
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Ist umgekehrt die Ordnung von G kleiner als n, so ist der Korper IS
total reell + Q. Es existiert daher eine total positive Einheit ¢<1 in IS.

Eine Potenz von ¢ liegt in A€.

Die Ordnung von G sei jetzt n(=3). Dann ist die Tiefe von R(I)
groBer als zwei. Im Falle n=3 ist also R(I) ein Cohen-Macauleyring.
Wir konnen daher n=4 annehmen.

Wir haben zu untersuchen, wann die Gruppe

H* ([ 0(U)=H? (4, ©)°
verschwindet.
Die Kohomologie einer freien abelschen Gruppe ist bekannt

H2(t, ©)= A2 Hom (4, T).

Den G-Modul Hom(A, €) kann man mit Hilfe der reguldren Dar-
stellung Q[G] beschreiben. Bekanntlich zerfillt die Gruppenalgebra in
eine direkte Summe von zwei G-Moduln

Q[G]=J(6)+Q,

wobei G auf Q trivial operiert.
Man kann zeigen, daB die beiden G-Moduln

A®zR und J(G)®qR
isomorph sind.

Dazu nur folgende Bemerkungen:

1) Die Gruppe G operiert auf L®qR=R" durch Permutation der
Variablen. Dieser G-Modul ist isomorph zum Gruppenring R [G].

2) Der Untermodul
M={xeR", Sx=0}

ist isomorph zu J (G)®@qR.
3) Die Logarithmusabbildung

log: A—R"

ist mit der Operation von G vertraglich.

Der Vektorraum H? (t, €©)° ist also isomorph zu (4% J(G)®qT)°. Ob
dieser Raum verschwindet, hingt nur von der abstrakten Gruppe G ab.

Bemerkung. Ist G eine endliche Gruppe der Ordnung n=4, so gilt

(42 J(GO)ReCT)=0<=G=Z/2xZ2x ---x Z)2.

10*
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Beweis. Seien a, b nur Elemente aus G. Die Summe

Y gangb

2€G
ist invariant unter G.
Sie verschwindet offenbar genau dann, wenn

ab '=(@b !

gilt. Wenn diese Relation fiir alle (@, b)e G x G erfiillt ist, so muf3 G vom
Typ Z/2 % --- x Z/2 sein.

In diesem Falle kann man die Operation von G auf A2J(G)®qC
leicht iiberblicken.

Eine einfache Uberlegung zeigt, daB die Gruppe (AmJ (G)®¢C)° im
Falle r=2 tatsdchlich verschwindet. Sie verschwindet aber nicht im
Falle r=23, wenn G mehr als zwei Faktoren vom Typ Z/2 enthalt.

Damit ist Theorem 3.5 bewiesen.

§4. Die lokale Divisorenklassengruppe

Sei X ein normaler komplexer Raum, X° sein reguldrer Ort. Im
folgenden verwenden wir die folgende modifizierte Picardgruppe.

Pic X sei die Gruppe der Isomorphieklassen analytischer Geraden-
biindel auf X°, welche sich auf ganz X als kohdrente Garben fortsetzen
lassen.

Wenn die Kodimension des singuliren Ortes groBer oder gleich drei
ist, so gilt

Pic X = Pic X°.
Im folgenden sei R
Xc= U/l
X2=reguldrer Ort von X,
U2 = Urbild von X2 in U.

4.1. Bemerkung. Im Falle n=3 operiert I frei auf UQ.

Beweis. Wenn die Abbildung U2 — X2 iiberhaupt verzweigt ist, so
hat der Verzweigungsort die genaue Kodimension Eins. Daher geniigt
es zu zeigen, daB im Falle n>3 keine Spiegelung

z—¢ea(z)+a

enthalten ist. Wenn diese Substitution eine Fixpunktmannigfaltigkeit
der Kodimension eins haben soll, so muB ¢ eine Transposition sein. Im
Falle n> 3 kann aber niemals eine Transposition in der Automorphismen-
gruppe des Korpers L liegen. Fiir aeL wiirden ndmlich gewisse Kom-
ponenten von a—a(a) verschwinden. Hieraus folgt aber schon a=a(a).
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Im folgenden sei stets
n=3.

4.2. Bemerkung. Wenn die Gruppe Pic X fiir jedes C >0 nur aus dem
trivialen Geradenbiindel besteht, so ist der lokale Ring R=0x,_ , ein
ZPE-Ring.

Beweis. Ein beliebiges Element feR kann als holomorphe Funktion
f: Xc— €, C hinreichend groB,

aufgefaBt werden. Den Nullstellendivisor von f kann man in Primdivi-
soren zerlegen
(./)znl Pl+"'+anr'

Da X singularititenfrei ist, kann man jedem Divisor D auf X ein
Geradenbiindel aus Pic X zuordnen. Wenn dieses trivial ist, existiert
eine holomorphe Funktion mit genauem Nullstellendivisor D.

In unserem Falle kann man also holomorphe Funktionen

fiooonfy mit (f)=B fir v=1,...,r
finden.

Es gilt f=hfm .. fm

mit einer holomorphen invertierbaren Funktion h. Dies ist die Prim-
faktorzerlegung von f.

Man kann Bemerkung 4.2 auch anders interpretieren.

In der kommutativen Algebra wird jedem normalen noetherschen
Ring R die Gruppe der Divisoren zugeordnet.

Ein Divisor ist ein Element der von den Primidealen der Hohe 1
erzeugten freien abelschen Gruppe. Jedem von Null verschiedenen Ele-
ment des Quotientenkdrpers wird ein ,,Hauptdivisor” zugeordnet. Die
Gruppe der Divisorenklassen ist genau dann trivial, wenn R ZPE-Ring
18t.

Bemerkung. Im Falle n23 ist die Divisorenklassengruppe des lokalen
Ringes R(I') isomorph zu lim Pic X2.

Manchmal ist es niitzlich, die Geradenbiindel durch Automorphie-
faktoren zu beschreiben. Unter einem solchen Faktor versteht man eine
Abbildung

J: U:xI'->C

mit folgenden Eigenschaften
a) J(z,y) ist als Funktion von z holomorph,
b) J(z,yy)=J(z,y)J( z,7).
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Ein AAutomorphiefaktor ist also nichts anderes als ein 1-Kozykel der
Gruppe I' im Modul
A*=H°(U,, 0%)

der holomorphen invertierbaren Funktionen auf Ug. Jedem Automor-
phiefaktor J wird eine kohérente Garbe zugeordnet. Ein Schnitt iiber
einer offenen Menge V < X, ist eine holomorphe Funktion

f: U->C€, U=Urbildvon Vin U,

mit der Eigenschaft
f(2)=J(z,7) f(y2).

Die Einschrinkung auf X2 ist ein Geradenbiindel L,ePic X.. Dieses
Biindel ist genau dann trivial, wenn J ein Korand ist.

h
J(Z”')z’—h(zzz))’ heO* (U).

4.3. Bemerkung. Im Falle n=3 ist die natiirliche Abbildung
HY([, A%)—> Pic X2, A*=H°(U;,0%)

ein Isomorphismus.

Beweis. Sei L ein analytisches Geradenbiindel aus Pic X¢. Sein rezi-
prokes Bild p* L in U kann zu einem Geradenbiindel auf ganz U, fort-
gesetzt werden, da L kohirent auf X, fortsetzbar ist. Auf U ist jedes
Geradenbiindel trivial, denn U ist Steinsch und zusammenziehbar.

Es existiert daher ein globaler nirgends verschwindender Schnitt s
von p* L.

Der Automorphiefaktor J(-, y) wird nun durch

JC,)=7()®s™!
definiert.

Spezielle Automorphiefaktoren sind die Gruppenhomomorphismen

v: F>C*  J(zy)=00).

Damit ist insbesondere jedem solchen Gruppenhomomorphismus ein
Geradenbiindel auf X2 zugeordnet.
4.4. Theorem. Im Falle n>3 ist die natiirliche Abbildung

Hom (I, €*)— Pic X¢
ein Isomorphismus.
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Beweis. Wir setzen
A=H°(U., 0)

A*=HYU,,0%).
Aus der kurzen exakten Sequenz
0->Z—> A% 4* >0
resultiert eine exakte Kohomologiesequenz
H' (I A)— H'([; A*) - H* ([, Z) - H* (T, A).
Nach 3.4 hat man einen natiirlichen Isomorphismus
H'(I[, A)— Hom ([, ©).

Mit Hilfe der Exponentionalabbildung erhilt man einen Homomor-
phismus R R
Hom (I, C)— Hom (I, C*).

Es ist leicht nachzurechnen, daB das Diagramm

H'(I, A)—— Pic X2=H'(I} 4%

]

Hom (I; €©)—— Hom (I; €*)
kommutativ ist.
Das Bild von H' ([, A) in Pic X besteht also nur aus Geradenbiindeln
der Form L,,ve Hom (I C*).
Als nichstes untersuchen wir das Bild von H' (I} A*) in H?([} Z), also
den Kern von
H*(I,Z)— H*([; A).

Dieser Kern ist endlich, denn aufgrund der Sitze 3.2 und 3.3 ist die
Abbildung
H*(I,€)— H*I; A)

injektiv. Hieraus folgt, daB auch
H*(I, ©)— H* (I, A)
injektiv ist.
Das Bild von H' (I} A) in Pic X_ ist also eine Untergruppe von endlichem
Index.
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Insbesondere ist eine geeignete Potenz L eines Geradenbiindels
LePic X2 im Bild der Abbildung

Hom (I; €*)— Pic X¢
enthalten.
Dies kann man auch folgendermafBen ausdriicken:

Zu jedem Automorphiefaktor J existiert eine natiirliche Zahl r, ein
Homomorphismus v: I'— C* und eine invertierbare holomorphe Funk-
tion h: U, — € mit der Eigenschaft

. h(yz)
J(z,7)"=v(y)-

h(z)

Es gibt eine holomorphe Funktion

ho: Us.— C* mit hg=h.
Wir erhalten
Jo(ef=06) mit Jolan)=J () o
ho(y2)
Die Funktion J, (z, y) ist bei festem y konstant. Der Automorphiefaktor J
ist daher zu einem Homomorphismus

vo: T €, vo(1)=Jo(z7)
dquivalent.
Damit ist bewiesen, daB3 die Abbildung

Hom (/; €*) — Pic X,
surjektiv ist.
Wir miissen noch zeigen, daB sie auch injektiv ist.
Sei v: I'— C* ein Homomorphismus, so daB das assoziierte Geraden-
biindel trivial ist. Es existiert dann eine holomorphe invertierbare

Funktion
h: Us—C* mit h(z)=v()h(yz).

Nach Bemerkung 3.1 ist die Funktion h periodisch bei einem Untergitter
fct von endlichem Index. Man kann daher h in eine Fourierreihe ent-
wickeln

h(z)=} age(g2).
get®
Eine Variante des Gotzky-Koecher-Prinzips besagt [3]
a,+0=g20.

Auf die Funktion 1/h kann man dieselbe Uberlegung anwenden. Es
folgt a, +0.
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Andererseits ist
ay=v(y)-a, fiir yel
Dabher ist
v(y)=1 fiir alle yel"

§5. Die Konstruktion einiger Gruppen I, fiir die R (") ZPE-Ring ist

Gegeben sei eine endliche Gruppe G. Wir bezeichnen mit [G, G] die
Kommutatoruntergruppe von G, mit Z[G] die Gruppenalgebra von G
liber dem Ring Z der ganzen Zahlen und mit J folgendes Z[G]-Ideal:

J=YZ(©-1).

0eG
Aus der homologischen Algebra benotigen wir den bekannten
5.1. Hilfssatz. Die abelschen Gruppen G/[G, G] und J/J? sind isomorph.

Beweis. Es geniigt folgendes zu zeigen:

Fiir jede abelsche Gruppe A ist die abelsche Gruppe der Homo-
morphismen von G/[G, G] in A isomorph zur abelschen Gruppe der
Homomorphismen von J/J? in A. Aquivalent dazu ist:

Die Gruppe der Homomorphismen von G in A ist isomorph zur
Gruppe der Homomorphismen von J in 4, die

Jix> Z Z6-1)(z—1)
3, teG
annullieren.

Man hat eine natiirliche Bijektion

xeq

zwischen der Menge aller Abbildungen
1. G—A, y(1)=0,
und der Menge aller Z-linearen Abbildungen
¥ J—A
mit
20—1)=x(9).

Fiir 6, 7 aus G gilt:

G06-D+Er-1)—0t—1)=—(—1)(z=1),
damit
20)+x(®)—x(@01)=—7(6—1)(z—1)).

Es ist also y(6t)=yx(8)x(r) genau dann, wenn 7(@—=1)(x—1)) ver-
schwindet.
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5.2. Folgerung. M sei ein beliebiger G-Modul, P=JM =} (6—1)M.
0eG
Wenn die Gruppe G mit ihrer Kommutatorgruppe [G, G] iibereinstimm,
so gilt
P=JP.

Es sei L ein total reeller galoischer Zahlkorper vom Grad n> 1 mit
der Galoisgruppe G. E sei eine Gruppe total positiver Einheiten, von
endlichem Index in der Gruppe aller Einheiten von L. Nach dem Dirich-
letschen Einheitensatz ist dann E eine endlich erzeugte freie abelsche
Gruppe vom Rang n—1.

5.3. Hilfssatz. Die Gruppe total positiver Einheiten A= [[(0—1)E ist

0eG
G-stabil und hat einen endlichen Index in der Gruppe aller Einheiten.
Damit ist A ebenfalls eine freie abelsche Gruppe vom Rang n—1.
Beweis. Die Norm N e= [|d¢ jeder Einheit ¢ aus E ist Eins, damit
deG

g "=[]8¢/e=[](0—1)e in A enthalten. Also ist E" in A enthalten!

oeG deG
5.4. Hilfssatz. Gegeben sei ein Gitter M in L, d. h. ein endlicher Z-Unter-
modul vom Rang n in L. A sei eine G-stabile total positive Untergruppe
von endlichem Index in der Gruppe aller Einheiten von L. Wir setzen:

N=Y@-1)M, P=Y¢eN.

0eG ecE

Die Gruppe G stimme mit ihrer Kommutatoruntergruppe [G, G] idiberein.
Dann ist der G— A-Modul P ein Gitter und es gilt:

P=Y (@-1)P+ Y (-1P.

oeG eed

Beweis. Wegen Hilfssatz 5.2 gilt:
N=) (6—-1)N.

oeG

Fiir eine Einheit f aus A gilt:
fNSN+(f-1)NS Y (6—1)N+ Y (e-DN

oeG ted
=Y @-1D)P+Y (e—-1P.
oeG eed

Es bleibt noch zu zeigen, daB3 P ein Gitter ist.
N ist ein endlicher Z-Modul. Weil M nicht im Korper Q=K¢ der
rationalen Zahlen enthalten ist, muB N von Null verschieden sein.
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v=) Ze ist ein Ring ganzer GroBen in L. Sein Quotientenkorper K
eeA

enthdlt n—1 unabhingige Einheiten. Nach dem Dirichletschen Ein-
heitensatz muB der Grad von L mindestens n sein. Also stimmen K und
L iiberein und v ist eine Ordnung von L. P ist ein (vielleicht gebrochenes)
von Null verschiedenes v-Ideal!

5.5. Lemma. Gegeben sei ein total reeller galoisscher Zahlkiorper vom
Grad n=2 iiber dem Korper Q der rationalen Zahlen und G seine Galois-
gruppe. Die Gruppe G stimme mit ihrer Kommutatoruntergruppe [G, G]
iiberein, sei also z.B. eine einfache Gruppe.

Dann gibt es eine G-stabile Gruppe A total positiver Einheiten von L
vom Rang n—1 und ein A — G-stabiles Gitter A in L mit folgenden Eigen-
schaften:

A=T[@-1)4
deG

A=Y (O-1) A+Y (e—1) 2.
deG ged

Sei I' das semidirekte Produkt von N und A,T" das semidirekte Produkt
von I und G R
I'=UxA, I'=I'xQG.

Dann stimmt die Gruppe I' mit ihrer Kommutatoruntergruppe [I,1]
iiberein.

Anhang. Die Existenz total reeller galoisscher Zahlkérper
mit einfacher Galoisgruppe

Uber die Existenz galoisscher Zahlkdrper mit vorgegebener Galois-
gruppe ist sehr wenig bekannt. Nach Hilbert [5] gibt es galoissche Zahl-
korper zu allen alternierenden Gruppen. Leider sind diese Hilbertschen
Beispiele nicht total reell. Es soll daher die Konstruktion einiger Beispiele
total reeller Zahlkdrper mit einfacher Galoisgruppe kurz skizziert werden.

Gegeben sei eine rein transzendente endlich erzeugte Korpererweite-
rung K=Q(¢y, ..., t,) des Korpers Q der rationalen Zahlen erzeugt durch
die algebraisch unabhingigen Elemente ¢,,...,t, und eine endliche
galoische Korpererweiterung L von K mit der Galoisgruppe G. K =I°.

Sei A=Z[t,,...,t,]=2Z[t]; der ganze AbschluB B von A4 in L ist
dann endlicher 4-Modul. Es gilt: 4 = B°.

Gegeben sei ein Punkt a=(ay, ..., qa,) aus dem Zahlraum R"; Q(a)
sei der von den Elementen ay, ..., a, iiber Q erzeugte Korper. Man hat
einen natiirlichen Homomorphismus

Z[t]-Q(a)

L a
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und Q(a) ist iiber diesen Homomorphismus ein A-Modul. Wir setzen:
L(a)= B®ziQ(a).

Die Gruppe G operiert auf L(a). Hilberts Irreduzibilitétssatz [5] sagt aus,
daB die Menge H derjenigen ae@”, fiir die K(a) ein Korper, damit K(a)
eine galoissche Erweiterung von @ mit Galoisgruppe G ist, dicht im
Raum R" liegt.

Die Menge U derjenigen Elemente acR", fiir die L(a) ein Produkt
total reeller Korper ist (insbesondere ist dann der Kern des natiirlichen
Homomorphismus Z [t] — @ (a) unverzweigt in B), ist offen. Wir wollen
annehmen, daB U nicht leer ist. Diese Bedingung ist immer erfillt, wenn
L iiber @ rein transzendent ist. Dann ist H U nicht leer. Es gibt also
total reelle galoissche Zahlkdrper L(a) mit Galoisgruppe G.

Sei @ algebraisch abgeschlossen in L. Dann ist L immer verzweigt
iiber Q[t]: Es gibt keine unverzweigten Uberlagerungen des affinen
Raumes iiber einem algebraisch abgeschlossenen Korper der Charak-
teristik Null. Wir wollen unter diesen Voraussetzungen zeigen:

Es gibt unendlich viele total reelle galoissche Zahlkorper mit Galois-
gruppe G, die untereinander nicht isomorph sind.

Der Beweis wird zunichst mit Hilfe von Hilberts Irreduzibilititssatz
auf den Fall n=1 zuriickgefiihrt.
Wir wollen also annehmen, daB n=1 ist. Nach einer geeigneten Sub-

kann man annehmen, daB alle geniigend groBen reel-

stitution t —
t—o

len Zahlen a, insbesondere alle natiirlichen Zahlen n=n, in U liegen.

Q1] ist verzweigt in L. Die Diskriminante d(t) ist also ein nicht
konstantes Polynom in @ [¢]. Nach Multiplikation mit einer passenden
natiirlichen Zahl kann man annehmen, daB d(t) ganzzahlig ist. Wir zer-
legen d(t) in Q[¢] in irreduzible Faktoren:

d(t)y=d,(t)*...d.(t).

Auch die nicht konstanten Polynome d;(t) konnen ganzzahlig ange-
nommen werden.

Man zeigt:

Es gibt eine endliche Menge S von Primzahlen, so daB folgendes gilt:

Fiir eine ganze Zahl me H und eine Primzahl p¢S, die in d;(m) in
erster Ordnung aufgeht, ist B®zyZ, ganz abgeschlossen in L(m)=
B® 211 Q, damit Lokalisierung der Hauptordnung von L(m) nach dem
Primideal (p), und d(m) ist bis auf eine Einheit in Z, Diskriminante von
BQzinZ , iiber Z,,. Damit ist eine solche Primzahl p Teiler der Korper-
diskriminante dremyg von L(m) iiber Q.
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Andererseits gibt es eine unendliche Menge I von Primzahlen p,
die nicht in S enthalten sind, so daB das Polynom d, (t) modulo p in die
yrichtige“ Anzahl von teilerfremden Linearfaktoren zerfdllt [4].

Es gibt dann zu einer solchen Primzahl p aus M eine natiirliche
Zahl m mit

pldy(m),  p*kd,(m).

Betrachte die Folge natiirlicher Zahlen (m+q p?), g N. Nach Hilberts
Irreduzibilitdtssatz gibt es beliebig groBe natiirliche Zahlen g, so daB
L(m+qp?) ein galoisscher Zahlkdrper mit Galoisgruppe G ist. Fiir ge-
niigend groBe g liegt m+ g p* nach Voraussetzung in U, ist also L(m +qp?)
total reell. Die Diskriminante von L(m+ q p?) wird durch p geteilt.

Also gibt es unter den total reellen galoisschen Zahlkorpern L(a)
(ae U n H) mit Galoisgruppe G solche mit beliebig groPer Diskriminante.

Es soll ein Beispiel fiir die angegebene Situation diskutiert werden:
5.7. Satz. Es gibt unendlich viele nicht untereinander isomorphe galois-

sche total reelle Zahlkéorper, deren Galoisgruppen isomorph sind zur
Gruppe As der alternierenden Permutationen von fiinf Elementen.

Dazu betrachten wir den Raum der binidren Formen

5 S
f(xs)’)zzaxxs—xyx: Hl(axx_ﬂxy)
k=1 K=

vom Grad fiinf.

. . . . b
Auf diesem Raum operiert die lineare Gruppe Gl,: y~'= (: d)'

Dann transformiert y die Form f(x, y) in die Form f(ax+by, cx+dy).

Damit operiert G auf dem Korper 4 der iiber @ rationalen Funk-
tionen h(ay, ..., as) der Koeffizienten a,, die homogen sind vom Grad
Null. AuBerdem operiert G/, auf natiirliche Weise auf dem Oberkérper Q
der iiber @ rationalen Funktionen

(et

in den Wurzeln B, /o, der Formen. Der Invariantenkorper K, = 4% der
qumen fiinften Grades ist nach dem Hauptsatz der Invariantentheorie
rein transzendent iiber @ mit den algebraisch unabhéngigen Erzeugenden

D I,

_— v:_
2 3
14 14

Ky,=0(u,v).

u
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Dabei ist die Diskriminantenform D= D(ay, ..., as) eine invariante Form
vom Grad8, I,=1I,(ap,...,as) eine invariante Form vom Grad 4,
Ii2=11;(ay, ..., as) eine invariante Form vom Grad 12 [7].

Es ist leicht zu sehen, daB L= Q%" rein transzendent iiber @ ist und
daB auf L die volle Permutationsgruppe Ss (durch Vertauschung der
Wurzeln f8;/a;) operiert. Es gilt

LS5=K0.

Die in L enthaltene quadratische Erweiterung

K=Ko()/u)=Q (‘/5 v)

I

ist ebenfalls rein transzendent und wird von der Untergruppe As der
alternierenden Permutationen aus Ss invariant gelassen. Also ist L/K
galoissch mit der Galoisgruppe A45. Fiir die Erweiterung K liegt unsere
Ausgangssituation vor!

Aus Bemerkung 4.2 und den Theoremen 4.4, 5.5 und 5.7 erhilt man

5.8. Theorem. Es gibt unendlich viele untereinander nicht isomorphe
Z PE-Ringe der Tiefe 3 von z.B. der Dimension 60.

§6. Die Starrheit der Spitzen
Gegeben sei eine analytische Algebra A. Eine Deformation dieser
Algebra A ist ein flacher Homomorphismus B — C analytischer Algebren
zusammen mit einem Isomorphismus

C/mzC=A.

Dabei ist my das maximale Ideal von B. Man erklart auf natiirliche Weise
die Aquivalenz von Deformationen.
Die Deformation B— C heiBt trivial, wenn sie zur trivialen Defor-

mation .
Co-C®A

dquivalent ist. C®A bezeichnet das analytische Tensorprodukt der
Algebren C und A iiber C.

6.1. Definition. Die analytische Algebra A heilt starr, wenn jede
Deformation trivial ist. Ein analytischer Raum X heift starr im Punkt
ae X, wenn der Ring Oy , der Keime holomorpher Funktionen in a
starr ist.

Nach einer miindlichen Mitteilung von Herrn Schuster gilt folgendes
Starrheitskriterium:
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6.2. Lemma. Gegeben sei ein Steinscher normaler Raum X der Dimen-
sion n=2 in einem Punkt aecX. X sei auflerhalb von a glatt. Qy sei die
Garbe der holomorphen Differentialformen vom Grad Eins auf X, 2x=
Homg, (2, Ox) die dazu duale Garbe. Es verschwinde die Kohomologie-
gruppe H' (X — {a}, @x). Dann ist X im Punkt a starr.

Der Beweis soll kurz skizziert werden:

Wir konnen annehmen, dal X ein durch die kohidrente Idealgarbe ¢
definierter abgeschlossener Unterraum eines komplexen Zahlraumes C™
ist. j sei die natiirliche Einbettung von U=X —{a} in X, #°j, O der
abgeleitete direkte Bildkomplex von ¢y im Sinne von Verdier, #, Ok
die Garbe der Schnitte von Oy mit Trigern in {a} und #° #° Oy der ab-
geleitete Komplex im Sinne von Verdier.

Man hat auf natiirliche Weise einen Komplex #":
A =.f/f2|X _,,J{‘):Qcm/j{)m[)(_

Wir betrachten die exakte Folge von Hyperkohomologiegruppen:
- Bxty (A7, B H O Ox)— Exty (K, Ox) > Exty (A", R'j, Op)— -
X|U ist quasiisomorph zu £, also gilt:

Exty (4", &' j, Oy)=Exty (X"|U, Op)=Exty (Qy, O))=H' (U, Dy)=0.

Weil die Tiefe von Oy , mindestens Zwei ist, verschwindet H : (Z'Jﬁf} Oy)=
H, (X, Oy) fir i<1 [8], damit Exty (A", A, Oy). Wir erhalten:

Extéx‘a(t}f;, Oy J=Exty (X~, 0,)=0.

Exty, (A4, 0y ) ist aber isomorph zur Gruppe der infinitesimalen
Deformationen von Ox. a-

Gegeben sei nun eine Transformationsgruppe I des Hilbertschen
Halbraumes H" im Sinne von § 2. Wir bezeichnen mit p die Projektion
von H" auf den Restklassenraum X°=H"/IT Auf X° erkldren wir die
Geradenbiindel 4,, ..., %, und das Vektorraumbiindel .# vom Rang n
durch ihre Schnitte iiber offenen Teilmengen von X°.

Sei U eine offene Teilmenge von X°. Das Urbild Y=p~!(U) ist eine
I'-saturierte offene Teilmenge von H".

%,(U) ist der Vektorraum der holomorphen Funktionen f: Y— C,
die folgendes Transformationsverhalten bei Substitutionen y: z—¢gz+a
der Gruppe I'" haben:

fy=¢"10).
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#(U) ist der Vektorraum der I'-invarianten holomorphen Differential-
formen
L@@ dzi+-+ f,(2)dz,
auf Y.
Die I'-Invarianz bedeutet:
Fiir jede Transformation

y: z—ez+a
aus I gilt

fiyDd(e z)+ -+ £,y 2) d (&, 2) =11 (2 dzy + - + [, (2) dz,,
d.h.
LoD=e /1@, . il D=6 £u().

Klar ist folgender Hilfssatz:

6.3. Hilfssatz. Die Garbe M ist isomorph zur Garbe Qo der holomor-
phen Differentialformen vom Grade Eins auf X°. M zerfillt in die direkte
Summe der Geradenbiindel ¥;:

M=% @ DY,
Dyo=%7"'@- DG, .
Sei X =X°U {0} die ,,Kompaktifizierung“ von X durch die Spitze co.
R (I') ist die Algebra der Keime holomorpher Funktionen in der Spitze co.
6.4. Theorem. Sei n= 3. Dann ist die Algebra R(I') starr.

Der Raum X ist ein Steinscher Raum: Die I'-invariante Funktion

H"—>C

z—>N(Imz)™!

definiert eine plurisubharmonische Funktion auf X°, die sich stetig mit
dem Wert Null auf oo fortsetzen 14Bt.

Wegen Kriterium 6.2 und Hilfssatz 6.3 geniigt es deshalb zu zeigen,
daB H'(X°, 4" fiir alle i verschwindet.

Allgemeiner zeigen wir:

6.5. Theorem. Gegeben sei ein n-Tupel ganzer Zahlen (ry,....r,)=+
(0, ..., 0). Wir betrachten folgendes Geradenbiindel automorpher Formen.
Sei U eine offene Teilmenge von X°, Y=p~'(U) das Urbild in H". 4(U)
ist der Raum der holomorphen Funktionen f: Y— C, die folgendes Trans-
formationsverhalten bei Substitutionen y: z— ez +a der Gruppe haben:

fo2)=e"...e," [ (2).
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Dann verschwinden die Kohomologiengruppen
H' (X%, ¥); 1=v=n-2.

Der Beweis verlauft dhnlich wie die in [3] durchgefiihrte Bestimmung
der Kohomologiegruppen des trivialen Biindels auf X°.

Sei M der Vektorraum aller holomorphen Funktionen auf dem
Halbraum H". Auf M operiert I" folgendermaBen:

y‘l: z—¢ez+a

sei eine Substitution aus I f eine holomorphe Funktion auf dem Halb-
raum H"

0N @)= ... &0 f(y2).

H'(X°, 9)=H"(I, M)=H"(A, M").

Es gilt:

M' kann als Vektorraum gewisser Fourierreihen beschrieben werden:

f@)= Zoage(g z).
get
A operiert auf M':

Das Element ¢~ !e A werde durch die Substitution

z—¢e (z+a)
aus I' reprisentiert

Ef)(2)=) & ...elre(ga)ag. e(gz).
get0
M" zerfillt in eine direkte Summe des A-Moduls N aller Fourierreihen
ohne konstanten Term und den A-Modul € der konstanten Funktionen.
Man beachte, dal im Gegensatz zum Falle des in [3] behandelten
trivialen Biindels A nicht trivial auf C operiert!

gC=¢g7 ... 8¢
Deshalb gilt
H*(A,C)=0 fiir alle v.

Woartlich wie in [3] folgert man das Verschwinden der Kohomologie-
gruppen H'(A,N) 1=v=<n-—2 aus der Endlichkeit [8] dieser Vektor-
rdume.
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An Analogue of Stickelberger’s Theorem
for the Higher K-Groups

J. Coates* (Stanford) and W. Sinnott (Stanford)

Introduction

Let F be a finite extension of the rational field Q, O the ring of
algebraic integers of F, and K,, O (k=0, 1, ...) the even K-groups of ©
in the sense of Bass-Milnor-Quillen (see [11, 13]). In particular, K, D is
Just the ideal class group of © (see Chapter 1 of [11]). All the groups K, O
have been proven to be finite by the work of Garland [7], Borel [1], and
Quillen [12]. However, little is known so far about their structure, and
the present note is intended to be a contribution to this problem in the
special case in which F is abelian over Q. In that case, it has been known
since last century that there is a canonical relation in K o O, namely, the
Stickelberger relation (see, for example, [9]). Are there similar canonical
relations in the higher K-groups? We prove that this is indeed the case
for K, O, and we conjecture a relation for the K,, O with k> 1. It may
be worth noting that these relations were suggested to us both by Lichten-
baum’s conjectures [10] about the order of K,, O, and by the earlier
work of one of us [5] on these conjectures.

We now state our result explicitly. Let f be an integer > 1. For each
integer a with (a, f)=1, we define the partial zeta function of a modulo f

b
g {la99= Y n~° (R(s)>1),

n=amod f
n>0

where, as indicated, the summation is taken over all positive integers n
with n=a mod f. Plainly s(a, s) depends only on the residue class of
amod f. It is well known that { (@, s) can be analytically continued over
the whole complex plane, except for a pole at s=1. Moreover, for each
integer k>0, it is known (see § 1) that { s(a, —k) is a rational number.
Our conjectural canonical relations are defined in terms of these rational
numbers. For each integer m>1, let u,, be the group of m-th roots of
unity (in some fixed algebraic closure of F). Assume, as above, that F is
an abelian extension of Q. By class field theory, F is contained in Q(x,,)
for some integer m. Let f be the least positive integer m with this property
(in fact, f is then also the non-archimedean part of the conductor of F/Q,

* Supported by a grant from the Sloan Foundation.
1=
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in the sense of class field theory). For each positive integer b with (b, f)= 1,
we write (b, F) for the restriction to F of the automorphism of Q(x,)
which maps each element of y, to its b-th power (of course, (b, F) is the
Artin symbol attached to the ideal (b)). If k is an integer >0, we let w, ,(Q)
denote the largest integer m such that the Galois group of Q(x,,) over Q
has exponent dividing k + 1. Let G be the Galois group of F over Q. Now
it follows from Theorem 1.2 that, for each positive integer b with (b, f)
=1, the element

S, (B)=w, QB! —(b,F) Y. (sl —k)a, F)~,
amod
(a.f)=f1
where the summation is taken over any complete set {a} of representatives
of the relatively prime residue classes mod f, belongs to the integral
group ring Z[G]. Since G acts on K,, O in the natural way, we can
therefore consider the action of S,(b) on K,, O.

Conjecture 1. For each positive integer b with (b, /) =1, 5,(b) annihilates
K, D.

It should be noted that, when F is totally real and k is even, this
conjecture is entirely vacuous since S, (b)=0 for all b=1 with (b, f)=1.
On the other hand, excluding this case, it is easy to see (cf. Lemma 1.7)
that S, (b) %0 for all b>1 with (b, f)=1.

We first remark that, when k =0, the above conjecture is just a slightly
modified form of Stickelberger’s theorem [97, and so it is certainly valid
in this case. The main result of the present note is the following. We write
F+ for the maximal totally real subfield of F, and O* for the ring of
algebraic integers of F*.

Theorem 2. Assume that (b, f)=1, and that, in addition, b is prime to
the order of K, O or K, O*, according as F is totally real or totally imagi-
nary. Then S, (b) annihilates the l-primary subgroup of K, D for all odd
primes .

The additional restriction on b is rather mild, especially as one can
always compute a finite set of primes which contains all the primes
dividing the order of K, of the ring of integers of a totally real abelian
number field (see Theorem 4.4 of [5]). Also, we strongly suspect that the
proof of Theorem 2 can be extended to show that S, (b) annihilates the
2-primary subgroup of K, O as well. However, we do not discuss this
in the present paper, because it would introduce considerable technical
complications into our arguments. Finally, we note that, when k is odd
and > 1, and F is totally real, we show that S, (b) annihilates an l-primary
group (/% 2) which is conjectured to be isomorphic as a G-module to the
l-primary subgroup of K ,, O (see Theorem 2.1).
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1. A Congruence for the Values of the Partial Zeta Functions

We suppose throughout this section that f'is an arbitrary integer > 1.
Our first lemma is obvious from the definition of the partial zeta functions.

Lemma 1.1. Assume that f divides g, and that f and g are divisible by
the same primes. Then, for each integer b with (b, f)=1, we have

(b, 9)=) L, a, ),

where the summation on the right is taken over a complete set {a} of
representatives of the residue classes mod g which are mapped to the
residue class of bmod f by the canonical surjection from Z/gZ to Z/fZ.

Now let k be any integer =0. It is well known (see [15], p.17), that,
for each b with (b, f)=1, {;(b, —k) is given by the Fourier expansion

a0
Lo, —k)=@mi)~ Tkl f* YT e i (1)
where the summation is taken over all non-zero integers n; when k=0,
it is understood that the terms with —n and n are always taken together
in the summation. Moreover, when O0<b< f the sum of the Fourier
series is known to be given by

L (b, —k)= — f*(k+1)"" By ,,(b/1), @)

where B, , , (x) denotes the (k + 1)-th Bernoulli polynomial (see [15], p.17).
If b lies outside this range, we use the periodicity of the Fourier series to
obtain the value of { (b, —k).
If b, ¢ are positive integers with (b, f)=(c, f)=1,and kis an integer =0,
we define
Bpr(boci =1 Ly(b, —K) =Ly (be, —k).

For each rational prime p, let v, be the corresponding valuation of Q,
normalized so that v,(p)=1. In order to bring out the analogy of our
present results with those in [6], we introduce the integers f,=f and

fi=f1Ip"®  kz1),
plr
where the product is taken over all primes p which divide f. Let w,(Q(x,))
be the largest positive integer m such that the Galois group of Q(x,, 1,,)
over Q(u,) has exponent dividing k. Then, in connexion with the results
of [6], we make the following observation. Suppose that f is the con-
ductor of Q(u ;) over Q (of course, this is the same as assuming that f is
either odd or divisible by 4). Then it is an easy consequence of the ir-
reducibility of the cyclotomic equation over Q that, for each prime p
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which divides f, we have

v,(f)=0,we(Q(uy)) (=1). 3

We now state our main congruence and integrality assertion about the
values of the partial zeta functions. It seems to be natural to break the
result into two separate theorems. In both theorems, it is assumed that
b, c, f are arbitrary positive integers with (b, f)=(c, f)=1, and that k is
any integer =0.

Theorem 1.2. (i) w,, (Q) 6, .., (b, c; f) is an integer, and

(i) Wey1(Q) Sy, 1 (b, s )=, (Q)(b0) 6, (b, c; ) mod f.

Theorem 1.3. Assume that (c, wy,(Q(x,)))=1. Then

(i) 0y, (b, c;[) is an integer, and

(i) 0, q(b,c; )=(bc),(b, c; f) mod f,.

Corollary 1.4. w, . ,(Q(x,)) {;(b, —k) is an integer.

We first note that Corollary 1.4 is a consequence of (i) of Theorem 1.3.
For, let b be any positive integer with (b, f)=1. Then, for each positive
integer c with c=1 mod f, we have plainly { (b, —k)= {;(bc, —k), whence,

lapuchie, S (bocs f)=(+1 =1) (b, =K.

The above assertion is then plain from the following lemma (cf. Lemma 2
of [6]).

Lemma 1.5. Let d be the greatest common divisor of the numbers
c*+1 — 1, where ¢ runs over all the positive integers satisfying c=1mod f
and (¢, w,,1(Q(1p)=1. Then d=w,_,(Q ().

Proof. Put m=w, ,(Q(u f)). Note that f divides m. We first show that
m divides d. Let ¢ be any positive integer with ¢=1mod f and (¢, m)=1.
Since c=1mod f, we see that (c, Q(u,)) belongs to G(Q(x,)/Q (k)
Hence, by the definition of m, (c**', Q(u,))=1, and so c**'=1mod m.
This proves that m divides d. To prove the converse, let ¢ be any element
of G(Q(u,)/Q(u,)). There exists a positive integer ¢ with (c,d)=1 such
that o =(c, Q(u,))- Since o fixes Q (i) by hypothesis, we have c=1 mod f.
Also the condition (c, d)=1 implies that (c, m)=1 because m divides d.
Thus, by the definition of 4, c**'=1mod d, and so o**' =1. This shows
that G(Q(ud)/Q(,uf)) has exponent dividing k+ 1, whence d divides m.
The proof of the lemma is complete.

We next establish the following elementary result, which will be
needed in the proof of Theorems 1.2 and 1.3.

Lemma 1.6. For each integer k=1, and each integer i with 1<i<k,

we have that (’:) f*is divisible by f.
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Proof. Let p be any prime number, and put e=v, (k). We first observe
that, for 1 <i<p®, we have

vp((lz))=vp(k)—vp(i). 4)

The proof is by induction on i, the assertion being plainly true for
i=1. Assume it true for i=1, ..., j, where j < p®. Since j<p®=<k, it is plain
that k—j+0 and v, (k—j)=v,(j). Thus the identity

k k
n(,)-en)
(+1) i+l (k—J) j
together with the validity of (4) for i=J, implies that (4) is true withi=j+1,
as required. We next claim that, for each i with 1 <i<k, we have

v,((':) p‘)gvp(k)+1. (5

Indeed, if i> p° this is true since i>e and

vp<(1;) pi)gige+ I=v,(k)+1.

On the other hand, if i< p®, (5) is also valid by virtue of (4) and the fact
that v, (i) <i. Finally, on applying (5) to the primes p which divide £,
the conclusion of Lemma 1.6 follows.

We now commence the proof proper of Theorems 1.2 and 1.3. We
recall that the Bernoulli numbers and polynomials are defined by

~—

e —1)=3 B!, B,x)=Y (”) B;x".
n=0

j=o\J

From these definitions, one deduces easily the well known identities

ksl ol 1 )
By, (x+a)=}, ( + ) By, y_j(a@) X, (6)
j=0\ J
By (X)=(=1)*" B, (1 —x). M
n—1
(Bey )= By, )(k+1)= Y j* (naninteger >1). 8)
j=0

As usual, if u and v are two rational numbers, the notation

u=v mod f, Z will mean that u—v belongs to f, Z. We first claim that, if
k=1,

b, k)= —fX(k+1)"" By 1(bc/f)—(bc)(By(r)— B,) mod f, Z, ©)
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where r denotes the unique integer such that g=bc+rf satisfies 1=<g < f.
For (6), together with the equation

N "
(k+1) (j )_w+1 i) (), (10)
shows that
" 1 be
Fek+ 1 (B, (-f—+r) B, .(be/f)) =W,
where

Wzélo(?)(k+l_j)—l(Bkn—j(")_BHl»j)(i;‘)jfk~ (1

Now we observe that

(Bis1-j()—Biyy_JMk+1-)) (O=j<k)

is an integer. If =0, this is plain from (8). If r<0 and j<k, it follows
from (7) and (8) since B, ,_;=0 when k+1—; is odd and > 1. Finally,
the assertion is also true when j=k and r<0 because B (x)=x—3. In
view of this observation, we conclude from Lemma 1.6 that all terms in
the sum (11), except perhaps that given by j=k, are integers divisible by

Jx» whence
W=(bc)*(B,(r)—B,) mod f, Z.

The congruence (9) then follows from the equation above (11) on
recalling that, by (2),
b
Q@q—@z—ﬂ&+0”3hlt%+ﬁ.
Again using (10), we have
KUk By i i o) ik
A1) By (bel =+ ) b0f f+ Y () L ey 1
j=o\Jj/ k+1—j

Also, since d, (b, c; f) depends only on the residue class of b modf
(note, however, that §, (b, c; f) does depend on the particular choice

of ¢), we can assume that 0<b < £, so that { b, —k) is given by the right
hand side of (2). Therefore we conclude from (9) that, assuming k=1,

8, (b, c1 f)= Vk+1(b,c;f)+(bc)"(Bl(r)—B,) mod f,Z, (12)

where
k

Vioilbocs )= Y alk,je) bl f*,

j=0
and

k\ B - .
— k,', =() k+1_J.C"1—~Ck+1_].
a=alk) =) 515 )
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Let p be any prime number. We now proceed to show that, for each
k=1, a=a(k,j,c) is integral at p unless the following four conditions
hold: (i) p divides c, (ii) j=0, (iii) k+1 is even, and (iv) p— 1 divides k+1.
If these four conditions are satisfied, we shall show that v,(@)=
—v,(k+1)=1. If p—1 does not divide k+1—j, o is integral at p by
Kummer’s theorem (see, for example, [2], p. 385). Hence we may assume
that p—1 divides k+1—j. Put

m=v,(k+1), n=v,(k+1—j), t=min(m,n).

Suppose first that p does not divide ¢. Then, since (p— 1) p" divides k + 1 —}j,
we have c**!'~i=1modp"*+!. But, by the Clausen-von Staudt theorem,
p divides the denominator of B, ,, _; to (precisely) the first power, and
so o is integral at p in this case. Suppose next that p divides c. Now we
can use (10) to rewrite o as
x= (k+ 1) By, _jcl(1=c** 1) (k+ 1)1

Hence, again using the Clausen-von Staudt theorem, we deduce that
v (®)2j—t—1. Now, if j%0, t <j since p' divides j, and thus o is integral
at p. If j=0, we have =0 unless k+1 is even because the Bernoulli
numbers with odd subscripts >1 are all 0. This proves the above as-
sertion.

We can now complete the proofs of Theorems 1.2 and 1.3. Let us
note first that both theorems are true for k=0 because

8,(b,c; fy=c/2+r—1%, (13)

and the condition (c, w; (Q(x,)))=1 in Theorem 1.3 implies that c is odd.
Hence, we can assume that k>1. We consider Theorem 1.2 first. It
follows easily from the irreducibility of the cyclotomic equation over Q

that w, ,(Q)=2 or W, (Q)=2 [] plroetksD

p—1|k+1

according as k is even or odd; here the product is taken over all primes p
such that p—1 divides k+ 1. Thus it is plain from the description of the
denominator of «(k, j, ¢) obtained above that w, +1(Q)a(k, j, ¢) is integral
for 0<j<k. Hence, by (12), w,, (Q)d,, (b, c; f) is an integer. To derive
the congruence, let p be any prime number which divides f. Then p does
not divide ¢ because (c, f)= 1, whence it follows easily from Lemma 1.6
and the argument used to show that a(k, j, ¢) is integral at p that

0, (Ves1(b,c; £)—B,b*c*(1 =) 2 v, (f). (14)

Assertion (ii) of Theorem 1.2 is now clear from (12), (13), (14) and the fact
that w, (Q)d,, (b, c; f) is an integer (recall that B, (x)=x—3). Finally,
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assume that (c, w,,,(Q(u,)))=1 (this is the same as saying that c is
prime to both f and w, ,(Q)). Therefore, each prime p which divides ¢
does not have the property that p—1 divides k+ 1. Therefore a(k, j, c)
is an integer in this case, and the rest of the proof of Theorem 1.3 follows
in an entirely similar manner to that of Theorem 1.2.

Finally, we give an alternative expression for the element S, (b) de-
fined in the Introduction, which will be needed for the proof of Theorem 2.
We use the notation of the Introduction. Thus F will denote an abelian
extension of Q, f will be its conductor, and G will be the Galois group
of F over Q. We write G for the group of homomorphisms of G into the
multiplicative group of C. Let x be any element of G. As usual, we can
view y as a Dirichlet character mod f by defining y(a) to be x((a, F)) for
each integer a with (a, f)=1, and we can then form the complex L-
function

Lixs)= [ (1-x®@p)"

p
(p, N=1

where the product is taken over all primes p with (p, f)=1; we have
included the subscript f in L,(x, s) to make it quite clear that we are
not assuming that y is necessarily primitive. Plainly

Ly(x,9)= dex(a)lf(a,S)- (15)
(a, =1
We write
o, (F)= deCf(a,—k)(a,F)”‘-
(a,f)=1

Also we let e, be the orthogonal idempotent of x in the group ring
C[G]. If xeG, 7 will denote its complex conjugate character.

Lemma 1.7. We have o, (F)= ) L,(X, —k)e,.
x€G

Proof. Since
e, (F)= Y {la —k@),

amod f
(@, N)=1

the assertion is clear on putting s= —k in (15).

2. Proof of Theorem 2

We first establish an auxiliary result, from which Theorem 2 will
follow easily. Throughout this section, ! will be an odd prime number
and k an odd positive integer. Moreover, F will denote an abelian ex-
tension of Q, which will be assumed to be totally real until further
notice.
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Let F,=F(y,), and let g, be the order of the group of I-power roots
of unity in F,. For each integer n>0, put g,=¢,[", and define

F=F(,) F,=UE.
n=0

Thus E,/F, is cyclic of degree I". Let A, be the I-primary subgroup of the
ideal class group of F,. If n < m, the natural inclusion of the divisor group
of E, in the divisor group of E, induces a homomorphism 4, — A4,, (which
is not, in general, injective), and we put Am=&'nA,l. Since each F, is
abelian over Q, there is a natural action of complex conjugation (which
we denote by J) on both 4, and A _, which is independent of any partic-
ular embedding of F, into C. Put

A-=(1-DA,, A;=(1-)A,.

Now it is well known that, when n<m, the natural map A; — A is
always injective. Hence, regarding these maps as inclusions, we have

Ag=J4;. (16)

We next need the notion of twisting by roots of unity. Let T=liﬂu,,.
be the Tate module, viewed as a G(F, /Q)-module in the natural way. If
M is any Z,-module, which is also a G(F,/Q)-module, we define M (k)
to be M@, T®* where T®* is the k-fold tensor product of T with itself
over Z,. Here it is understood that G (F,,/Q) acts on M (k) via the diagonal
action, that is c(m®t,®--®t)=(cm®(6t,)® - ®(at,). Of course,
T®*is a free Z,-module of rank 1. In particular, if we choose a Zbasis {y}
of T, then {y®*}, where y®*=y®---®y (k times), is a Z-basis of T®*,
Thus each element of M (k) can be written uniquely in the form o ® y®¥,
where ae M. Finally, put G_=G(F_/F).

Theorem 2.1. Assume that F is a totally real abelian extension of Q.
For each odd positive integer k, (A;(k))G“ is annihilated by S, (b) for all
b>0 with (b, f)=1.

Proof. In the theorem, it is, of course, understood that the G (F/Q)-
structure on (A (k))~ is the natural one coming from the G(F,/Q)-
structure on A (k). Also A (k) is an I-torsion group because each A4,
is I-torsion. Fix a basis {y} of T as a Z,-module. Let 7®y%®* be any
element of (A (k))°<. For each n=0, we write g, for the conductor of F,
over Q. For the rest of the proof, we shall assume that the integer n is so
large that (i) g,(n®7y®%) =0, and (ii) ne A;. Assertion (i) is valid for all
sufficiently large n because g, divides g,. Let b be any positive integer
with (b, f I)= 1. Note that this last condition is equivalent to the property
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that (b, g,)=1 for all n>0. We define

2, (B)=w, QB —(B.F) Y (@ —k)aF)".
a=1
(ﬂ.gn)=1

It is easy to see that a,(b) can be written in the alternative form

0 (B)=weor(Q) Y Oei(ab;g)@E),
a=1

(a,gn)=1
where 8, ,,(a,b; g,) is as defined in § 1. Hence, by Theorem 1.2, o,(b)
belongs to the integral group ring Z[G(F,/Q)]. We claim that

o, (b (n®y®*)=0. (17

For, since g,(n®7y®* =0, we conclude from the second assertion of
Theorem 1.2 that «,(b)(n ®y®*)=0,(b)(n ®y®*), where

8n
On(b)zwk+l(Q) Z (ba)k 51(a,b;g")(a, ‘F;,)_I-

(a,gn)=1

Let (a, F,) be the element of G(F,,/Q) which is determined by the (a, E,)
for all m>0. Then (a, F,)) acts on T by multiplication by a. Recalling that
neA;, and that the action of G(F,/Q) on Az (k) is the diagonal one, it

follows that
@ E) '(h®y®Y)=a"*(a E) "' n)®y®~
Thus
0, ®7®*) =wy,1(Q) b*((p.(b) 1) ®7®"),

where
gn
p,)= Y &(ab;g)aE) "
a=1
(@ gn)=1

But, by the classical Stickelberger theorem for F, over Q (see [9]),
p,(b) n=0. This proves (17).
On the other hand, since n®y®* is in (47 (k)%= it is plain that

«,(b)(n®7y®H)=aX(b)n®7®Y),

where o (b) is the element of Z[G] obtained by replacing (c, F,) by (c, F)
(c any integer prime to f) throughout in the definition of o,(b). Noting
that g, and g, are divisible by precisely the same primes, it follows from
Lemma 1.1 that

80
a:(b)=wk+l(Q)(bk+l_(bs F)) Z Cgo(a’ '—k)(as F)_l'
a=1

(a,go)=1
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If I divides f, the same argument allows us to deduce that a*(h)=S, (b).
If I does not divide f, we conclude easily from Lemma 1.7 that

ox (b)=(1— (I, F)~") S, (b).

Since k=1, 1—I*(, F)~' is clearly a unit in the group ring Z,[G]. Thus,
in either case, we conclude from (17) that S;(b)( ®y®*)=0. This com-
pletes the proof of Theorem 2.1.

We can now prove Theorem 2. Suppose first that F is totally real.
Then, for each odd prime number I, the [-primary subgroup of K, O is
known to be isomorphic as a G-module to (47 (1))~. This result can be
derived from the work of Tate [16], Quillen [13], and others, as is shown
in [3, 4]. Thus, by Theorem 2.1, S, (b) annihilates the /-primary subgroup
of K, O for all odd primes ! and all positive integers b which are prime
to f and the order of K, ©. Assume next that F is totally imaginary. Let
F* be the maximal totally real subfield of F, and O+ the ring of algebraic
integers of F*. Then, of course, G(F/F*) is a cyclic group of order 2
which is generated by J. Let | be an odd prime number. If B is any abelian
group, we write B, for its [-primary subgroup. Since [ is odd, it follows
immediately from the existence of the trace map in K-theory (see [11])
that the inclusion of O+ in O induces an isomorphism

K, D = (K, D)%™, (18)
where both groups are regarded as modules over G(F*/Q). Moreover,
K, 0,=1-))K,0,®(1+J)K, 9O,

and the direct summand on the right is the same as (K, O,)°*F ). Now,
if y is a character of G with x(J)= —1, it follows from the functional
equation for L (x,s) that L (y, —1)=0. It is therefore plain from
Lemma 1.7 that S,(b) automatically annihilates (1—J) K, D,. On the
other hand, S,(b) has the same effect on (1+J)K, O, as the image
S,(b) of S,(b) under the canonical map from G(F/Q) onto G(F*/Q).
Let S} (b) denote the analogue of S,(b) for the field F*, and let f+ be
the conductor of F* over Q. Then it follows easily from Lemma 1.7 that

S,)=8F®[T(1—q(a F*)™), (19)

where g runs over all primes which divide f but not f*. The assertion of
Theorem 2 is now plain from (18), (19), and the corresponding result for
F#*.
3. Concluding Remarks
We conclude by mentioning several related questions. Iwasawa [8]
has shown that the classical Stickelberger element for K, O can be used
to construct the p-adic L-functions of Kubota-Leopoldt. In a similar
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manner, one can prove that, for each fixed integer k=1, the conjectural
Stickelberger element for K,, O discussed in this paper gives rise to
p-adic functions which are very simply related to the Kubota-Leopoldt
functions. Also one suspects that Conjecture 2 is just a special case of a
vastly more general phenomenon. Indeed, as has already been pointed
out by Brumer (unpublished, but see [14]) for the ideal class group, the
work of Klingen and Siegel [15] enables one to at least formulate an
analogue of Conjecture 2 in which O is the ring of integers of an abelian
extension of an arbitrary totally real base field. Needless to say, very little
is known about this more general question. While it has no direct bearing
on the problem of the annihilation of the K-groups, it is shown in [6] that
these proposed Stickelberger elements for abelian extensions of a real
quadratic field do, in fact, give rise to p-adic functions which are the
precise analogues of the Kubota-Leopoldt functions.
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Time Dependent Stable Diffeomorphisms

John M. Franks (Evanston)

The study of structurally stable dynamical systems has been motivated
by the following considerations. If one studies a differential equation
arising from a physical situation where it is necessary to make measure-
ments then, since the measurements are only approximations, one is
really studying only an approximation to the true equation. In this case
it is important to know the qualitative behavior of the approximation
and the true dynamical system are the same. Structural stability of a
dynamical system guarantees this if the approximation is sufficiently
good.

It seems likely, however, that in most physical situations the measured
quantities would not be completely independent of time but would
instead be only approximately constant; their values staying near to
some constant approximate value. In other words, the “true” dynamical
system is not really autonomous but is instead to a certain extent time
dependent. Under these assumptions we can ask when the approximate
autonomous system is qualitatively equivalent to the true time dependent
system. We are then asking when is an automous system structurally
stable allowing perturbations to time dependent systems.

In this paper we give a solution to this problem for smooth (C?)
discrete time dynamical systems (difffomorphisms) on compact mani-
folds.

Definition. A diffeomorphism f: M - M on a compact manifold is
time dependent stable (TD stable) if there is a neighborhood N of f in
Diff'(M) with the property that if 81> 82, ---» 8xEN then there exists a
homeomorphism h: M —M such that h='of*oh=g o--0g,. N is
independent of k.

Our main result is the following.

Theorem. If f: M — M is a C? diffeomorphism of a compact manifold
then f is TD stable if and only if f satisfies Axiom A and the strong trans-
versality condition.

The definitions of Axiom A and strong transversality can be found,
for example, in [4]. We give the proof of this theorem in a sequence of
lemmas. Throughout M will denote a C* compact manifold and || the
norm arising from a smooth Riemannian metric.

122 Inventiones math., Vol. 24
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Lemmal.If f:M->Misa C? diffeomorphism which satisfies Axiom A
and the strong transversality property then fis TD stable.

Proof. Here we depend heavily on the results and techniques of
Robbin [3] and assume considerable familiarity with results and defi-

nitions from this paper.
Let M =Mx{1,2,3,...,k} and consider the diffeomorphism

f: M — M given by i i)_{(f(x),i+1), ik
), 1), i=k.

Since f satisfies Axiom A and the strong transversality condition, it is
easy to see that f does also. Hence by the main result of [3] there exists
an 6>0 such that if g is within ¢ of fin the C' metric then there is a
homeomorphism i: M — M close to the identity such that foh=hog.
If N is the 6 neighborhood of f in Diff'(M) and if g, ,..., g, N then we

define " i)={(gi(x),i+l), ik
8 U=1 (g, 1), =k

In this case there exists an h such that h='of*ch=g" We let h: M > M
be given by h=h|Mx 1. Then since M x 1=g,og,_;°--°g and
M x 1=f* we have h™'offoh=g,o---og,. We need only show that
 can be chosen to be independent of k.

To do this it is necessary to check some of the estimates in Robbin’s
paper [3] and show that they are independent of k.

Robbin obtains the conjugacy h, between f and a perturbation g,
by finding a fixed point y of a certain map J<R, defined on d, Lipschitz
tangent vector fields of M and showing that h=exp () is a homeomor-
phism which satisfies goh=hof We first consider the map R, which is
defined by R,=Q — P, where exp (()=f""og and Q and P, are two other
maps defined on the space of d s-Lipschitz vector fields. We summarize
the properties of Q and F;:

Let | |, denote the C° sup norm on continuous tangent vector fields
and let A(y) denote the d -Lipschitz constant for a d-Lipschitz vector
field  as in [3]. Then we have the following: Given &¢>0, there exist
80,0, >0 such that if [nlo, [n'lo <8, and [Cl; <é,, then

Qo =¢lnlo- (3.1A)
1Qm—QWo=eln—nlo, (3.1B)
A(Qm)<e+elmly, (3.2)
[Pl <|&lo + &1l (33A)

[P.(1) = B.(n)lo S ln—"'lo> (33B)
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A(Rm)<e+ehl, where Inl;=A)+nlo. (34)

The numbers (3.1 A) etc. are those assigned to each equation in [3].

If we let Q and P be the corresponding functions for the diffeomor-
phism f then from thelr construction in [3] it follows that if 5 is a tangent
vector field on M and we let 5 (i)= Ny < then

QmG—-1), i*l
Q(n k), i=1

P, ('I) ()= g(z)(’l (1))

Thus the Egs. (3.1 A), (3.1B), (3.2), (3.3A), (3.3B), and (3.4) all hold for
P and Q with the same 8, and §, for a given ¢; i.e., 8, 8, depend only on
enotonk(M Mx{l2 k})

We must also get an estlmate on J independent of k. J as constructed
in [3] is a continuous linear map on the space of C° vector fields on M
with norm | |,. It also preserves the subspace of d -Lipschitz vector fields
and is continuous when the norm | |, is used.

In order to state some estimates on J we must define some universal
constants. If Q,,Q,, ..., 2, are the basic sets of f and W,, ..., W, the un-
revisited nelghborhoods constructed in [3], then if Q;= Q X {1 .y K}
and W W, x {1, ..., k}, the basic sets off are Ql, - .Q and W, ....W
are unrevisited nelghborhoods of the Q;’s s.In[3] an mtegcr ris given such
that {f"(W )N —r<n<r j=1,...,1} cover M. Note that {(/"(W)|—r<n<r,

., 1} cover M.Let g= 2lr+r Letb—sup {IDf.],IDf; ‘I |D*f1}, then

if b is the corresponding number for f, b b Finally let D be greater
than the norm of any of the linear maps constructed in [3] which send
ntomn,ornton, (i=1,...,1). Then in [3] (6.14 and following) Robbin
considers J=J,+J; and shows

[J.mlo=C(1—p)~"Dlnlo

A(J,m)SC(1=p) ' DA(m)+bC(1—p)=2Dlnl,

where p is a constant depending only on the hyperbolicity of f on basic
sets and C=5b?p~9% A similar result holds for J;.

As already mentioned b and g would be the same for f but also p
and D are the same so if J is the corresponding map for f we have

[Jlo=<2C(1—p)~' Diyl,

A(Jm)=2C(1—p) DAM)+2bC(1=p)"2 Dlnl,

with the constants b, C, p, D all independent of k.
12*

QWMH={

and

and

and
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Now given £¢>0,(3.1 A),(3.3A) added give
IR ()0 =1€lo + 2l
and from (3.2) and (3.4)
A(Re(m)S2e+2eA(n).
When these are added we obtain
IR (1)l <|Elo+2¢+2¢lnl,

when ||, and |n|, are sufficiently small.

We now repeat the argument given by Robbin in [3]. The above
inequality implies

|j°k_¢(’7)|f§|jf| (|é|0+28+28|”|j)-

For a fixed &, a C' vector field on M—z define the d -Lipschitz vector field
1, inductively by 7,=0 and #,,,=JoRy(n,).

Given a sufficiently small y>0, by the last inequality there exist
30,6, >0, independent of k, such that

|'1n+1|f§y 1f |nn|f§Y7 lnnl0<60 and |éll <(Sl .

Choose £>0 so that 2¢|J|,<1/2. By (3.1A) and (3.3A) (shrinking 4,

and ¢, if necessary) -
4 lo<lo 1€lo+1/2 Malo

which by induction implies
= 1 1
Mnrilo =l IElo (1+7+"’+2_..)
=2Jlo lo-

But if §, (and hence [¢];) is sufficiently small 211 1€lo <84 SO M4l <00
for all n.

By (3.1B) and (3.3B)

|nn+l _’1nl§%|'1n—'1n-1|o

so 17, converges uniformly to 5. Since A(n,)<y for all n, n is d -Lipschitz
and A(n) £y. Clearly y=J o R,(y). Notice that J, is completely independent
of k since it depends only on the ¢ of (3.1A), (3.1B), (3.2), (3.3A), (3.3B),
and (3.4); and on |J|, and |J],.
Now if
N = {geDiff'(M)|f~'og=exp (&), €|, <0:}

and if g,,...,g,eN with f~'og,=exp(Z(i)) then we define the vector
field £ on M by &|p, =8 and note |¢|, <&, . So there exists  satisfying
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n=JoR,(n). If h=exp(n) then by Robbin’s proof h is a topological
conjugacy between f and g. Since N is independent of k we have by our
earlier remarks shown that f is TD stable. q.e.d.

Remarks. 1) The hypothesis of the main theorem that f be C? is used
only in the proof of this lemma and for the proof of the converse it is
sufficient that f be C'.

2) By the techniques of [1] one can show that the h constructed
depends in a C' fashion on g, ..., g;. Also there exists a K >0 depending
only on f such that

sup d(h(x), x) <K max sup d(f(x), g;(x)).
xeM 15isk xeM

Lemma 2. If U is a neighborhood of the identity in Diff*(M) there
exists €>0 such that if ve TM and we TM is such that d (v, w)<e|v| then
there is ge U such that Dg(v)=w.

Here d( , ) is a metric on TM induced by a Riemannian metric. The
proof of this lemma is straightforward and hence will be omitted.

Lemma 3. Suppose X is a compact metric space and g: X - X is a
homeomorphism. Then given ¢>0, there exists an integer n,>0 and a
neighborhood N of g in the C° (uniform) topology such that: if he N and
h"(x)=y for some m>0, then there exist xy,X;,...,X,€X Wwith x=Xx,,
y=x,, d(h(x;), x;,,)<e, and n<n,.

The importance of this lemma is that n, depends only on ¢ not on the
points x and y. So, while x and y are on the same orbit it might take many
applications of h to get from x to y and the lemma allows us to take a
short cut in fewer than n, steps if we are satisfied with an ¢ approximation.

Proof. Let N = {h|sup d(h(x), g(x))<¢/6} and let §>0 be a number
xeX

such that d(x,, x,) <4 implies d(g(x,), g(x,))<e&/6 (X is compact so g is
uniformly continuous). Thus if d(x,, x,)<d, and he N

d(h(x,), h(x;))<d(h(x,), g(x,))+d(g(x,), g (x3) +d(g(x2), h(x,)

<e/6+¢/6+¢/6=¢/2.

Since X is compact there is a finite set S in X such that if we X there
exists zeS with d(w, z)<min (¢/2, 5).

Let n, be the cardinality of S plus 2. Now given he N and y=h"(x),

we pick a sequence z;, 1 £i<m—1 such that d(h’(x), z;) <min (J, ¢/2) and
z;€8. Clearly d(h(x), z,)<¢,d(h(z,,_,), y)<eand

d(h(z), z;, ) Sd(h(z), B! (x'))+d(h"+1 (x) 27, 1)
<ef2+e2=¢

12b  Inventiones math., Vol. 24
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for all i, 1<i<m—2. If m—1 is less than the cardinality of S we are
finished letting x;=z;. If not there exist k, j with z,=z;, k<j. Hence we
can shorten the sequence of z's by setting zj=z;, for i<k and z;=
Z;, j—k+1) for i>k. If the new sequence has fewer than n, elements we are
finished, otherwise it too contains repetitions and can be shortened
further. Ultimately we achieve the desired sequence. q.e.d.

Recall that a periodic point p of a difffomorphism f is said to be
hyperbolic if there is a direct sum splitting TM,,=E;, ® E, and constants
C>0,0< i<1such that |Df*(v)|< CA"|v| for ve Ej and [Df~"(v)| = C A"l
for ve Ey. It is shown in [2] that all periodic points of astructurally stable
diffeomorphism must be hyperbolic. Since TD stable diffeomorphisms
are structurally stable and open, each TD stable diffeomorphism has a
neighborhood of diffeomorphisms all of whose periodic points are hyper-
bolic.

Definition. For any diffeomorphism g: M - M we will denote by g
the diffeomorphism of SM = {xe TM |v| =1} given by g(w)=Dg([)/|Dg ).
A point ve SM will be called e-non-wandering if for any integer N and
5> 0, there exists an integer n> N and points u, we SM such that d(u,v)<9,
d(w,v)<e and §"(u)=w. The set of e-non-wandering points will be
denoted X (¢).

Lemma 4. If g is TD stable then there exists an integer my>0 and
numbers ¢>0, and 0<p <1 with the following properties: If ve Z () then
either |Dg"(v)'"<p or |Dg"()""">p~" for all nZm,.

Proof. Choose a constant K >0 such that

K>sup|Dg,| and K>sup|Dg;'l.
Choose 8> 0 so that if g’ is within § of g in the C' metric then g’ is also
TD stable.

Applying Lemma 2 we can obtain an ¢ such that for each veSM and
weSM with d(w, & (v))<e there is a g’ such that C ! distance from g to g’ is
less than §/4 and g’ (v)=w.

We now apply Lemma 3 and obtain an integer ny>0 such that, if
x, ye SM with y on the forward g orbit of x, then there exists a sequence
{x}, 0<i<n<n,, withd(x;, ,,8(x))<eand xo=x, x, =Y.

Now choose an integer />0 such that

1 no 1
7logK < 5 log (1+¢)
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and

—logK "°> log (1—¢)

2
for n>1.

We now assume the lemma is false and derive a contradiction. If the
lemma is false, there is a v’ X'(¢) such that

1
lim sup po log |Dg™(v')| =0

and

1
lim inf; log |IDg™(v')| 0.

From this and the easily verified fact the difference in two successive
1
terms of the sequence ;log |[Dg™(v") will be small when m is large we

can conclude that it is possible to choose a subsequence m; such that

lim

i-0 M

log [Dg™ (V)| =

i

Thus we can choose m> [ such that
. log (1 )<1 lo |Dg’"(v')|<1 log (1+¢)
3 LTy g 2 g ’

Since v'e X (¢) there are v, ye SM such that d (v, v')<e/2, d(y,v')<¢&/2
and g*(v)=y for some k>m. Moreover we can choose v so close to v'
that

1 1 1
—log (1 —g)<—1log|Dg™(v)| <—log (1 +e).
2 m 2

Let x=g"(v). Now by our application of Lemma 3 above there exists
a sequence {x}cSM, 0<j<n<n, such that d(g(x), x,,,)<¢ and
Xo=X, y=X,.

Applying Lemma 2 as mentioned above there exist diffeomorphnsms
h; such that the C' distance from h; to g is less than §/4 and h, (x)=xj,-
Altermg ha by another 5/4 perturbatlon we can assume that h, (x,_,)=v.
Now let M=M x {1,2, ..., m+n} and define F: M - M by

(g(x),i+1) 1Si<m
F(x,)=1(h;_,(x),i+1) m<i<m+n
(h,(x), 1) i=m+n.
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Let =(v, )eSM=SM x {1....,m+n}, then if g=m+n, F'(0)=0.
Also if g: M—>M is given by g(x,i)=(g(x).i+1) for 1=i<q and
2(x, q)=(g(x), 1) then the C' distance from F to g is less than §/2.

We wish now to alter F to G for which DG?(v)=0v. We have

1 1
. log |DF(%)| - log|Dh,o---cDh,oDg"(v)|

| —

1 1
<—1log|K"Dg™(v)| §—q— log K"+:{ log |Dg™(v)|

=

(YRS

1
log (1 +£)+710g(] +e)=log (1 +e¢).

Similarly log (1 — &)< — log |DF?4(v)|. Define 7 by

Q| =

1
log (1 +",))=; log |DF(v)|

so —e<y<e Leiﬁ,:ﬁ"(ﬁ). By another application of Lemma 3 we can
obtain G: M — M such that the C! distance from G to F is less than d/4
and DG (0,)=(1+7)"' DF(7,). Now
IDG4(®)|=(1+7y)"?|IDF'®)=(1+7y)"7(1+y)=1 so DG v)=7v
and G has a non-hyperbolic periodic point. However, since the C'
distance from G to g is less than 35/4 it follows from the choice of § that
G is structurally stable and hence should have only hyperbolic periodic

points. We have arrived at a contradiction from the assumption that the
lemma is false. q.e.d.

Lemma 5. If f is TD stable there exist constants C>0 and 0 <A< 1
such that if pe Per (f)
[IDf"(v)| = CA"|v| for veE;
IDf~"(v)|< CA"[v] for veEj.

The constants C and A are independent of p.

Proof. Let my and p be as in Lemma 4. We prove the inequality for E°
by deriving a contradiction from the assumption it is false. If the lemma is
false, there exists a point p and a vector ve E} such that

IDf"(v)|=A"|v|  for some n=m,

where 1 is a number less than 1 satisfying ¢/4 A"> p" for the ¢ of the
conclusion of Lemma4 (we assume ¢<3).
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We can assume |[v| = 1. If p has period k, an examination of the Jordan
canonical form of Df*: E,— E, shows there is weE, such that |w|=1
and |fmk(v)—fmk(w)| tends to 0 as mk tends to o0 (recall f(v
Df(v)/IDf(v)l). In fact w will either be in the kernel of (4—Al)o(A—11)
where 4 is a complex eigenvalue of Df* and A is the complexification of
Df* or else w will be a real eigenvector of Df* In either case w is a
recurrent point of f*.

Now let u'=w+z v and u=u'/|u’|. Since | fmk (v)—fmk(w)| goes to
zero as m tends to infinity it follows there is a sequence of integers n,
such that lim /™ (u) = w. We know that |u —w| <¢&/2 so by Lemma 4 u must

[ )

satisfy |Df™(u)| < p"|u| for n>m. On the other hand, since 0 <e <1

1 : 1 e 2 ;
lDf"(u)I=mlD/"(u )Iémll)f"(u Nz~ IDf" ().

So

3|7
2
= (5]

>%/{n_pngzpn_pn=pn.

2
D/ (W) 2= |~ Df"(0)+ D" (w)

Hence we have concluded |Df"(u)|> p" and |Df"(u)|< p" which contr-
dicts the assumption that the lemma is false. A similar argument proves
the inequality for vectors in E*. q.e.d.

Lemma 6. If f- M — M is TD stable then f satisfies Axiom A and the
strong transversality property.

Proof. We must show that the non-wandering set Q of f has a hyper-
bolic structure. Since it is generically true that the non-wandering set of
a diffeomorphism is the closure of its periodic points and since f'is struc-
turally stable, we know, by the general density theorem of C.Pugh, that

=closure Per (f), so this part of Axiom A is satisfied.

Let xeQ and choose p;e Per (f) such that l'lim pi=x. Let E{=E; and

Ef=E; ; by choosing a subsequence we can assume dim E; and dim E*
are constant, that lim E{=E; = TM, and that lim E¥=E“cTM,.

i— 00 i— o0

Applying Lemma 5 we see that, since each ve ES is the limit of some
sequence v;eE;, we have

[Df"(v)| < CA"|v] for veES.
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Since [Df*(v)| = C~' 2="|v| for ve Eyitfollows that [Df™(v)| = C—1 A="|y|
for ve EX. Thus E5 n E%=0and since dim E$ +dim E* = dim Ei+dimE!=
dim M we know E$@ E“=TU,.

In this fashion we can assign vector spaces E}® E}j=TM, to each
point yeQ which satisfy the hyperbolicity requirements and it is only
necessary to show they vary continuously.

Note that for each x,
E;={ve TM,||Df" ()| £ CA"|v| for all n}.

Hence if lim x;=x then the limit of any convergent subsequence of the

1— 00

sequence Ex, is contained in E5. But we can assume by choosing a further
subsequence that E, converges to a subspace of E“ and thus dimension
considerations imply that the limit of the subsequence of E; isactually ES .
Since this is true for any convergent subsequence we actually have
lim EL =E;. So E*= ( ) E5 and E*= ( ) E are continuous vector bundles
1= xef2 xef
with TM|o= E° @ E*, and we have shown that f satisfies Axiom A.

By a theorem stated in [5] which is not difficult to prove, if f is
structurally stable and satisfies Axiom A then f satisfies this strong

transversality property. q.e.d.
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Algebraic Vector Bundles over A > Are Trivial

M. Pavaman Murthy * (Chicago) and Jacob Towber (Chicago)

Introduction

Let k be a field and A=k[X,, ..., X,]. Serre [9] posed the question:
is every finitely generated projective A-module free. For n<1, it is
classical that the answer is in the affirmative. The case n=2 was settled
in the affirmative by Seshadri [10]. Bass’ cancellation theorem [3,
Chapter IV, 3.5] (together with the fact that projectives are stably free
over A which is consequence of Grothendieck’s theorem) implies that
projective A-modules of rank >n are free. Of course, rank 1 projectives
are free over A since A is factorial. By Bass [4] it also follows that if n
is odd and P is a projective A-module of rank n, then P~ P'® 4, for some
P'. Also, projective modules of infinite rank are free over 4 by Bass [5].
We prove here the following.

Theorem. Let k be an algebraically closed field. Any finitely projective
module over k[ X, Y, Z] is free.

Our method of proof is roughly as follows. Let A=k[X, Y, Z] with k
algebraically closed and let P be a projective A-module of rank r. The
case r=1 is trivial. The case r=4 is covered by ([3, Chapter IV, 35]). If
r=3, then P~ P'® A. We may thus suppose r=2.

In Section 1, it is proved that if P is “close” to a free module F in the
following sense:
PoF>aP
where aek[X] has no triple roots, then P is free (Lemma 1.4).

Using Kleiman’s Bertini theorems for vector bundles (see [6, Corol-
lary 3.6] and [7, Theorem 7.3]) one maps P onto a prime ideal p of a non-
singular curve C in A?, i.e., there is an exact sequence

0—-A—>P—->p—0 (E)

and we shall study P by means of this sequence. In this situation, we have
Ext!, (p, A)~ A/p. It is well known (cf. [2]) that the module of differentials
on C is isomorphic to Ext}(p, A) and hence free.

Sections 2 and 3 are devoted to the study of the prime ideal p. A
central role is played in this investigation by a construction of Abhyankar’s
which gives a specific set of three generators for p, as follows.

* Partially supported by NSF GP-37575X.

13 Inventiones math., Vol 24
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By choosing a suitable coordinate system in A3, we may assume C
lies nicely over its projection I' in the (X, Y)-plane. (More precisely:
I' has only nodes as singularities and C — I is birational and integral.)
In such a coordinate system Abhyankar [1] constructs a set of generators
for p of degrees 0, 1, 2, respectively:

v, aZ—B,aZ*+bZ+c. (1)

Here pnk[X, Y]=(y) any acB=k[X, Y] may be chosen, such that
the image & of a in A/p generates the conductor ¢ from A/p to B/yB,
and B, a, b, ceB are chosen suitably. For the sake of completeness we
include a proof of this result.

In Section 2, we also show (Lemma 2.7) that Abhyankar’s result is
available in the present situation, i.e., that conductor c¢ is principal by
showing that ¢ is isomorphic to the module of differentials on C. (It
should be noted that, in [1], Abhyankar gives a construction which
works without the assumption that ¢ is principal; however, it is the more
special construction which is needed in the present proof; Section 2
concludes with a technical result (Lemmas 2.4 and 2.6) which asserts
that «, B, in 1.) Maybe chosen such that they intersect transversally; this
is needed at a crucial point in the end of the proof.

In Section 3, we use Abhyankar’s generators to construct projective
resolution E(&) for p which turns out to depend only on the image
of o in A/p. We then show that for a suitable choice of generator a for ¢,
the extension E (%) is isomorphic to the extension

0—>A—>P—p—0

with which we began. This gives us an extremely explicit description of P
in terms of Abhyankar’s generators for p (asa sub-module of A* generated
by four quite explicit elements). We then conclude the proof in Section 4,
by using this description of P to show it satisfies the hypothesis of
Lemma 1.4, and so is free.

As Serre observed in [8], it is a consequence of the theorem thus
obtained that any nonsingular curve in A3 with trivial canonical line
bundle (e.g., any nonsingular rational or elliptic curve) is an idealtheoretic
complete intersection.

We are thankful to R.G. Swan for providing helpful discussions and criticism during
the preparation of this work.

1. Some Lemmas on Projective Modules

The object of this section is to prove the following lemma which
will be used at the end of the proof of the theorem.
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Lemma (see Lemma 1.4). Let k be an algebraically closed field and
P a finitely generated projective module of rank 2 over k[ X, Y, Z]. Suppose
there exists a free sub-module F of P and an ae k[ X] without triple roots
such that e P< F. Then P is free.

Throughout this paper k will denote an algebraically closed field
and A thering k[ X, Y, Z].

Lemma 1.1. Let F be a free A-module of rank 2, P a sub-A-module
such that Fo P> XF ; then P is A-free.

Proof. Let { f;, f,} be a free A-basis for F, and let

F={a, fi+a, f;la,,a, in k[Y, Z]}.

F is free over k[Y, Z] of rank 2, and F=F@® XF (direct sum as k[ Y, Z]-
modules). Thus, with P=PnF, P=P@®XF (direct sum as k[Y,Z]-
modules. Clearly Pis projective, hence free (by Seshadri’s theorem) over
k[Y, Z] of rank r<2. We must consider three cases:

r=0. P=XF is free.

r=1. Let P be free over k[ Y, Z] on e=a, f; +a, f; (a;, a, n k[Y, Z]);
then P=P@® XF shows that P has the generating set {e, Xf;, X f5}
over A, with all relations on these generated by (X, —a,, —a,). Since P is
projective, this row (X, —a,, —a,) must be unimodular, i.e., there exist
b, by, b, in A with bX —a, by —a, b, =1. Setting X =0, we get —a, b, (0)—
a,b,(0)=1; then the row (X, —a;, —a,) may be completed via the
identity

X —o —a,
0 —hy(0) —by(O)|=1
1 0 0

which exhibits the fact that P is A-free (namely, on —b,(0) X f, +b,(0) X f5
and e).

r=2. Since P/XP and P/XF=P are both free k[Y, Z]-modules of
rank 2, XP=XF, i.e., P=F and we are done.

Lemma 1.2. Let C, D be 2 x 2 matrices over k[Y, Z] with D*=0. Let

the 2 x 4 matrix
M=(XI,+D|C)

over A be unimodular, i.e., let the 2 x 2 subdeterminants of M generate the
unit ideal in A. Then there exists a2 x 4 matrix N over A such that

det(%):l. (1)

13*
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Proof. Let D= (I: Z) . since the characteristic polynomial of D is
det(XI, + D)= X?, we have 0=trace D=det D, i.e,,
p=—s P'=—qr
Since k[ Y, Z] is factorial, there exists 4, i, v in k[ Y, Z] such that
p=—s Auv, q=Ap?, r=—i’.

Let p;; denote the subdeterminant formed from the i-th row and j-th

column of
X+Aiuv Ap? a b a b
M—( —Jv2 X—Aipv ¢ d)’ whets C_(c d)'

Since M is unimodular, there exist g;; in 4 such that Y P,q;;=1; setting
X =0 in this equation, we see that also i<j

Iuv  Apt o oa b)

M =
d (—iv2 —Jluv ¢ d

is unimodular; note that the entries in M liein k[ Y, Z]. It follows that also

Au ab)

M:
! (—/lv c d

is unimodular: indeed, the 2 x 2 subdeterminants of M, are linear combi-
nations of the 2 x 2 subdeterminants of M,. Thus, there exists a, f, y in
k[Y, Z] such that

lu a b
l=|—Au ¢ d|=«o
« B
It is easy, using (2), to compute specific linear combinations of the 2 x2
subdeterminants of M, and then of M, which equal 1;a pleasant surprise
awaits us if we do it.

We begin by computing the 2 x 2 subdeterminants p\? of M,; they
are:

b
: d|—ﬁl(bv+dﬂ)+vi(av+Cu). (2)

P9 =0, piQ =iv(av+cp), Py =Avbo+dp), pii=Aulav+cp),

pSi=/pu(bv+du) and p‘3°£=j Z.;

we then obtain
pra=X2 pi3=pd+cX, pra=pii+dX,

Prs =P —aX, pra=pA—bX, psa=pi2.
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If we square the right-hand side of (2) and express the resulting 9 terms
as linear combinations of the above p{?’, we obtain 1= pi? g;; with

i<j
412=0,q13=4y(ay—=bp), qua=—2Bay—>bp), g23=4iy(cy—dp),
Gz2a=—AB(cy—dp) and gi4

ab
cd

Note that all g;; lie in k[Y, Z]. Very simple computations suffice to
verify the two following remarkable coincidences:

a) 1_ z pl[ ql_}’

i<j

:az

‘—Zaﬁ).(bu+d,u)——2<zy/1(av+cu).

b) The g;; satisfy the Plucker conditions, i.e.,

G1293a— 913924+ 414923 =0.
We may now demonstrate the existence of a matrix N satisfying (1). It
suffices to show there exists a 2 x 4 matrix N whose 2 x 2 subdeterminants
n;; are given by

Ni2=(34, M3= —Yq24 Ma=Yq23, N23={14, N24= —{q13, N34 =]12

since then (1) follows from (a). Since (b) implies

My M3g—Ny3 Npa+ Ny Ny3=0,
the existance of N results by applying to the ring k[Y, Z], Theorem 1.1
of [11].

Lemma 1.3. Let F be a free A-module of rank 2, P a projective sub-

A-module of F such that FS5P> X*F; then P is A-free.

Proof. Let { f;, f,} be a free A-basis for F, and let F be the set of all
a, f, +a, f, with a,, a, elements of 4 whose degrees in X are <1. Thus
F is a free k[ Y, Z]-module of rank 4, and F=F @ X*F (direct sum as
k[Y, Z]-modules). Thus, with P=PNF,

P=P®X*F 3)

(direct sum as k[ Y, Z]-modules). Clearly P is projective, hence free, over
kLY, Z] of rank <4. We must consider five cases, depending on the
k[Y, Z]-rank r of P=P/X*F

r=0: P=X?F is free.

r=1:Let P/XZF be k[Y, Z]-free on e, and let Xe=ce, cek[Y, Z],
then 0=X2e=c?e, ¢=0, i.e, Xe=0. Thus X?F>XP,XF>P>X?F
and P is free over A by Lemma 1.1.

r=2. (This case is the critical one.) Let P be free over k[Y,Z] on
ey, e, with e;=a;; f; +a;, f, (i=1 or 2, a;; in A of degree in X<1). As
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(3) shows, P is generated over A4 by the set S={e,, e, X2, X ). We
next compute a generating set for module of A-relations on S. We have,
degy (X a;)<2; thus we may write, in a unique fashion,

Xalj=blj+XZCl]
with ¢;;€ek[Y, Z], b;;in A of degree in X < 1. Thus

Xe;=pi+cy X2 fi+c X2, (=12
with
pi=biy fi+bi2 2
an element of P; thus we may write p;=d;; ¢; +d;, €,, and so
Xe;=dy e, +diy e;+cu X2 fi+¢in X*f,
(c;yand d;; in k[¥, Z], i=1,2). “)

Thus, if C, D denote the 2 x 2 matrices (—c¢;), (—d;;) over k[Y,Z], the
rows of the 2 x 4 matrix M =(X1, + D|C) are relations on the generating
set S for P.

Suppose a; e; +a; e, + 1 X2 fi+B, X f,0; and B in A for i=1,2.
We claim that r=(a, , ®,, By , B2) is an A-linear combination of the rows
of M, i.e., that these two rows generated over A the module of A-relations
on S. Indeed, by subtracting from r a linear combination of these two
rows, we may reduce to the case where g, §; do not involve X, whence
%, e, +, e,€P; since the sum (3) is direct, we then have

B1=B,=0,a; e, +a, e,=0, =0, =0

and our claim is justified.

Since the 2 x 4 matrix M is a relation-matrix for the rank 2 projective
module, P, M must be unimodular, i.e., the 2x2 subdeterminants of M
generate the unit ideal in M. Eq. (4) shows that multiplication by X on
P/X?F is represented by the matrix (d;;)=—D with respect to the free
basis e, + X2F, e, + X*F; thus D*=0. The hypotheses of Lemma 2 are
all satisfied by M ; thus M is completable to a 4 x 4 matrix of determinant 1,
whence P is free.

r—3. Consider the k(Y, Z]-endomorphism My of P/X*F=P con-
sisting of multiplication by X. Clearly M3=0; this, together with the
fact P is k[1, Z]-free of rank 3, shows that the ker My must have rank 2
or3 overk[ Y, Z] depending on which of the two possible Jordan canonical

forms:
010 000
000),(000.
000 000
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My has over k(Y, Z). If ker My has rank 3 then Mx=0, XP= X*F, i.e,
XF2P2X?F, which is impossible since then r <rank XF/X? F =2; thus
ker My must have rank 2 over k[ Y, Z]. Then also Coker

My=P/XP+X?*F)
has rank 2 over k[ Y, Z]. Tensoring with 4/X 4 the exact sequence

0->F*,p>P/X*F—0. (5)

We obtain the exact sequence

F/XF-P/XP% P/XP+X*F—0.

Since the domain and range of j are both rank 2 k[ ¥, Z]-modulus, the
domain being k[ Y, Z]-free, it follows that j is an isomorphism, and hence
i=0; therefore X2 F< XP, XFSP<F and P is free by Lemma 1.1.

r=4. Tensoring the exact sequence (5) again, this time with 4/X 24,
we obtain the exact sequence

F/X*F—% P/x>P—2> P/X*F.

The domain and range of ¢ are rank 4 k[Y, Z]-modules, the domain
being free; as before, this implies 0=0, X* F< X* P, and so P=F is free.
This completes the proof of Lemma 1.3.

Lemma 1.4. Let F be a free A-module of rank 2, aek[X] a polynomial
with no triple roots, P a projective sub-A-module of F such that

FoPoua(X)F;
then P is A-free.

=

Proof. Let a(X)=
i=1

or 2. Let My denote mliltiglication by X on ﬁzf/zx(X) F; then a(My)=0.

Thus, if we denote by P, P, the submodules of P annihilated respectively
X

by (X —c,)", (—Xa—(—))rzocl (X) a standard argument shows that

_ —cy)" _

P=PB ® B,. (We may assume that B, +0 without loss; otherwise, replace

abya,.)

(X —a;)" with q,, ..., a,, distinct, and each n;=1

Note that P is projective over k[Y, Z]; indeed, if F, F, are free A-
modules such that P@F, =F, then P@® F,/a F,~F,/xF,, and F/aF,
F,/oF, are clearly k[ Y, Z]-free. (We may also see this by taking k[Y, Z]-
module compositon P~P@aF as in Lemmas 1.1 and 1.3.) Thus P, is
projective over k[ Y, Z], hence of homological dimension 1 over A. Let
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j: P— PJ/a(X)F be the canonical map and let j~!'(P,)=P,. The exact
sequence 0— P, —»P— P,—0 then shows that P, is A-projective. Since
P,oa(X)F2(X —a,)* P, Lemma 1.3 implies that P, is A-free. Now

m

PoP =2 ( [Tx —a,-)"') P, and an obvious induction on m completes the
proof. ‘=2

Remark 1. To say there exists a free F with FoP>aF is of course
the same as to say there exists a free F’ with P> F'Sa P; the latter implies
F' o>aP>oF and P=oP.

Remark 2. A second proof is available for Lemma 3 which works for
any A=R[X], with the condition that stably projectives over R are free.
Swan has recently shown the following: Let R be any commutative ring
and P a finitely generated projective R[X] module of rank 2. Suppose
exists a projective R-module F, of rank 2 such that X?PcF[X]<P.
Then P~ F,[X].

2. Some Lemmas and Known Results on Space Curves

In what follows k always denotes an algebraically closed field. Let
xeB=k[X, Y] be a nonconstant polynomial. We refer to the affine
scheme spec B/xB as the “curve o” or simply as “o” when there is no
confusion.

Let C be a closed irreducible nonsingular curve in the affine 3-space
A? over k and p its prime ideal in A=k[X, Y, Z]. Let A=A/p denote
the coordinate ring of C. Let I' be the closure of the projection of C onto
the (X, Y)-plane so that the prime ideal of I in B=k[X,Y]ispnB=By.
We denote by B the coordinate ring B/By of I We fix a coordinate
system X, Y, Z, for A such that the projection C— I is birational, integral
and such that the only singularities of I' are nodes (see for example
[1, p.23]). Let ¢ be the conductor from A to B. For ae A, we denote by &
its image in A. The following result of Abhynkar [1] is basic for the proof
of our theorem and we include its proof for the sake of completeness.

Proposition 2.1 (Abhyankar). With the hypothesis and notation as
above, assume further that the conductor ¢ is A-principal. Let o€ B be such
¢= A7 and peB such that 8 Z=p. Then

1. The curves a, f meet transversally at all the nodes of I' and do not
meet anywhere else on I'. (When I in nonsingular (1) means that o and do
not meet on I'.)

2. There exists y' € B such that By+ By =B and yy' =af? +baf+ca’
with a, b, ¢, € B. For any such choice of ¥, a, b, c, the prime ideal p of C is

t
generated by @Z—B,aZ*+bZ+c,y).
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Proof. (1) Since & is the generator of the conductor, it is clear that o
and y meet precisely at the nodes of y and a fortiori a, p meet on y precisely
at the nodes of 7. Since 7 has only nodes as singularities ¢ is the intersec-
tion of maximal ideals in B of the nodes of y. Further, if M is the maximal
ideal in B of a node of 7, then ye M? B,,. Hence to prove that « and f
meet transversally at the nodes of y, it is sufficient to show that ¢ = Ba+B§.
This again is enough to check locally at the completion of local rings of
the nodes. Hence we may assume B=k[[X, Y]]/(XY) and

A=k[[X1]1xk[[Y]]
and B can be identified as a subring of A:

B={(f2) Alf(0)=g(0)}.

We may also assume o= (X, Y) and_Z is of the form (£, g) with f(0)%=g(0).
Now it is easy to check that Aa=Ba+ Bf.

2. It is easy to see that we can find y”€B such that By+By"=B
and y” passes through each point of intersection of « and f which is not
on y. For example, if P, ..., P are points of intersection of « and j} out-

side 7, take 3= [] (y—7(R)). Since y has a double point at every point
i=1
of intersection of « and f§ on 7, it follows that yy” " €(x, §)* B for sufficiently
large N. We set 7' =7"" and yy'=ap?>+bap+ca?, with a,b,c,eB. This
proves the existence of y’ as in (2).
Let now 7' €B be an element such that By+ By'=B and

vy =ap?+baf+ca®,
with a, b,ceB. Set f=aZ—f and g=aZ*+bZ+cand I=Af+Ag+Ay.
It is obvious that f, yep (p =prime ideal of C in A). Since
yy'=af?+baf+co?,

we have a?g=yy'(mod f). Since a¢p, we have gep. Hence I =p. Since
a?g=yy'(mod f), we have yy'e A f+ Ag. Hence for every maximal ideal
M of A containing I, we have 1A, =Ay f+ Ayg Hence I is locally
generated by two elements. Also height 1 =2 (for example, since y and f
have no common factor). Hence I is an unmixed ideal of height 2. Let M
be a maximal ideal of B. If y¢ M, then Iy, =ppy=Ay. If yéM and M is
the maximal ideal of a simple point of 7, it is easy to see that

Iy=pu=Auy+AmJ.

Hence, I=pngq, where q=4 or all the irreducible components of the
variety V(q) of q are of the form Q x k, where Q is a node of y. If 0 x k is
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a component of V(q), then the polynomial a(Q)Z?>+b(Q) Z+c(Q) is
identically zero. Hence a(Q)=b(Q)=c(Q)=0. But then, the relation
vy =ap*+baf+co® implies that y has a triple point at Q. Contradiction.
Hence g=A and I =p.

Remark 2.2 (Abhyankar). If y is nonsingular, we may take «=1 and
it is easy to see that p=Ay+ A(Z—p). Also if o, f do not intersect out-
sidey, then in the above argument we may takey’=1and thenp=A4 f+Ag.

Lemma 2.3 (Zariski [12, Lemma 5]). Let k be an infinite field and K /k
a finitely generated field extension. Let X, x,,€K be algebraically inde-
pendent over k. Let Q be the algebraic closure of k(xy, x,) in K. Suppose
that Q is separable over k(x,, X,). Then k(x, +cx,) is algebraically closed
in K for all but finitely many cek.

Lemma 2.4. Let k be an algebraically closed field and B=k[ X, Y].

(1) Let o, yeB be nonconstant polynomials with gcd(x,y)=1. Then
there exists an ae B such that a+ay is irreducible.

(2) Let aeB be irreducible and let B,y€B be not divisible by a. Then
there exists a be B such that o and B+ by intersect transversally outside 7.

Proof. (1) We may assume d(a/y)#0. For if d(2/y)=0, then
d(a/y+X)=dX 0.

Thus if necessary by changing « to «+ Xy, we may assume d(x/y)+0.
Then a/y is a part of a separating base for k(X, Y)/k. Choose 0ek[X, Y]
such that k(X, Y)/k(a/y, 0) is a finite separable extension. Then by Lemma
2.3 there exists a cek such that k(x/y+c0) is algebraically closed in
k(X, Y). Hence by changing « to a+cf7, we may assume k(x/y) is al-
gebraically closed in k(X, Y). Hence the generic member of the pencil
defined by o/y is reduced and irreducible. Since gcd(a, y)=1, we see that
x4+ c7y is irreducible for all but finitely many cek.

(2) Let R=B/aB and K the quotient field of R. Let B, 7 denote the
images of f and y in R. As in (1), by adding a multiple of y to f8 if necessary,
we may assume d(f/7)=+0 so that K/k(B/7) is separably algebraic. Let C
denote the nonsingular model of the function field K. Then for almost all
cek, the divisor (B/j+c), of zeroes of the function B/y+c consists of
distinct points of C with multiplicity 1. Hence for almost all cek, f+c7y
and o meet transversally outside y.

Remark 2.5. (i) The proof shows that in (1) and (2), we may take a, b
to be linear polynomials. (ii) The proof of (2) is inspired by an argument
in Abhyankar [1].
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Corollary 2.6. With the hypothesis and notation as in Proposition 2.1
there exists, o, f€ B such that the ideal p is generated by

@Z—p,aZ*+bZ+c,y),

where (1) ¢=A& &Z=p, (2) there exists y'€B such that By+By'=B
and yy =ap?+baf+ca®, with a,b,ceB, (3) o is irreducible and o, f
intersect transversally at every point of their intersection.

Proof. Since Proposition 2.1 is valid for any lifts «, 8 of & and B. by
Lemma 2.4 modifying o, # by multiples of 7, we may assume that x is
irreducible and o, § intersect transversally outside y. But by Proposition
2.1, (1) o, B intersect transversally on y (for arbitrary lifts o, § of & and f).
Hence o, f intersect transversally at all points of their intersection. The
rest of the corollary is just Proposition 2.1.

Lemma 2.7. Let T = AZ? be an irreducible plane curve with only nodes
as singularities. Let ye B=k[X, Y] be an irreducible polynomial of T’
and A the integral closure of B=B/y B. Then Q g~ as A-modules, where
Q4 is the module of k-differentials of A and ¢ the conductor from A to B.

Proof. Since the only singular points of I' are nodes, the curves
0y/0X and dy/dY meet transversally at the singular points of I Let 9,7,
denote the images of dy/éX and dy/dY in B. Then ¢=By,+By,. Now,
Qpu~Bdx+Bdy with the relation y,dx+7y,dy=0. We have a natural
map ¢: Qg — By + By,=c by sending dx—7,, dy— —7,. Since Qg isa
B-module of rank 1, the composite map

/i@g QB/k ﬂ /‘I@B ¢ mulupllcaﬂ 1‘1( =
is surjective and is an isomorphism of A-modulo torsion. But the exten-
sion A/B is unramified (I has only nodes as singularities) so that the
natural map A ® 5 Qg — Q4 is surjective and hence an isomorphism
modulo torsion. Hence
LA®LH

Q. ~ -
A™ "torsion

(as A-modules), since c is torsion free.

3. Projective Resolution of p

We construct in this section projective resolutions of the prime
ideals of nonsingular curves in A3 with trivial canonical line-bundles; for
this purpose, we need the following lemma.

Lemma 3.1. Let R be any Noetherian ring, and let f;, g (1=i=3) be
elements of R such that ¥ f,g;=0, fy R+g; R=1; assume also that [, f3
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form an R-sequence; then

(1) The module Rg(f1, f>,f3) of R-relations on f,, f,, f5 is projective,
and generated over R by p=(g, g,, g3) and the “trivial relations”

0 f3’ fz)a P2=(—f3v0,f1), P3= st flﬂo)
(2) If also f,, f5 form an R-sequence then there is an exact sequence
0—R—>%(fi, /2. /3) "> R +Rf,+Rg; —0

with i(1)=(f;, —£;,0), @(r,ry,r3)=ry which furnishes a projective
resolution of | =Rf; +Rf,+Rg;.

Proof. Suppose Af; +4f, + 45 f3=0; then 4, fyeRf,+ Rf5;since f; isa
unit modulo g;, this shows that i,eg, R+f, R+f; R, whence sub-
tracting from (4, 4,, 4;) a suitable linear combination of p, p,, p; we
obtain an element in Rg(f;, f5,f3) of the form (0, u,, p3) since f,, f3
form an R-sequence, (0, pt,, #3) is a multiple of p;. Thus Rg(f}, f5, f3)
has the indicated generators.

In proving Rg(f;, f:, f3) is projective, we may assume R is local.
In this case, either f; or g, is a unit in R; R,(fi, f>,f3) is free over R
on p,, ps if f; isa unit, and is free over R on p, p, if g, is a unit.

From what has been proved (2) is now immediate.

Now let C be nonsingular curve in A* with prime ideal p, and assume
the module of differentials on C is free. As in Section 2, we fix a coordinate
system, X, Y, Z for A* such that the projection of C onto the (X, Y)-plane
is birational, integral, and maps C onto a curve which has only nodes as
singularities. We again follow the notation of Section 2, i.e.,

B=k[X, Y],
pnB=yB
A=Afp, B=B/yB, and for § in A, § denotes its image in A
¢=conductor from 4 to B.

We next observe that the generating set of p constructed in Proposition 2.1
leads to a projective resolution, as follows. Thus, choose any « in B such
that A% = c (this is possible, since ¢ is A-principal by Lemma 2.7), choose
B in B such that «Z=f; by Proposition 2.1, we may then choose 7',
a, b, c in B such that

vy =ap*+baf+ca?, By+By=B. (1)
p will then be generated over 4 by the three elements

v, f=aZ—p, g=aZ*+bZ+c.
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Note the following relation between y, f, and g:
If we replace o Z by f+f in
W2g=ad? Z*+ba’ Z+co?
and observe (1) we obtain
o’ g=yy +ff’ )
f'=af+2af+ba. 3)
We may now apply Lemma 3.1 with I=p.
hi=pn fh=aZ=f fi=¢
g1=7, &=f, &=-8

to obtain the following projective resolution of p. (To verify that f,, 1>
and f,, f are A-sequences simply observe «aZ—f is irreducible):

with

OAHA—L—’RA(%(XZ_ﬂ»aZ)—"’)p—_'O (4)

with i(1)=(xZ—p, —y,0), n=projection onto 3rd coordinate. Let us
denote by E the element in Extl(p, 4) corresponding to (4). We next
observe that E depends only on &€ A, not on the choice of representation
«€ A, nor on the particular choices made of 8, 7', a, b, c. It will be con-
venient to prove the following more general lemma, from which this
observation follows immediately (with @, =7, a, =aZ—f, a3 = o2, and for
alternative choices o, f/ with @ =&, a5 =o' Z—f’ and aj =a'2).

Lemma 3.2. Let ay, a,, as, ds, a; be elements of a commutative ring
R such that (a,, a,) form an R-sequence, and such that a, =a, (moda,)
a;=da)y (moda,). Then the following diagram has exact rows, and there exists
an R-homomorphism ¢ for which the diagram is commutative :

O"——’R‘i—)ﬂR(al, as, a3)—’;> Im(p) —0

1 ]

0— R Rglay, dy, ay) 2> Im(p)—0

where p and p’ indicate restrictions of the projection ps: R3 — R onto the
third coordinate, i(1)=(a,, —ay, 0), i (1)=(a3, —ay, 0).
Proof. Suppose
ay=ay+ia, ay=az+2iza;.
It is readily verified that the isomorphism

R*>R3 (1, "3)—’(7'1—'12"2—/13 Iy, I, 1)
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maps %g(a,, a,, as) onto #g(ay, a,, as) and its restriction renders the
diagram above commutative. The remainder is immediate.

We are now entitled to denote by E(&) the element in Ext L, A)
corresponding to the extension (4); this symbol makes sense for any
A-generator @ of ¢. We conclude this section with the following lemma,
which shows how E (&) depends on the choice of A-generator for c.

Lemma 3.3.If xeB,Ac A, c= A7, and J.is a unit in A, then E (J.o)=).E ().

Proof. Observe that Ext!,(p, A) is isomorphic to Q4 ([2, 8]), and so is
isomorphic to A/p. Hence, for any maximal ideal M of A4 corresponding
to a point Q of C, the natural map Ext}, (p, A)— Extly,, (Par, Ay)is injective.
Thus, we are done if we show the images of E(Ax), AE (&) coincide for any
one such maximal ideal M.

For this purpose, we pick any point Q of C which does not lie above
any node of y, thus N=MnB corresponds to regular point of y, and so
A= Bg. Accordingly, there exists A’ in By such that A=J'.By Lemma 3.2
the sequence

0— Ay~ Bapy (1, V2 Z =2, 22a?) T pAy—0  (E)
i(l)=(XaZ—A1'B, —7,0), p'=projection on third coordinate

is exact and represents the element E (Aa)y in Extly,, (p Ay Ap)-

It thus suffices to verify that (E') also represents the element [AE ()]y;
this is immediate from the following commuting diagram:

00— Ay >Ry, (v, VaZ—XB, 1202) 2 pA4,,—0

00— Ay~ A, (7,0 Z—P, o) M4y —0

with P (1, 15, 13)=(4’ 2r, M, n).

4, Projective k[X, Y, Z]-Modules Are Free

Theorem 4.1. Let k be an algebraically closed field; then every pro-
jective k[ X, Y, Z]-module is free.

Proof. As observed in the introduction, it suffices to consider rank 2
projective modules. Thus, assume P is a rank 2 projective module over
k[X, Y, Z]=A.

Consider the rank 2 vector bundle £ associated to P*=Hom,(P, A)
[i.e, P* is the module of sections of #]. It follows from Kleiman’s
Bertini theorems for vector bundles ([6, 3.6] and [7, Theorem 7.3]) that
there exists a section of 2 which intersects the zero section s transversely,
in an irreducible nonsingular curve. Let C be the projection of this curve
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in A3, and let p be the prime ideal of C; then se P* maps P onto p. p is
therefore locally generated by 2 elements, and so of homological dimen-
sion 1; we then have an exact sequence

0—>A——P—5p—0. (E)

Serre proves [8], that, in this situation, E generates Ext L (p, A) which is
isomorphic to Qg (see [2]). The results of Sections 2 and 3 are now
available, since Qz, is monogenic, and we next compare (E) with the
generator E(a) of Ext! (p, A) introduced in Section 3. Since Extl (p, 4)
~ A/p, there is an element 4 in A such that Aisa unitin A and E=1E(3)
in Exty(p, 4). By Lemma 3.3, it follows that E= E(Ja) thus, replacing
o by Ao; we may assume without loss of generality that E is isomorphic
to the extension E (&) for a suitable generator a of ¢ over A. Lemma 2.4
then shows that we may choose a representative o and f in B for & and Za
such that o and f intersect transversely; assuming this done, we then
choose ¥/, a, b, ¢ as in Proposition 2.1. Since E is isomorphic to

E@: 00— A— >R, (y,0Z—p,a?)—F>p—0

where i(1)=(xZ —f, —7, 0), p=projection on third coordinate. We may
assume that
P=%,(y,aZ—B, a’)

By Lemma 3.1, P is then generated by the elements
(—y, —f',aZ?+bZ+c), (0, —a*, aZ—p),
(_a25 09 ?)a ((XZ_/))': =¥ 0)5

where f'=af+2af+ba.

If p, denotes projection onto the first coordinate, we thus have an
epimorphism
B J=(, e aZ—p).

As before, the kernel of this map is then isomorphic to A, and we have an
exact sequence

0—s 42 p B F 50,
J contains the ideal («2, a8, f2); indeed, since it contains o, it contains

*Z—oa(@Z—p)=af and so also contains wpZ—p@Z—p)=p> By a
k-linear change of coordinates X, Y we may ensure the points

Q,=(a;, b, (1ISiEN)
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where o and f intersect have disdinct X-coordinates; then since o and f
intersect transversely,

2z

0=T](X —a)?

i=1

lies in («, B)? and so in J. Choose e in P so p,(e)=0; then p; '(A0) is
A-free on e and i, (1), and P> p; ' (40)>6P. By Lemma 1.4 P is A-free.

Corollary 4.2. If Q is an ideal in k[ X, Y, Z] of homological dimension
<1, it may be generated by 2 elements, if and only if Exty(p, A) is mono-
genic.

Corollary 4.3. A nonsingular curve (possibly reducible) in A® is an
ideal-theoretic complete intersection, if and only if its canonical line
bundle is trivial. In particular, all nonsingular rational and elliptic curves
are ideal-theoretic complete intersections.

Proof. Serre proves in [8] that the preceding theorem implies these
two corollaries.

Corollary 4.4. A reducible curve in A* is a set-theoretic complete
intersection, if and only if its connected components are.

Proof. This is a consequence of the following observation: if an ideal Q
is an intersection of finitely many pairwise comaximal Q;, then

Ext}(Q, A)=®Exty(Q;, 4)

is monogenic, if and only if each Ext} (Q;, A) is.

Remark 4.5. To prove Corollary 4.3, one does not have to know that
all projectives over k[X, Y, Z] are free. One has to only show that
R,(y, aZ—p, «?) is free with a, § as in Corollary 2.6. This follows from
Lemma 1.4 and discussion just preceeding Corollary 4.2.

Addendum. After this work was done, Serre recently informed us via Hyman Bass that

A. Souslin (Leningrad University) has independently obtained Theorem 4.1. During the
preparation of this work we also learned from Bass that Moshe Roitman (Hebrew Uni-

versity) has shown that projectives of rank n over k[Xj, ..., X,] are free (k-algebraically
closed). Swan has recently generalized Roitman’s argument and proved the following:
n+1

Let k be an infinite field. Then projectives of rank > are free over k[X,, ..., X,]. We

have also learned from Bass that this has been independently proved by A. Souslin.
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Groups with a (B, N)-Pair of Rank 2. II

Paul Fong (Chicago) and Gary M.Seitz (Eugene)

Introduction

A group G has a Tits system (B, N) of rank » if there exist subgroups
B and N of G satisfying the following conditions:

(i) G=(B,N) and H=BnN=IN.

(ii) W=N/H is generated by a set S of n involutions s,, ..., s,.
(iii) wBs;= BwBUBws;B for s,eS, weW.
(iv) s;Bs;=* B for s;eS.

The study of finite groups with a Tits system of rank 2 satisfying the
additional condition

(*) there exists a normal nilpotent subgroup U of B such that B=HU

was begun in Part I of this paper ', where we refer the reader for the no-
tation, statements of the main results, and references. In part II we com-
plete the classification of these groups.

In the cases to be considered, W will be indecomposable, U H=1,
and it must be shown that G is isomorphic to a Chevalley group. This
we do by constructing enough of the multiplication table of G to identify G
either by a classification theorem or by the multiplication table itself.
Since G has a Tits system (B, N), we proceed as follows. Representatives
51, s, for the generators of W= N/H are chosen so that s;eR;= (U, U").
The elements of W are then to be represented by fixed representatives in
{5y, 5,. Since G is the disjoint union of double cosets Bw B, we W, the
product of any two elements can be calculated once all products in B,
in N, and of the form wbs;, where we W, be B, are known.

The procedure for deciding which of BwB or Bws; B contains wbs;
is well-known. We repeat it in order to point out two consequences. Let £
be the length function on W, and express b=uvh, whereue U, ve U, , he H.
If £ (ws;)> £ (w), then whs;=(u)* "' (ws;)(vh)* is in Bws;B. I £ (ws;) <£(w),
then whs,=(ws,)(s; 'us;)(vh). But s; 'us;eR; and R,c HU,UHU;5;U,.
If s7'us,e HU,s, U,, then there exist elements c, de B such that s tyg =
cs;d, whence whs,=(ws;cs;)(d(vh)). The product ws;cs; can then be

! Inventiones math. 21, 1-57 (1973).
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calculated by the first case. If s;'us,e HU,, then u=1 so that wbs; is
in Bws;B.

The following consequences are thus implied from the (B, N) axioms
in the present situation. Firstly, the multiplication table of G is determined
once the following is given: a labeling of the elements of G; the multi-
plication tables of B, N, R,, R, with respect to this labeling; the action
of s;, s, on the elements of the subgroups Uy, Uy for we W. Secondly,
suppose H is a subgroup of H normalized by (s, sz> W={s,, Sy A/H
is isomorphicto W,and R, H< Hfori=1,2.Thentheset G= (] HUwU

weW
is a subgroup of G. Moreover, if B=HU and N ={H, s,, s,, then (B, N)
is a Tits system for G.

§ 7. The Structure of H

We show in this section that H is abelian. In §6 we showed that the
subgroups R, and R, are isomorphic to SL(2, q), PSL(2, q), SU(3, q),
PSU(3, q), or Sz(q). Using an additional subscript i we can label elements

u; () or u;(a, B), h;(y), and s; in R; as in §4. In case R; is isomorphic to
PSL(2, q) or PSU(3, q), we make the usual 1dent1ﬁcatlon of elements of R;
modulo Z(R,). This labeling can in fact be done so that U,= (u;(x)) or
{u;(a, B)y and H,=H n R;= {(h()), since U is a Sylow p-subgroup of R;
and H, is an abelian p’-complement of U in N(U)NR,;.

(7A) Let |W|=2m and t=(s, s,)". Then H,, H, are normal cyclic
p-subgroups of H, H=H, H,{t), and t*c H, H,.

Proof. We have H,<tH since H;= H n R;<1 H. Moreover, s; centralizes
H/H; since [s,, H]<R;nH=H,. Thus {s,,s,> normalizes H, H,t).
But s? and s3 are in H, H2 Thus (s,, s,» Hy H,/H, H, is a dihedral group
containing tH, H, in its center, and so t?€H, H,. The Bruhat decom-
position of G then implies that the set G of elements in G of the form uhwo,
where heH, H, (t) u,ve U, and we (s,, s2> is a subgroup. Since G= Us,
U<G, and G GH, it follows that G=G, H=H, H,{t», and (7A) holds.

Let PGL(2,9) be the subgroup PSL(2,9) (a b> of PI'L(2,9), where
aePGL(2,9)— PSL(2,9) and b is an involutory field automorphism of F,
extended to an automorphism of PSL(2,9). In PGL(2,9) the Sylow
2-subgroups of the normalizer of a Sylow 3-subgroup are quaternion.

(7B) Suppose H is generated by normal cyclic subgroups. Then one
of the following holds:

(a) HK /K, is cyclic.

(b) HK /K, is quaternion and P,./Ki:PGL(L 9).

(c) HK /K, is a 2-group of order 16 and P/K; is isomorphic to a sub-
group of PI'U(3, 5) of index 3.
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Proof. Using (2 A) we can apply (4G)(b) to the group HK,/K;. Since H
is the product of normal cyclic subgroups so that H=F(H) is mlpotent
it follows by (4G)(b) that HK /K is cyclic, or P/K;>L;and L,~PSL(2, p 2)
with p a Mersenne prime, or L,~PSU(3, p) with p a Mersenne prime
or a prime such that p+1=2"- 3. Suppose HK /K is not cyclic. If p=35,
then the Sylow 2-subgroups of the normalizer of a Sylow p-subgroup in
Pr'L(2, p?) or PI'U(3, p) are quasidihedral. However, the Sylow 2-sub-
group of HK,/K;, being also a product of normal cyclic subgroups, is
then necessarily quatermon so that p=3, P/K,~PGL(2,9), and (b)
holds. If p=5, then P/K, is isomorphic to a subgroup of PI'U(3,5)
containing PSU(3, 5). Then the nilpotency of H implies that (c) holds.

(7C) If |W|=38, then H is abelian.

Proof. We consider cases in accordance with (6A)(a), (b), and (c).
Suppose (6A)(a) holds. We may choose notation so that [U,, Uy']=1.
Since [U;, Us*]=[U;2, U;']=1by (3G), we have U;* < Z(U). Represent G
as a permutation group on the cosets of P,. By (1) this permutation group
has rank 3 with suborbits B, B, s; B, B, s, 5, 5, 5, B, of lengths 1, g(g + 1),
q° respectively. Now B s, b=P,s,(BuBs,B)=P s U UBs s, U, U?,
and P, s, x Us' =P, s, x for every xeP,. If g> 2, we can apply a theorem of
Higman ([16], Theorem 2) to conclude that G has a normal subgroup
G,=PSp(4, q). Since G=U¢, it follows that G=G,. If ¢ =2, then G has
degree 15 and |G|=720 by (1H)(c). It follows by [26] that G=Ss=
PSp(4, 2). Thus G=PSp(4, q) and H is abelian.

Suppose (6 A)(b) holds. Then
Ll gPSL(zv q)a RZ;PSL(Z’ qz)a
[0, UFl=1, [U,, Uy]1=U=.

In particular, [R,, R]=1 and [s,, 5, s,5,]=1. Setting s{=j, we then
have t=(s; s,)*=(s,(s, 5 5,))*=jj*. We claim ¢t=1. This is so if j=1.
Suppose then that j+1 so that (j>=Z(R,)<H and jeZ(H). Then j
induces a diagonal automorphism of R,. Since C(j)Z<R,, H) and
Z(G)=1, j necessarily inverts U, and Us2. But j also inverts U, and Uj*.
In particular, jj**€ C(R,) and jj?€K,. Since j=j" inverts U;' and
Jr=j"% inverts Uj!, we also have jj?e C(U;). Thus Up>=[U,, U;']=
C(jj*?). Transforming by s, then gives jj>€ C(U;) and so jj*€K,. Thus
t=jj?e HNnK,nK, and t=1 as claimed. By (TA) H=H, H, is then the
product of normal cyclic subgroups. (7B) applies, so the embedding
of H into B/K, x B,/K, embeds H into the direct product of two cyclic
groups unless B/K; or B/K, is isomorphic to PGL(22,9). If B/K,=~
PGL(2,9), then L,~PSL(2,3) and |H1|<2 In particular, H, =Z(H),
and since H, is cyclic, it follows that H is abelian. If F/K; _PGL(2 9),
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then R,~PSL(2, 81). (4G) implies that P/K, is isomorphic to a sub-

group of PGL(2, 81) and so H'<H n K,. However, H/H, is abelian so

that H'<H,. Since R,~PSL(2,81), H<H,nK,=1and H'=1.
Suppose (6 A)(c) holds. Then

Rl ;SL(za 42)7 R2;SU(3’ q)v
LU, Us1=2(U;), [U,, Us]=U;>.

For the remainder of the proof of (7C) we will depart from the notation
in §4 and assume that s,e{Z(U,), Z(U,)**>. Set s3=j so that j has order 1
or 2 according as p is even or odd, and set s; =i, where Z(R,)=(i).
Since R, acts irreducibly on V,, H n K, is faithful on V,, and [R,, HN K, ]
=1, it follows that H n K, is a normal cyclic subgroup of H. We claim
ii*>e C(U,). Thisis so if i= 1. Suppose then thati= 1. Now (i) =Z(R,)<=H
and so C(i)n(U,/®(U,)) admits H. Since i€ K, this implies that i inverts
U,/®(U,). The same argument implies that i inverts (U,/® (U,))* so that i*
alsoinverts U,/@ (U,). Thus i i*2e C(U,) as claimed. By order considerations
R, acts trivially on [U,,, U, 1=Z(U3'), so {Z(U,), Z(U;?)>" = C(R,). In
particular, s,e C(R$). Let t=(s,s,)* Then uf=u'2)"=((")2) 52’ =
(Wis2y)2sise=yiszisa =i = )™ =y for ueU,. If p=2, then u'=u,
teHnK,, and {t)<1H, so that H=H, H,{t) is the product of normal
cyclic subgroups. If p=+2, then j is an involution. A consideration of the
group R,~SU(3, q) shows that j inverts U,/®(U,). Consequently ¢
inverts U,/®(U,). We have already observed that i inverts U,/®(U,) and
thatie Z (H). Itfollows by (7 A) that ti is a p'-element centralizing U, /@ (U,).
Thus tieHnK,. Since HNK, is a normal cyclic subgroup of H, the
subgroup (ti)<tH. Thus H=H, H,{t)=H, H, {ti) is also the product
of normal cyclic subgroups.

As before H is abelian unless B/K,~PGL(2,9) or B/K,~
PSU(3, 5)<h) with h*ePSU(3,5). Suppose B/K, ~PGL(2,9). Then
PJK,~PSU(3, 3)~PGU(3, 3) so that H=H,(HnK,) by (7B). Since
[H,, HNK,]=[R,,HnK,]=1, it follows that H is abelian. Now
suppose B/K,~PSU(3, 5){h). Since Hn K, is isomorphic to a sub-
group of HK, /K, and R, ~SL(2, 25), it follows that Z(H,)=0,(H nK,)
=0,(H) is normal in N. Then O5(H) acts fixed-point freely on U; and
U, and O5(H) centralizes U, and U;'. But this is impossible since
[U,, U;*]=U;. This completes the proof of (7C).

(7D) If |W|=12, then H is abelian.
Proof. Suppose (6 E)(a) holds. Then

Li=L,=PSL(2,q), [U,,U]=*1, [U,,U,]*I.
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If [Uss, Up2]=Us* and [Up'*, Ust]=U", then UP?® =[U U,
Since R, normahzes[ , U, ]it follows that [U7**, U, 1=[U;>*, U“’]s2
Up <y, U, 1= Up? U” B Us”‘, which is impossible. We may choose
notatlon SO ‘that [U", Us2]=1. Suppose [Uf**, Ui?]=1 as well If
[Us, Us?]#*1, then Z(U,)=U;** and so [Uy*, R,]=1, [U, U ]=1,
[Us', Ui*]=1, which is 1mpos51ble Thus [Ust, Uiz]=1, [Us'*2, U ]=1.
Thls 1mplles [Us*s, R,]=1, [R%*% R,]=1. Moreover, Z(Uj)=
Us2s U2 Up? and Z(U,) admits R;. Thus R, is irreducible on U, /Z(U,
and HmK is faithful on U, /Z(U,). In partlcular HNK, isa normal
cyclic subgroup of H. A similar argument with the roles of U,, and U
1nterchanged shows Hn K, is also a normal cyclic subgroup of H. Set
s? =i, s3=}j, where Z(R,)=<i), Z(R,)= {j>. We note that i, j> < Z(H).
Since [R,, R}*]=[R{", R,]=1, we have

(s152)% _ is1jsis251852 — jsis2
] —J _j 3

[S2lsis2)® _ js2isasis2 — js2

Thus if ue U,, then
ut=u's 52)©

— u(-ﬁ 52) 5152(51852)4
= yStits s2)4
= uijsl s2(s152)3

=52 53)3 iS2 jS152

—yS25tisis2 i52 jS152

— S22

— i 251522
=Uu s

and so te Hn K, and {t)<H.

Suppose [Uj**, Uf2]=U;'** so that [U;*™, U] U;'. In particular,
(Us's2, U3y <[ U, U, ] Since U, normalizes [U, L ]and [U,, U 1=
Upz U2, it follows that U £y, U 1 ThlS implies that
[USz U”]<U‘“Z since Us'2<[U;, U] and [U”, Ust]< Uf2* Uy But
Uy £[U,, U] and so [U;, U""]——l This implies that [R,, R“sl]_l
and in partlcular [Us2%, R,]=1. Now Us' Uy Uy'™ is a normal
SUbgroup of U, admitting Rz, and thus R, acts irreducibly on

U Ju Ry 3 . Since H n K, is faithful on this factor group, it follows
that H mK is a normal cycllc subgroup. We now proceed as before to
show <t>sH
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In both cases H is then the product of normal cyclic subgroups, so by
(7B) H is abelian unless P/K;= PGL(2,9) for i=1 or 2. It was shown
above that R, acts faithfully and irreducibly on V=U,/U;* Uy>* U;**.
We claim that B,/Uj, is faithful on V. Let K be the kernel of P, on V. Since
P,=HR, U, ,wehave K =(KnHR,) U,,.But[R,, KnHR]=R,nK =1,
so that KnHR,<KnK,. Since K,=(HnK,)U,, and HnK, is
faithful on V; it follows that K n K, = U, and the claim is proved. Since H
has only two irreducible constituents on this module, it follows by (4B)
that B,/U,, is isomorphic to a subgroup of GL(2, 9). Now H=N (U,) and
in GL(2,9) the normalizer of a Sylow 3-subgroup has no quaternion
section. Thus H is abelian.

Suppose (6E)(b) holds. Then R, is irreducible on V,, HNnK, is
faithful on V,, and so H n K, is a normal cyclic subgroup of H. Moreover,
[R,, Ry*?]=1. We proceed as above to show te HNK, and {t)=IH.
Then H is abelian unless B /K, = PGL(2, 9). But in this case R, =SL(2, 3°)
by (6 E)(b) and so H, contains an element h of order 8. Since h*eHnK,,
it follows that h*¢K,, which contradicts B/K,=~PGL(2, 9). This com-
pletes the proof of (7D).

(7TE) If |W|= 16, then H is abelian.

Proof. By (6H),s? =s3=1and [U,, Us****]=1sothat [R,, R} Z%]=1.
The group R, acts faithfully on M=U,,/[U,,, U,]U;****. Indeed for
q>?2 this is clear since Sz(q) is simple and [s,, M]#1. For g=2 Sz (2)
is the holomorph of Z,. Since s, and the involution in U, have different
actions on M, it follows Sz(2) acts faithfully on M. Thus (4 F) implies R,
acts irreducibly on M. Since H n K, is faithful on M, Hn K, is then a
normal cyclic subgroup of H. If ue U,, then

ut = y152°®
= ylsts281)s2(s15281) 52451 s2)4
= yS2(s1s2)

= yS2(15251) 5205152 51) 52

S28
=y°2%2

=u.
Thus te HN K,, {t)<H, and H is then abelian by (7B).

(7F) H is abelian and the following hold:

(a) If L,=PSL(2, q), then P/JK,=PSL(2, q) or PGL(2, q).
(b) If L;=PSU(3, q), then P/K;=PSU(3, q) or PGU(3, q).
(c) If L,=~Sz(q), then P/K,;= Sz(q).

Proof. This is immediate.
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§ 8. Identification of G in the Case |W|=8

In the next three sections we identify the group G. Although the
methods used for the three cases |W|=38, |W|= 12, | W|= 16 do not differ
significantly, the details required in each case are of such a nature that
a separation of the cases is desirable. It is possible to identify G by show-
ing that its multiplication table is unique, and we do so for some of the
groups, as for example PSU(5, q) and *F,(q). But where it is possible to
appeal to existing characterization theorems, we have done so in the
interest of shortening the paper.

In §7 we have labeled the elements of R; so that U,=<{u,x)) or
{ua, p)y and H;=H nR;=<hy(y)). If ¢ is a field automorphism of R;,
then replacement of u,(x) or u,(, f) by u;(a°) or u,(a®, %), hi(y) by h(y’),
and s; by s; is another labeling of the elements of R;. We shall call this a
change of labeling by the field automorphism o.

(8A) Suppose |W|=8 and (a) of (6 A) holds. Then G=PSp(4, q).
Proof. This was shown in the proof of (7C).

(8B) Suppose |W|=8 and (b) of (6 A) holds. Then G=PSU(4, q).
Proof. By (6 A) we have

U, Ufl=1, U, Up']=U"

L,~PSL(2.q), R,~PSL(2,q?). (8.1)
Transforming the first commutator in (8.1) by s, gives [Uf, Uf*]=1 so
that [R,, Uf?] =1. Transforming this in turn by s, s, s, gives

[R,, U ®]=1,
and thus
[R,, RP]=1. (8.2)

Consider the HR,-module V; =U, /U;* of order g*. As an H-module
V, is the direct sum of irreducible H-submodules U, Uj?/U;? and
Us' Us2/Us2, each of order g*. Since H is abelian, the H,-submodules in
U, U32/Us? are all isomorphic, as are the H,-submodules in Uy Ui?/U;.
Since s, inverts H, , the eigenvalues of h, (y) on U, US?/U;* are the inverses
of the eigenvalues of h,(y) on U;* U2/ Us>.

Suppose V] is a reducible HR,-module. Then there exists an HR;-
submodule V,, of order g%, which cannot be Us' Uf2/U;*? since the latter
does not admit s, . By 3G)

[U,Usl=1, and [U;, U,]<US U, (83)



198 P. Fong and G. M. Seitz

If [U,, V,]# 1, then the equality [U,, ¥,]1=[U;, V,1” =¥, and (8.3) imply
that V= Us' U?/U;?, which is impossible. If [U;, V,]=1, then

[U, U,]2Uf* andso [U, Vj]1=1.

But then [R,, V;]=1, which is impossible. Thus V| is an irreducible
HR;-module.

Suppose j is an involution in Z(R,) and je C(V}). Then [j, U,]=1
so that C(j)=<R,, R,, H> =G, which is impossible. Thus R, is faithfully
represented on each R,-submodule of ¥} by Clifford’s Theorem.

Suppose p is odd and R, PSL(2, q). Now |H:HnK,|=3(g—1) or
(g—1), and |H:HNK,|=%(¢*>—1) or (¢>—1). If [HNK,] is odd, then
an S,-subgroup of H is cyclic and g = 1(mod 4). But if g=1(mod 4), then
H, and H$* contain involutions. Since we are supposing R, = PSL(2, g),
we would then have by (8.2) that (R, , R{?> =R, x R}, so H would contain
a subgroup of type (2, 2), which is impossible. Thus |[H n K| is even. Let
j be an involution in HnK,. Since C(j)=<{R,,H) and Z(G)=1,
j must invert U, and U;2 Thus j inverts Us? and U,, and so jj*?€ C(R,).
In particular, jj?e Hn K,. Now j=j* inverts Us', and j**=j'* inverts
Ust. Thus jj*2e C(Us'), so by (8.1) we have jj*>e C(U;?). Transforming
this by s, gives jj*>€ C(U;)so that jj**e C(R;). Thus jj?eHnK; nK,=1
and j=j2. In particular, C(j)2ZR, xR} If g=1 (mod 4), then H, and
H;* contain involutions. Since the S,-subgroup of H has 2 generators,
jeR, x R, which is impossible. Thus R, ~PSL(2, q) and g=1 (mod 4)
cannot hold simultaneously.

Suppose p is odd and ¥, is an irreducible R,-module. If R, =SL(2, q),
then the representation of R, on ¥}, which is faithful, is of type (c)in the
notation of (4.7). Properties of this representation, which occurs only
for p=5, can be found in [9] §1, (1.1). In particular, |C, (U,)| =g, which
contradicts (8.3). If R, @PSL(2, q), so that g= —1 (mod 4), then R, on
¥, is of type (f) in the notation of (4.7), type (g) being excluded by g= —1
(mod 4). Thus n is odd and n= 3. In the representation I’ ® I’ P of SL(2, q),
where 1 <i<n— 1, the element h(y) has eigenvalues y*!*#", In particular,
there exists j, 0< j<n—1, such that y@+??’ =y =7 or y?'~!. Thus

(1+p)p'=+(p'—1) (modp"—1).

If i4+j<n, this congruence is clearly impossible. If i+j=n+k, where
k>0, then k<n—2 and the congruence becomes p*+p’=+(p'—1)
(mod p"— 1), which is also impossible. Thus V] is a reducible R,-module.

Suppose p is odd, and V; = W, @ W, is the decomposition of ¥, as a
direct sum of conjugate irreducible R,-submodules W, and W,. If
R, =PSL(2, q), then R, on W, is necessarily of type (d) in the notation of
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(4.7), and n is even. Thus g=1(mod 4), which is impossible. Thus we have
R,=SL(2, q) (8.4)

and R, is faithful on W, and W,.

Suppose p is odd, and let Z(R,)={j>. f Ry NR* = 1, then jj*2%1 and
C(jj*>)=<(R,, H). One of the three involutions j, j%2, jj** centralizes R,.
If j or j*€ C(R,), then both lie in C(R,) since C(R,)*>= C(R,). Thus we
always have jj?€C(R,) so that C(jj*)=2<R;, R;, H>=G, which is
impossible. Thus R; "R ={j) and C()Z R, R{> H{sy). Since Z(G)=1,
j inverts U,. It is now possible to calculate C (j)n BwB for each (B, B)-
coset of G. We find that | C(j)| =2 |H| ¢*(q+ 1)*>. However |R; R{* H{s,)|
=2 |H| ¢*(q+1)% and so

C()=R, Rf Hsy). (8.5)

By (3B) |H| divides (¢*—1)(¢—1). But since |H N R, R$2|=1(g—1)* and
|H N R,|=31(g>—1), it follows that

HI= 2@ Da-1, d=12 ors.

(1H) implies that |G|=|H|q°(g>+ 1)(¢*+1)(g+ 1) and thus j is in the
center of an S,-subgroup of G.

We continue with the assumption p is odd. The group H is a sub-
direct product of H/H n K, and H/HNK,,|H/HNK,|=3(qg—1)org—1,
and |H/H nK,|=1(q>—1)or ¢> — 1. Let T=H?"'. So T'is a characteristic
subgroup of order (g + 1) or (g+1) of H. Since s, inverts H/H N K, and
(HNK,y"'=1,s, inverts T. Thus (T, s, is a dihedral group of order
q+1 or 2(q+1). From the definition of T we have [T, R,]=1, and so
[T, R,R$]=1. The representation of R, on U,, is of type (d) in the
notation of (4.7). In particular, the eigenvalues of h, (y) are the algebraic
conjugates of y*' 4. Since U =U, and |U,|=g, h,(y) acting on U, has
eigenvalues which are algebraic conjugates of '*? or yp~1=4 if y is an
element of order g2 —1. Thus h,(y) induces a diagonal automorphism
of R, which is not inner. This implies

|H:HNnK,|=q—1 and Hy<H, (8.6)

where Hy=R,R}*TnH.

Suppose |H:HNK,|=g>—1. The group H is then a subdirect
product of Z,_, xZ,._,and |T|=g+1. Let H be the characteristic sub-
group of index 2 of H defined by H=<heH: i*®@-V=1}. Then H
contains all involutions of H, so in particular s?€ H, s3e H. Also H,, has
order divisible by (g2 —1)(g— 1), so |H:H,|=1, 2, or 4. Since s2=1, the
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exponent of (H/H,, s,> is 2 or 4. Choose = + 1, so that g=¢ (mod 4),
and let 2°|g—e. By (8.5) C(j) and hence G contain no elements of order
patss Thus(slsz)"’eHand(H sl,sz>/H W.Let B=HU,N=<(H,s,,5,),
and G= UBSB where seN/H. Since s,U;si'<Bs;U, for i=1,2, it

follows from the (B, N)-properties of G that G is a subgroup of G of
index 2, which is impossible. Thus |H:H N K,|=%(¢* —1), |T|=3(g+1),
and d=2 or 4. Since |H,| =3(q*>— 1), we also have H=H, x (H n K).

We next show that d=(4, g+1). If g=1 (mod4), then [Hy|=
1(g*—1)(@—1). Then d=(4, g+ 1) by (8.6). Suppose g= —1 (mod4) and
d=2%(4,q+1). Then |[HnK,|=3(¢*—1), |[HNK,|=qg—1, and H=
H, x (HNK,). Let i be an involution in T If i % j, then (i, /> would be a
subgroup of type (2, 2) in HnK;. Since |H n K,| is even, an involution
of HnK, would be in K, Wthh is 1mpos51ble Thus jeT Let H=
H, x (HmKZ)2 so H is a subgroup of H of index 2 containing the Hall
subgroup of order 4(q—— 1)*> of H. Moreover, jGH since jeH". 2. Thus
H <A Clearly H*:=H from the definition of H. We claim A% =H as
well. Since |H:H?|=2 and s, e N(H?), it will be sufficient to show that
zeH where (z) =H,.Now H, (H nK,) admits s;, and |H: H,(HnK, )|
=2. Thus z7!'s;'zs; =xy for some xeH,, ye HNnK,. If y¢(HnK ¥,
then |{y)|, =2° where 2°|g + 1. But|{z)|, =2"as well,and so je {z) N {y).
Thus |<zxy>|2<2 which is impossible. Thus zeH and s,, s,eN(H).
Now s?eH, and s3=1. We claim (s, s,)*eH. The group H, has order
L(@®*—1)(g—1)and H=(H,, k, z), where {(z) =H, and k is the involution
in HNK,. Thus s, centralizes H/H, and <H/H,, sz> has exponent 2. By
(8.5) C(j) and hence G contain no elements of order 2°+2. Thus (s, 5,)* € H.
As in the previous paragraph, we obtain a contradiction. Thus d=
(4, g+ 1) in all cases.

The subgroup R, R} T<s, > has a unique structure. Since it has index 2
in C (j), the structure of C(,j) will be determined if we describe the extension
in terms of an element he H—H,. Suppose g=1 (mod 4). By (3B)(c)
H K, is faithfully represented on R, as a cyclic group of order ¢ — 1. Let
HNK,=(hy. Then h? induces an inner automorphism of R,, so there
exists teH, such that h*t~'=veHnK,. Now [h, sz]—l te C(RP),
2€ C(R,). Thus h* = tv=1* v*,and h? ¢! t‘sZ— ut‘”——v‘2 t~'e C(R, R}).
Express t=x y, where xe H,, ye HNK,. Then t*=x"y, triz=y?’eHnK,,
so that 2t~ 1t2e HnK,nK,=1 and h*=tr>. Now t has order g—
since h does. Since h induces a diagonal automorphism of R,, we have
enough information to determine the structure of C(j). Suppose
g= — 1 (mod4). The group HN R, is cyclic of order 1(g? —1). Let <h) be
its subgroup of order g+ 1. Then <h, s, is dihedral of order 2(g+1).
Since h*e(H nR,)?", it follows that T=<h?). Also {h) contains an
S,-subgroup of H, and so h induces a diagonal automorphism of order 2
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of R, and R{%. Again this determines the structure of C(j). By a theorem
of Phan [20], it follows that G= PSU (4, q).

We now suppose p=2. Then (8.1) and (8.2) imply that |H| is divisible
by(q*>— 1)and(q— 1)*.Since g is even, we conclude that |H|=(¢* — 1)(g — 1).
The group H n K is represented faithfully on V{.Since [H N K,, HR,]=1,
|HNK,|=q¢*—1,and HR, is irreducible on V}, it follows that | may be
regarded as a vector space over F,. of dimension 2 on which HR, acts
linearly. In particular, R, acts irreducibly on this space, and necessarily
as I'”®F ;: where ¢ is some field automorphism of F,. We may assume
by [9] §1 that a natural basis for I'” has the form {u,(1), u3(1)}. Now
viewing ¥, as a vector space over F,,, we have a scalar multiplication
given by ou,(1)=u,(«*) for acF,. Also auz(ﬁ)=(u2(ﬂ))" for some
heHnK, and all BeF .. Since h induces a diagonal automorphism on
R,, we have au,(B)=u,(a* p) for all feF .. We claim that the mapping
7, a —o* is a field automorphism of F .. To see this we first note that
(o4 B)uy (1) =1y (*) uy (B*)=u, (* + p*), so that t, is additive. Also
afu,(1)=au,(f*)=u,(a* f*), so that r, is multiplicative. Similarly
auf (B)=us (a2p) for PeF ., where 7, is an automorphism of Fp..
Applying s, we see that t; =1, =1. The matrix form of I'” then implies that

[u, (@), uy ()] =u3 (2f7) (mod U7?). 8.7)

The group R, acts irreducibly on U,, and [HnK,, R,]=1. Since
H N K, has order ¢g— 1 and H n K, is faithful on U, by (3B)(c), it follows
that U,, may be regarded as a vector space over F, of dimension 4 on
which R, acts linearly and irreducibly. H has three constituents on U,
s0 by (4C) R, necessarily acts on Uj, as an F -form of (I'x I'f’, where I’
in this instance is the natural representation of SL(2, g%), is the field
automorphism x — x4 and p is some field automorphism of F .. We fix a
choice of § in F,—F_. By the discussion following (4C) in § 4, we may
assume R, on U, has the form Z#, where Zisasin§4and p isa field auto-
morphism of F,. Moreover, a natural basis for Z” has the form

{uy (1), w3 (x), u3 (»), ui* (1)},

for some x, yeF,.. Proceeding as above we see that there are field auto-
morphisms 7,, 7,, 7, of F, such that au, (f)=u, («™ B), au (B)=ui (@™ f),
aus (Bx)=us (a2 fx),auy (By)=u3 (@™ py)foralle, feF, . Alsoous (fx)=
(5 (Bx))" for some heH. Since h induces a diagonal automorphism on
RS, it follows that t,=1,. We also note that {a": a€F,} for i=1,2is a
subfield of F,, and hence is precisely the subfield F,. From the matrix
form of 5 we see that the cyclic subgroup T of order g+ 1 in H, central-
izes U; and U2 Moreover

[u, (B), up (@] =ug (BT 2 af™ x+ BT 22?2 y) (mod Ut?),  (88)
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where a=a, +0a,60 and a,,x,€F,. (8.7) and (8.8) imply that af”*=
B 2 (ol 2 x 4 o572 y) for all e F,. and all BeF, (here we use the fact p=2).
Setting a= =1, we have x = 1. Setting a =6, f=1, we get y=0. Therefore
afoT = 2kt 4 B 29872 ), First setting =1 and then =1 in this
equation, we obtain gt=1;"7, and pt,=1 respectively. Extend the
field automorphism , ¢! of F, to an automorphism # of F,,. We then
relabel the elements of R, by the automorphism » so that auj(f)=
u3 («" ) for each xeF, feF .. With this relabeling of the elements of R,

the matrix form of Z” now implies that
[uy (B), u, (@)] =u3 (2 f) ui* (2 ),
[u3 (B), uy (@] =up*(B(x+a),
[u (BO), u ()] =u?(B(O+03),
for BeF,. The commutator identity [xy, z] =[x, z]. [x, z, y] [y, z] then

gives _
[ (B), u,(@]=u@B+Ba) for o, BeFq>. (8.9)

We have now determined the structure of U.

The structure of R, U, is now determined since we have the action
of R; on V; and hence by (8.9) the action of R, on U, . In particular,
Upr=Z(U,)=Z(R, U,). Let j be any involution in U;?. The elements of
H? act regularly on Uj? while the elements of (H n K,)* centralize j.
Thus Cy(j)=(HNK,)’? and Cg(j)=(H nK,)*> U. We consider next the
set C(j)n BwB. j commutes with an element uhwv, where ueU, heH,
ve U, if and only if jhwj=hw. Equivalently, j commutes with uhwov if
and only if h='jh=w,jw~'. This last equation holds only if U**=U;?,
that is, w=1 or s;. We easily obtain

Co()=(HNK,)*Uu(HNK,):Us, U,

and thus |C4(j)|=¢°(¢*—1)(g+1). Since C4()=TR, U, and TnR, U,
=1, it follows that Cg;(j)=TR, U, . Also T acts faithfully as scalar
multiplication on ¥V}, and [T, U] =1. Thus C4;(j) has a unique structure
and is independent of the choice of j in U2 By a theorem of Suzuki [32]
it follows that G=PSU(4, q).

(8C) Suppose |W|=8 and (c) of (6 A) holds. Then G=PSU(S, q).
Proof. From (6 A) we have
LU,, U;11=Us, [U;, UP*]=Z(U;")
R, =SL(2, q%), R,=SU(@3,q).

Thus [H:H K, |=1(¢*~ 1) or (g*—1), |[H:HNK,|=1(g>—1) or (¢*— 1),
and |H| must divide (¢>—1)% Now R, acts trivially on Z(U;"). Trans-

(8.10)
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forming [R,, Z(Us')]=1 by s,5,5 glves [R,, Z(Us?y*]1=1. Thus if we
set R,=<(Z(U,), Z(Us?)), then [R,,Ry]=1so0 by (4.3)

(R,,R$>=R, x R$=SU(3,q)x SL(2, q). (8.11)

In particular, |H AR,R3|=(q>—1)(g—1). If p#2, there exist elements
in H3' inducing outer automorphisms of RS Thus
2

|H|zo{m°d(q ~b=1 (8.12)

mod 2(q>—1)(g—1) if p%2.

The group R, is irreducible on V;=U, /®(U,), and H N K, is faithful

on V. Since [R;, HN K;]=1, the commuting algebra E; of R; on V; is a

finite field, say of order p™, containing a multiplicative subgroup of

order |H N K,|. Then n divides m; since g—1 divides |[H nK;|. If p+2,

then 2n divides m, since 2(q—1) divides |HN K;| by (8.12). If p=2 and

|H|>(q*—1)(q—1), we can also conclude that 2n divides m; since |H]|
divides (g2 — 1)%. Thus we have

o JpE2
|E;/=0 (modg?®) lf{ (8.13)
p=2, |H|>(@*-1)(q-1).
In such cases ¥, and ¥, can be regarded as vector spaces over F. of

dimensions 2 and 3, on which R, and R, act linearly and irreducibly.
The proofs of (4B), (4D) imply that we may assume R, on ¥; has the
form I'” and R, on V, has the form @ for suitable field automorphisms
pand o of F ..

We shall assume p+2, or p=2 and |H|>(q*>—1)(g—1) unless stated
otherwise. From §4 and [9] § 1, we may take

{uy (1), w3 (1)}
{up (1), i3 (x), uy (1)}

as natural bases for I'” and @ respectively. Here x is some element in
F . and 1, () =u, (¢, ) Z(U,). As in (6 B) there are field automorphisms
7,1y, T,, of F, such that aii, ()=, (e B), a5 (B)=u3 (ap),

au? (f)=u (" B), wity' (B)=3 (™ B),

and rxul(ﬁ) u, («* p) for all o, BeF ;. The matrix forms of I and &°
then give

(8.14)

[, (), ul(?)]Eﬁz‘(av’") (mod [U,. U, 1),
[y (9), (o, Bl =3 (2@ x) (mod Uy Z(U3)),

where ~ in this case is the field automorphism y— y% Thus it must be
the case that ay?*= —y '=2a°2x for all o, yeF .. This implies that
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x=—1,01,= , and pt=1; '7,. We now relabel the elements of R,,
replacing u, (, f) by u,(a* ", 7 "). With this relabeling we have from
the matrix forms of ® and I
@) [ (), up (2 f)] =1,
() [@(—7y) uy( Bl =ui(ya) (mod Z(U31),  (8.15)
(iii) [y 7). ua (e B =05 (—ap) ui*(By) (mod Z(U3").

Since [U,, Us*]£U;? and [U,, Z(U5')] =1, (8.15) (ii) implies that

[u3 (5, 8), uy (o, BY] =u2(—a7).- (8.16)

Let y be an element of order ¢g*—1 in F,,. Then H, is <hy(y)). If
h,(y)e H,(H n K,), express h, (y)=h,(«) - bwhere h,(x)e H,andbe HN K, .
If h(y)¢H,(HNK,), then h,(y)’eH,(HNK,) and we may express
hy(7)* =h,(«) - b. The eigenvalues of h,(x) on the F;-spaces U,, U;" are
a?~9, o' 7 respectively; those of b are 1, f respectively, where feF,;;
and those of h,(y) are y and y~! respectively. Thus o' ~? f=0?"2 and
B=a?9"3, Since (g2—1, 29—3)=(5,q9+1), it follows [{ad|=|<B>| or
d|<{B>|, where d=(5,q+1). Also, a>~%=y or 9> Since (¢*—1,2—¢q)

1
=(3, g+ 1), it follows that |{a)|=¢*>—1 or ?(q2 —1), where e=(3, g+ 1).
1
Thus % (% —1) divides |(| and |H ~K,|=0 (mod o (q2—1)). If
1
«*~ 9=y, then |H N K,|=0 (mod T (q*— 1)) ;if 2~ 9=93, then

|H:H,(HAK,)|=3.

In either case we have

1
|H|=0 (mod e 1)2>. (8.17)

We repeat this argument interchanging the roles of R, and R,. Let
H,=<h,(y)>. If h,(y)eH,(H nK,), express h,(y)=h,(«)-b where h,()eH,,
beHNK,.If hy(y)¢H,(HNK,), then h,(y)*eH,(HNK,), and we may
express h,(y)*=h,(x)-b. The eigenvalues of h,(«) on the F ,2-Spaces
U,, U;' are a, «~ ! respectively; those of b are 8,  respectively; and those
of h,(y) are y>~4, y* ~4 respectively. Thus «f=7*"7 or y*~ 24, and

a‘1/3=y“" or ,y2—2q
respectively. This implies that f?=7%-29 or 2329 50 that [{B)|

e 1 1 . .
is divisible by —d—(qz—l) or ﬁ(qz— 1) respectively. Since the second
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case occurs only when |H:H,(HnK,)|=2, we have in either case that

1
d 2_ 12 4
mo 57 (g*—1)° if p=x2

\H|=0 | (8.18)
modg(qz— 1?2 if p=2

1
(8.17) and (8.18) now imply that |[H|=0 (mod ?(q2 - 1)2) .

Suppose d=5 and ( is an element of order 5 in F.. Since
h,(Q)eH,(HNnK,),

we may express h,({)=h,(«)b for some h,(x)e H, and some be HN K, .
The calculations in the previous paragraph show that b?>=1 since
Hn K, isfaithfulon V| . If b+ 1, then b=h,(—1).If b=1, then h,({)=h, ().
In either case h,({)e H, n H,. Conversely, if h (x)=h,(f)e H, nH,, then
a=p?"%and o' =B" "4 from our previous calculations. Thus 29" 3=1
and fe({). Hence if d=5, then |H, n H,|=5, the common elements
being of the form A, ({*~9)=h,({).

Suppose d=35 and |H|=(q*—1)>. The group H=H, H, is then a
subgroup of index 5 in H. For i=1,2, [si, H]<HmR H; so that s;
centralizes H/H,. In particular s, , szeN(H) and s?eH. Moreover {81, sz>
H/H has order 8, for otherwise {8y, 2> H/H>H/H and s; inverts H/H,
whereas we have seen that [s;,, H]<H.Let B=HU, N = <H Sy, 53, and
G= U BsB as seN/H. Then as in the proof of (8 B) we see that G is a

norma] subgroup of index S in G, which is impossible. Thus
|H|= (q —1)* and H=H,H,. (8.19)
The following table gives the action of h,(x) and h,(8) on the root

subgroups. B .
u zZW,) U Uy ZUyY) Ut

hy(e) | o R - L (8.20)

hy(B) | B2~¢ p'*e pmt BT p

The entries other than those giving the action of h,(x) on Z(U,) and
Z(U3") come from (8.10) or the matrix forms of I' and @ The two excep-
tlons come from the relations [u,(a, ), u,(y, 6)]=u, (0, &y —ay),

syt hy() s, =hy (a7 ?),

15 Inventiones math , Vol 24
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and the fact that Z(U,) is a vector space over F, of dimension 1 on which
h,(2) acts linearly. In particular, Chy(@) hy(@?): aeFpy<HNK,; so
that Hn K, induces an operator group on Z(U,) of order g—1.

The group R, is irreducible on [U,, U, ], [Ry, HnK,;]=1, and
Hn K, induces a group of automorphisms of order 4—1 on [y, 4,1
Thus [U,, U, ] may be regarded as a vector space over F, of dimension 4
on which R, acts linearly and irreducibly. Since H, has 3 constituents on
[U,,, U,,], it follows by (4C) that R, on [U,,, U ] may be assumed to
have the form =%, where Z is an Fq-form of I'x I’ constructed with
respect to 0, and 7 is a field automorphism of F,. We shall choose 0 so
that 0= —0 if p+2 and 0=0+1 if p=2. Moreover, let 6°=0 if p£2,

¢°=1 if p=2. Then we may take
{u,(0, 6°), ui(x), ui*(y), u3 (0, 6°)} (8:21)

as a natural basis for =%, where x, yeF ;. As before there are field auto-
morphisms 1, T,, T3 of F, such that

o (0, 0° ) =10, 0° Bo),  aui(0, 6° f)=us(0, 6 fa),

au2(fx)=u (@ fx), and au(By)= u?(o** B y) for all o, feF,. There is
an element he H? such that (u2(x))" =u{?(8x) u*(n y) for some &,y such
that 7+ 0. There is also an element h,e H K, such that « u2(y) = (u2 (7)™
for all yeF .. Thus

32 (02 8) 2 (0 )= (1 ()P = (32 (0" = (32 072 ) = (a2 (x40 ) -
It follows that 7, =1,. The matrix form of Z° then gives
[u2(0, 0 B), uy ()] =uf (x B 29+ p B ' 957) w3 (0, 0° By )™)

where y=y, +7,0 for y,, 7, €K, and feK,. Comparing this with (8.15) (iii)

we see that — 0: By =B = (xyi*+yy5?) holds for all § and 7. Since

—§c=0° we easily obtain x=0% y=00", 17 '1,=1, and t7,=1. The

missing entry in (8.20) is thus a9=1. The matrix form of E* now gives

(@) (w50, 0°B), u, (D] =1,
) [uO0°B) u (N =u3(0,0°8(GO+0), ,
$2(E S1 £ = 8.2
(6 B, uy (D] =13 (0, 6By +7)), L
) [u,(0, 6° B), uy (P)] = 132(0° By, +06°fy,) u3' (0, 6°fyY)

(iii
(iv

where y=7, +7,0 for y,,y,€F, and BeF,. Let deF,, and express
0=0,00°+6,6° where 6,,0,€F,. The commutator identity on [x},z]
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implies that
[u2(0), uy (7] =13(0, 6°6, (70 +09)+0°0,(y +7)
=u$'(0,76—79).

We can now complete the multiplication table of U. By (8.15) there
exists a function f: F . xF . xF.—F. such that

[, (), uy (o, BY] =3 (— ey, (o o 7)) ui(By). (8.24)

The commutator identities on [xy,z] and [x, yz] give the following
functional equations:

(i) £, By +8)=f(o B, 7)+ f (o, B, )+ B (TS +79),
(i) fla+d, p+p +ao, Y= f(ap7)+ /@, B, )+Tayy.

We note that in these relations ad=f+ f, ' @ =p +f'. Transforming
(8.24) by h, () h,(u) and using (8.20), we obtain the relation

fAp?— %, At A= 2 = y)=2""1" f(, B,y) for 4, peF,.. (8.26)

(8.23)

(8.25)

(Note the action of an element heH on U2 is determined by its action on
U, since this calculation can be made in B/K,.) In particular, setting
/1—1 u=1y gives the special case

f(a,ﬁ’y)zf(yZ—qa,vl+qﬂ’ 1) (827)

Also, setting A=p9=2 in (8.26) gives f(o, B, p>~29y)=p'* f(, B,7).
Since (3—2¢, ¢>—1)=d and (¢~ 29! *9=p'*% we obtain

Sl Bouy)=p'*? fle, B,y)  for peL (8.28)

where L is the cyclic subgroup of index d in the multiplicative subgroup
of F,. The following is a special case of (8.25) (ii).

d f(a’ﬁla"l})_*-f(oegﬁZsy) lf p:*:z
B, 7)= : (8.29)
fle. b1) {f(O,ﬁ,,va(a,Gﬁz,v) if p=2
where g =B, +08, for ,, p,€F,. But (8.22) (iv) implies
10, 8,7)=B77. (8.30)
Thus it suffices by (8.27), (8.29), (8.30) to determine f(a, §, 1) if p+2, and
[, 08,1)if p=2,for BeF,. If p+2, then (8.25) (i) implies that f(x, f,2)=
2f(a, B, 1)+2pB. Since ZEF*CL it follows by (8.28) that fi(a, f, 1)=p.
If p=2, we may assume 0eL since |H|>(q*—1)(g—1). Again (8.25)(i)
and (8.28) imply that f(x, 0, 0+0)=0p(6+6%). Since 0+0eF)cL, it
follows by (8.28) that f(a, 0, 1)=0p. Thus the function f is completely
determi i 5
etermined, and indeed flo B, 1) =77 831)

15%
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In particular, the multiplication tables of U and hence of B=HU are
determined.

Suppose p=2 and |H|=(¢q>—1)(g—1). ¥, and V, are then vector
spaces over F, of dimensions4 and 6 on which R, and R, act linearly and ir-
reducibly. By (4C) and (4E) we may assume that R, on V] has the form
r'212 and R, on V, has the form @ for suitable field automorphisms
pand o of F,. As natural bases for I'*1” and ©'*1” we may take respectively

{u, (1), u,(w), u3 (1), w3 (w)}

{u2(1), up(x), 435 (), 5 (2), uy (1), uy (x)}
where w,x, y,zeF .. Thus there are field automorphisms T, 7,7, of
FZ such that au,(B)=u,(@ ), au,(fw)=u,( fw), auy(f)=u5(a"p),
i (Bw) =13 (a* fw), au? (B)=ouy* (™ f), aup* (Bx)=uj*(a™ B x),

2y (By) =15 (B y), ity (B2) =T (o B2), vy (B) = (2" ),

auy (Bx)=u, (" Bx) for all «, BeF,. The matrix forms of I'** and @11
then give

(8.32)

@) [uy(ay) u,()]=u3(y Wit wys),
(i) [ip(woey)s ty (I =085 (o Y57 KT+, Wy +72 V),
(iii) [uy (7y), uy(, B)] =03 (YV;f 112(% +0,)" 2+ 29 o 0‘?2),
(iv) [uy (xyy), uy(e )]
= (yyy o T 9y oy v

where the congruencesin (i) and (ii) are taken modulo [U , U, ] and the
congruences in (iii) and (iv) are taken modulo U2 Z(U, ). Also

(8.33)

y=y,+7,0, oa=0o,+a,0

for y;,%,,0%,2,€F,, and 0?=p+v0. Setting a=a,, y=y,, and compar-
ing (8.33)(i) and (iii) we find that y=1, pt=17'1,, 07,=1. Now we
extend the automorphism t, 77! of F, to an automorphism  of F. and
relabel the elements of R, using the automorphism 5. Thus we replace
u, (o, B) by u, (", 7). This relabeling has the effect of equating t, and 7,.
The equations in (8.33) remain valid and are simplified by the additional
conditions that pt=1;'1,=01,=1.
Let T be the unique subgroup of order g+ 1 in H. Since

|HI=(g*—1)(g—1)

and |H,|=q2>—1 for i=1,2, it follows that T<H, nH,. Let T={h) and
express h=h, (x)=h,(p). Consider h acting on the F -spaces U, and U.
The eigenvalues of h, («)are o, @on U, and o= %, &~ 2 on U, ; the eigenvalues
of hy(B) are p>~% f*~' on U, and =%, =" on U,. Thus g~ =p=2?"
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or f~224-1 and so p*4~3=1 or p>~*4=1. p has order g+1. Since
(g+1,3—4g)=1or7, (g+1,2g—3)=1 or 5, and g is a power of 2, we
conclude that g=4.

Now 0% =0+ 1. It is easily checked that 6% =0+ w, where w is a prim-
itive cube root of unity in F,. Also h, () acts linearly on the F, ¢c-spaces
U, and Uj'. From the action of R, on V;, we see that the eigenvalue of
hy(0) on U, is 6 or 6, the eigenvalue of h; (0) on U3* is 0~! or 6~ “ Trans-
forming (8.33) (i) by h,(0) shows that 6 and 0! are the correct values.
Since hy (0): &, (1)— i1, (w), we conclude that w=0. Setting y=1y, in (8.33)(i),
(ii), (iii), we find that z =0. Now h,(0~*) acts linearly on the F, ¢-spaces U,
and Uj'. From the action of R, on V,, we obtain the eigenvalues 6* or 6
on U, and 0° or =2 on U;'. As above the correct values can be seen to
be 6% and 0~ 3. Since h,(0~*): u,(1)>u,(x), we find that x=0. The bases
in (8.32) are now completely determined, and (8.15) and (8.16) follow.
Moreover, the arguments giving (8.20), (8.21), (8.22) and (8.23) carry over.

To complete the multiplication table of U, we define the function
f(a, B, y) as in (8.24). The relations (8.25), (8.26), (8.27), (8.28), (8.29), and
(8.30) remain valid and it remains to determine f(a«, 64,1) for feF,. In
(8.26) choose 4 so that A°>=p, and set p=A4" 2, This gives

S, 0B, 1)=Ff(Ba,6,1),
and so it suffices to compute f(p, 6, 1), where p® =04+9= 1. Now (w0)
is a primitive Sth root of unity in F,¢. Let x;= f((@86),6,1)for 0<i<4.
Setting o, o in (8.25) (ii) equal to 1, w 6; 1, (@ 0)?; and 1, (w 0)? respectively,
we obtain the equations

Xo+ X, + +wx; =(w0)*
Xo+@2xy+%, =(w0)>*+1 (8.34)
X +x, 402 x,=(00) +o.

Setting A=(w0)%, pu=(w06)> in (8.26) we have x,=f(w6,6,0 o’ +w)
which by (825)(i) and (8.27) becomes x,+®”x; +w?x,=0* Next
setting A=pu=w 6 in (8.26) we obtain

xo=f(l@ 0)%,0, (@ 0)*) = f((w 0)%,0,w* 0+1),

which again by (8.25) (i) and (8.27) becomes X, +®? X, +x,= w?6* We
now have the system of equations

Xo+ X, +wx, =(w0)*

Xo+ @2 x, +X, =(w0)*+1

Xo+ x40 x,=(00)’+w (8.35)
Xo+ @2 X, +o?x,=0*

Xo+ 07X, +  x,=0?f*
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The determinant of this system is non-zero, so there exists a unique set
of solutions. Since x,=x, =x,=x3=x,=0+1 is a set of solutions for
(8.35), we conclude that f(eo, 68, 1)=0p. Thus (8.31) holds and the
multiplication tables of U and B are determined.

We now complete the proof of (8 C). No restrictions are assumed on p
or |H|. We recall that s7=h,(—1) and s3=1. Let (hy(B))* =h,(x) hy(y)
for some x, yeF ;. Using (8.20) to evaluate both sides of this expression
on U, and Us, we find that f'~9=x?>¢ and B2~9=x"1)'~% Thus
B~ 24 _ y*~24 1f d=1, then x and y are determined from B, and indeed

hy(BY* =hy(B~") hy(B). (8.36)
If d=5 and { is a primitive Sth root of unity in F ., then y=pg{/,
x=ﬁ_l Ci(q—Z)

for some integer i. Since h, ({4~ %) h,({)=1, we see that (8.35) still holds.
Now let hy («)*>=h, (x) h, (y) for some x, yEF .. Using (8.20) on U, and U},
we find that o' =x"2y~! and a=2=x9"1)" so that a9~ 3=x9"3 ya-1,

The action of R, on ¥, shows that s, inverts U;*, and s, of course central-
izes Z(U;"). Usmg (8. 20) on U >' and Z(U;?), we obtain the additional rela-
tions o' =x"' y!' ~9 and a‘*"-—x”" These all imply that 29~ 3=x29-3,

As above, we obtain
hy ()2 =hy(a) hy(e™'79). (8.37)

We now determine the action of s, on U;'. We know that s, inverts
UZSl and centralizes Z (U“) Now R={(Z( U,), Z(U,)**) centralizes Us' by
(8.11). If p=2, then s,eR, and so s, centralizes Uj'. Thus we have

uy*(a, f)=uy (—a, p). By (4.4) h,(6~")s,eR, so s, and h, (6) then have
the same actlon on U3. By (8. 20) we again have u %(q, ,B)—uz —a, B).
Also s, normalizes U$}, U52 s and R =SU(3, 9). Smce theautomorphisms
of SU(3, q) with these properties are readily computed, we find that
uy (o, B)** > =u,(—a, B)**. Since R, acts on [U, U;] as Z, it follows
that u, (72 =u, (y9)*2. Now s, normahzes ug Uprsz and R$2=SL(2, ¢%).
Argumg as above, we find that v, (y)" % =u (y")"sz It now follows that
C((s;5,)*)=<U;, U,», and using (8.20) we conclude that (s, s,)*=1. We
have now computed the action of s, and s, on the subgroups U,, U,, U?,
Uz, U, U2, U2, U2 1t now follows from the (B, N)-properties that G
has a unique multiplication table. Since PSU(5, q) satisfies (6A)(c), we
have G2 PSU(S, q).

§ 9. Identification of G in the Case | W|=12
(9A) Suppose |W|=12 and (a) of (6E) holds. Then G= G, (q).
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Proof. Let T, = U2 U3 U* and T,=U;'* U™ Us'. By (6E) we have

the following:
T,z[U,, U, 1+1, T,2[U,, U,l+1

L,=PSLQ2,q),  L,~PSL(2,9).
In particular, |H| divides (g —1)%, H '=1,and

17

©9.1)

|G|=|H| q°(q* + ¢*+ 1)(g +1)*.

Suppose [Uf*, Uf*]=U;*** and [U;'%, Upl=Us2%. Then Up*™*=
[U,,, U], and since R, normalizes [U,, U, ], it follows that [U}**, Ul=
[Uss, Us2=Us £[U,, U, ST, by O1) which is a contradiction.
Choosing appropriate notation, we may assume

[Up=, Upl=1. 9.2)

Suppose [Us2, Uff]=1. If [U3, U]+ 1, then [U,, U*]+1 and
[Us2, U ]+1. Also Z(U,))=U0;'". Thus U3'*2 admits R, and indeed,
[Uss2, R,]=1 so in particular [Us's2, U;]=1, which is impossible. Thus
[Us, Us2]=[Us*, U, 1=[U,, Ui**]=1 and Ty <Z(U,). Since Z(U,))* U,
by (9.1), it follows that T, =Z(U). Thus R, normalizes T,. By (3G)
(U, UP1S T, N U U Ust 2 = U= Uyt Transforming this inclusion
by s, gives [U;, U2]1=Uf2* Uy Thus [U], Us]< U Since R, is
irreducibly represented on T;/Us'®, it must be the case that [U,, Uf*]=
Up2*, Interchanging the roles of the subscripts we have T,=Z(Uj,) and
[U,, Us*]=U;'*. In particular, [ (1), uy (1)) =u3%(9), where 6+ 0. Now
R, acts irreducibly on the F-space U, /T, and [Ug, U1=[U,, Ui*]=1.
Since H has two constituents on U, /T, which are conjugate under s,
this representation is of type (a) in the notation of (4.7). Suppose p=2.
Thus 1, (10 =u, (1) ug (D) ug?® (x) w3 = () ui? (2) for suitable x, y, z€F,.
Using the identity s, =u, (1) u*(1)u, (1), we calculate that

us (D)=ug (1) u3*(8) (mod UP*™ Up), 9.3)

so that § =0, which is impossible.

Continuing with the supposition [U**, U]=1 we may then
suppose p=+2. Since R, acts irreducibly on U, /T; and H has two constit-
uents on U, /T; which are conjugate under s;, R; on U, /T; is of type (a)
in the notation of (4.7). Thus R, =R,=SL(2,q). Now [U,, Ust*2]=1
and (1F) imply that [R,, R$**]=1. Let {j>=Z(R,). If R, nRy**2=1, 0r
if R, "Ry2=¢jy and H=R, R}%, then G has a Sylow 2-subgroup
which is a direct product or a central product of two generalized quater-
nion groups. By [11] this implies that je Z*(G) and so

[R,, JISR,NnZ*(6)= R,0{j>.
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Thus C(j)=<R,,R,, H)=G, which is impossible. We may then suppose
|[H:HN R, R%**|=2. As in the proof of (8 B), we can show that C(j)=
HR, R3'** by computing |C(j)n BsB| for all se N (mod H). Thus C(j)
satisfies the condition (*) of [9] so that G=G,(q). We may henceforth

assume that s rrs s o N
[UF?s, U] = U3, (o, Uy 1=Us, 9.4)

the second relation coming from the first one by transformation by s,.

The group U, normalizes [U;,, U; 1,s0 UP** £[U, , U, ] by (9.4). Now
[U2, U] U2 Uy by (3G) and U3'*<[U;,, U, ]. Thus

(U, Upl < Upe
Transforming this relation by s, gives [U;, U;**?]< U;*. Since
Upn U, U,J=1,
it follows that [U;, Us***]=1. This leads to the relations
LU, U3 =] =02, U] =0, U] =1. ©9.5)
It now follows from (9.5) and (1 F) that
[Ry, R3*#]=[R%, R31=[Ry**, R,]=1. 9.6)

Now Uj***and U;' arein [U,,, U, ] by (9.4). Since R, normalizes [U,, U, ],
it follows by (9.5) that R, normalizes T,. The representation of R, on
U,,/T, is of type (a) in the notation of (4.7) since H has two constituents
on U,,/T, which are conjugate under s,. Thus

[T.RIST,, [U,UJ£T,, R,=SL2q). 9.7)
The representation of R, on T,/Uf?*! is likewise of type (a). Since
[E, U=t e,
it follows by transforming this relation by s, that
(03¢ Ty = L=, 9.8)

Thus [U, U, 1=Z(U,)= U;*** by (9.2), (9.5), (9.8).
The group R, acts irreducibly on V,=U, /T,. By (9.6) Hn K, =2 H**

o e 1 .
so that |[HnK,| is divisible by 7(q—1) where d=(2,q—1). Since

[R,,HNnK,]=1 and HnK, is faithful on V,, the commuting algebra
E, of R, on V,, which is a finite field, contains the multiplicative subgroup
HnK,.Thus F,SE, and V, can be regarded as a vector space of dimen-
sion 2 over F, on which R, acts linearly and irreducibly. R, on ¥, then
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has the form I'” for some field automorphism p of F,, and

{uy (1), u? (1)} 9.9)

may be taken as a natural basis. There is then an automorphism 7, of
F, such that au,(8)=u;(«™ p) and au*(f)=us*(a™ p) for all o, feF,.

The group R, acts nontrivially on ¥} = U, /U;**:. Suppose g>2 and
V, is a proper minimal HR;-submodule of V. Since H has exactly 4
constituents on V] of order g, it follows that| V| =g, g% org>.If[V,, R, ] =1,
then | V| =q. Moreover, V, <T,. Otherwise there exists an element ve
of the form v=xx* t, where 1 +xeU, and teT;, and then [U,,x]<T,,
contrary to (9.7). The form of I'” and (9.9) show that H, is represented
faithfully and fixed-point freely on Uf? and on Uj*. Since [U**, H,]=1
and Vff=V,, it follows that Uf2 Us*2/Us'*<V,. But then V3'=V,
implies that V,=T,/U;**>, which is impossible. Thus [V,, R,]1=V, and
[Vol=g? or ¢*. If VonT;/Us**2%1, the argument just used shows that
T,/U**2 < V,. But (9.4) and V§' = V, would then imply that V,=V,, which
is impossible. Thus V,nT,/U;***=1 and V,(T;/Us**?)=V,. There is an
element vel, of the form xyz (mod U;**?), where xe U;t, yeUs*,
zeU?, and x#1. If z=1, then (9.4) implies that U;* and U, are in
(mod Uy**2). If V,><(U;Y, U,»/Us'*2, then V,nT;/Us**?#1, which is
impossible. If V,={Us', U,>/U;***, then R, normalizes (U;', U,). Since
C(KUs", Uy»)nU,, =T, R, then normalizes T;, which is impossible by
(94). Thus z+ 1. Replacing v by v=' v* for a suitable h in H,, we may
assume v has the form x z (mod U;**?). If there exists an h in H3' such that
x"+x, then 1#0v~ ! v"=x""! x"is in ¥, (mod U;**2), and as before, this is
impossible. Thus HR, is irreducible on V] if g>3. The same conclusion
holds in case q=3 if there exists an h in H inducing an outer diagonal
automorphism of R%*? and centralizing R, .

Suppose p+2 and R, =PSL(2,q). Then {(R,,R53**>=R, x R$*2. If
H<=<R,R*? then a Sylow 2-subgroup of G is the direct product of a
dihedral group and a generalized quaternion group. Let {(j)=Z(R,)**.
Then (j)<Z*(G) by [11], and so [R,, jJSR,nO(G)=1. Thus

C()2<R,R,, H)=G,

which is impossible. Thus |H:H n R, R$*?|=2 and |H|=(q— 1)* Since
(HnK,)n(HNK,)=1and P/K;~PSL(2, q) or PGL(2, q), it follows that
|[HAK,|=|HNK,|=q— 1. Moreover Hn K is cyclic and

H=HnK,)x(HnK,).

In particular there exists an he H such that h induces an outer diagonal
automorphism on R$*. If h induces an inner automorphism of R,, we
may replace h by hh, for suitable h,e H, and assume [R,, h]=1. By
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order considerations H = ( H,, H3**, h). But then no element of H induces
an outer diagonal automorphism on R;. This is a contradiction. Thus h
induces outer diagonal automorphisms on. R, and on R3*.

We may choose & so that its order is a power of 2. Let § be a Sylow
2-subgroup of HR, R§*™ containing h. Then S has the form <{h) PQ,
where P, Q are Sylow 2-subgroups of R; and R3'* respectively. We may
choose generators for P and Q so that

P=<{ab:a*"=b*=1, b~'ab=a"")
0=(c,d: "' =1, d*=c?,d " cd=c""),
h~‘ah=a~', h~'bh=ba, h ‘'ch=c™', h 'dh=dc

where n>1. Let i=a?" ", j=c?". Then Z(S)=i, j) and h*€ Z(S). Since
[S, S1=<a, c), it follows that {j} is characteristicin [S, S]and hencein S.
Thus distinct involutions in Z(S) are not fused in G. Since R, has exactly
one class of involutions, this implies j and i j cannot be fused to elements
other than themselves in PQ and P respectively. If je Z*(G), we obtain a
contradiction as before. Thus j¢ Z*(G), and there exists an involution 7
in S—PQ fused in G to j. The element ¢ must have the form ha®* ¢’ or
ha® be?, the latter occurring only if n=1. Transforming ¢ by a*"* and
42" ¢ ' whenn>1,orbyband bc*" ' whenn=1, we see that ¢, ti, i
are conjugate in S. Choose geG so that tf = j, C((1)f < S. Since Z(S)< Cy(1),
one of the involutions in Z(S) is fused by g to an element of PQ —(j>.
Thus #eP or (i jE€Pj, so that ti or tij is fused by g to an element of
PQ—{j>. Thus the same would hold for j, which is a contradiction.
Hence R, =~SL(2, q) when p=2. This situation occurred earlier in the
proof and it was shown that G=G,(q).

We may henceforth assume p=2. In particular, R, R’ $2=R, x R3}"**
and |H|=(g—1)>. Moreover, Cy(Us**)=H,; and Cg(U;'**)=H, U,
H3** acts regularly on Us'*2. As in the proof of (6 B) we find that

C(j))=R, U, 9.10)

1 %5,
for every involution j in Uj**%. Suppose g=2. Then D' =L U=, U
and D"=(U;', U,> are dihedral groups of order 8, [D',D"]=1 and
D'AD"=U;*. Thus U, is the central product of D’ and D". Uj, is also
the central product of the quaternion subgroups
Q' = ups (D u(l), uy (1) u3(Duy (1)),
Q" = <ug (1) uy (1), w3 (Dup= (1) uir(1)).

Every automorphism of U, either fixes Q' and Q", or interchanges @'
and Q". Now s, fixes Q' and Q”. Thus R, normalizes Q' and Q. If

[s1u,(1), Q"1=1,
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then [u, (1), u5 (1) u,(1)]€e Us*** and so [U;, U,] < T,, which is impossible
by (9.7). If [slul( )» @11, then [u, (1), ui?*(1) u3 (1) u,(1)] or

[y (1), up? (D) w3 (1) uy (1))

is in Us**. In either case, [U,, U,] £ T,, which is impossible. Thus R, is
faithful on Q", non-trivial and non-faithful on Q'. This determines the
structure of C(j) completely. By a theorem of Thomas [33], G=G,(2).

We may henceforth assume g=4, so that HR, is irreducible on V;.
Since HR, =R, x (HnK,), the elements of HN K, act as scalar multi-
plications on V,, so ¥; may be regarded as a vector space of dimension 4
over F, on which HR, and hence R, act linearly and irreducibly. We may
then assume R, on ¥ has the form (I' x I'’), where ¢ and t are field
automorphisms of F, and o#1. In particular, u,(x), by (@), and s, are
represented by

AN ol te £ 1

1 a o
a o—1
1 0 ol o ’ 1 ©.11)
1 o a 1

1 at-e 1

respectively. The set of lines %, , %,, %,, &, generated over F, by the
vectors in the corresponding basis are distinguished by the action of the
triple (H,, U,, s,). Since I' x I'" and I'? x I' are equivalent representations
of R,, we may assume that

{u,y (1), up(x), up?*'(x), u3'(1)} (mod U3'*) 9.12)

is a natural basis in ¥, for (9.11), where xeF,. Thus there are field auto-
morphisms t,, 7, of F, such that au,()=u,(x (a™ B), au?(Bx)=uP(x™fx),
auP (fx)=u?*!(a rzﬁx) aul(f)=u3 (@™ p) for all a, BeF,. The matrix
form of R, on ¥, and the matrlx form I'” of R, on V, give

1

[y (B), uy ()] = v (x fF 72 ™)
[uy (@), u, (B)] =@ p77°)

Thus x g7 "2 q* 2 = o f#* for all «, B F,, which implies that x=1, 77, =1,
and 1711, =p1,. Relabeling the elements of R, by 7,7, ' we then have
the relations

} (mod T;).

D [uy(B), uy ()] =u(@f) u ™ (o7 B u3' (@' *7 ) (mod U3'™),
() [up(B), uy ()] =u3 (" ) (mod U3'*), (9.13)
(i) [ (B), uy ()] =13 (@P).
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Equality holds in (iii) by (9.4). Transforming (ii), (iii) by s, implies

(1) [u2(B), uy ()] =u3 (@ P uz (@ f7),

(i) "4 (B), ()] =3 =@ ). 0-19

The following table gives the action of h;(x) and h,(f) on the root
subgroups. . 5381 51 s152

group u U= Ust U, U Us

h a2 oo™t a7 &'t a7 (9.15)
h,B) | B BT L B=* B Bt |
The entries other than those giving h,(8) on U;* and U;*** come from

(9.1) or the matrix forms of I'x I'” and I". The two exceptions come from
the relations s h,(B) s,=h,(f~") and (9.13) (iii). In particular,

hy (@) hy(a?)e C(U,)

and hence h,(2) hy(a*)e HN K,. The values of hy(a) h,(2*) on U? and
Us2*t are o> and o'~ respectively. Thus a??=q* for all xeF, and o is
the automorphism x— x2.

We can now complete the multiplication table of U. By (9.8) and
(9.13) (i) there exist functions f and g from F, xF,—F, such that

i) [uy(B), ug @] =u3(f (@ B)),
(i) [uy(B), uy (@] =u(@f) uf*(o? ) uz (o B uy (g (x, B).-

The commutator identities on [x y, z] and [x, yz], and (9.13), (9.14) imply
that

() fla+o,B+p)=[(p+ [, )+ fla )+ /(. F),
(i) gla+o, =g (@ B)+g(a, p)+ua’? f7+o'a® 7.
Transforming (9.16) (i) by hy(4) h, (1) gives

fQA 3 po, 2 p=2 B)=p"" f(&, B).

In particular, setting A=1, p=a~", we obtain f(a, By=a"' f(1,a*p),
and setting u=A> we obtain f(1, 2 A 3)=4"2 f(1,2*B). Now the
additive subgroup of F, generated by (Fq)3 is a subfield of F,, and con-
sequently is F, unless g — 4. Thus it follows from (9.17)(i) that if g > 4, then

flo B)=0ap(f(1,1)). (9.18)

If g=4, (9.18) remains valid. For let w be a primitive cube root of unity
in F,. Expanding f(o, ®)=f(1+’ 1+ and f(1, 1)=f(1, 0+

(9.16)

9.17)
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by (9.17)(i) and using the identity f(a, B)=o"' f(1,a*p), we find that
fl,o)=of(1,w)=w?f(1,1) so (9.18) does hold. The group R, is
irreducible on Uj' U;'*> and [Us'®?, U,]=[U5", U;*]=1. Since H has
two constituents on Us* Us'*> which are conjugate under s,, this repre-
sentation is of type (a) in the notation of (4.7). Hence

w3 (1), up ()] =u3*2(1)
and f(1,1)=1. Thus
[, (B), u3 (@] =u3 *(a f). 9.19)
Transforming (9.16) (ii) by h,(4) h,(u) gives
g P pa, 2 p 2 p)=p"" g, ).

In particular, setting u=42% we obtain g(o, A~'f)=4"?g(x f), and
setting A=v2, u=v>, we obtain g(v~'a, f)=v>g(a, B). Thus

glo, f)=0’ B2 g(1, 1). (9.20)

It follows from this and (9.17)(ii) that (a®o' 4o’ 2a)g(1, 1)=0 o'+ *at.
Since g =4 we can choose &' =1 andaqu so thato? + «#0.Thusg(l,1)=1
and gl p)=op. 9.21)

It is now clear that R, U, has a unique multiplication table, and that
Usts2=Z(U). By (9.10) the theorem of Thomas [33] applies, so G=G,(g).

(9B) Suppose |W|=12 and (b) of (6E) holds. Then G=>D,(q).
Proof. By (6 E) we have the following relations:

() [Us, UP]=[U;, Upl=1,

(i) [Up=, Upl=Up»,  [U,, Up=]=Up,

(i) [V, Up*]=[05, U] =[U5=, U] =1, )
(iv) U, U] = U,

In particular, [U,,, U, ]=U**'. Moreover, by (6E) V,=U, /U** is an
irreducible R,-module. We also have by (6E)

L,~PSL2,q), R,=SL(2,q%. 9.23)
In particular, |H| divides (¢* —1)(g— 1) and
IGl=IH|q"*(g>+ 1) (g+ 1) (g®*+q*+1).

It follows from (9.22) that Z(U,)=U;*U;** and thus R, normalizes
Ut U251, This action of R, is irreducible,and since H has twoconstituents
on Uz Us>% which are conjugate under s,, this representation is of
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type (a) in the notation of (4.7). In particular,

R,=SL(2,q). (9.24)
Suppose p+2. By (9.22) (iii) and (1 F) we have
[R,, R 1=[R3, R ]=[Ry* R ]=1. (9.25)

Let (j>=Z(R,). f R,nRP***=1, or if R, n RP*** ={j) and H < R, R{?*",
then G has a Sylow 2-subgroup which is the direct product or the central
product of two generalized quaternion groups. As in the proof of (9A)
this implies jeZ(G) which is impossible. Thus R, " R{**'={j) and
|H:HNR,R{?*|=2. As in the proof of (8§ B) we can show that

C(j)=HR,R{*

by computing C(j)nBsB for all se N (mod H). Thus C(j) satisfies
condition () of [9] and G=>D,(q).

We henceforth suppose p=2. In particular, R, R{***=R, x R{**' and
|H|=(q*>—1)(g—1). We noted earlier that Z(U, )=U;* U*** and

[0, U] =0

Thus Z(U)= U;>*. Moreover, H;?* acts regularly on Uf**, Cy(Uj**)=H,,
and Cy(U>*)=H, U. As in the proof of (8 B) we find that

C(j)=R,U,, (9.26)

for every involution je Uj*.

The group R, acts irreducibly on V,. Since [R,, HnK,]=1 and
Hn K, is faithful on V,, ¥, may be regarded as a vector space of dimen-
sion 8 over F, on which R, acts irreducibly. Thus R, on V, is necessarily
of type (b) in the notation of (4.7). An F -form I of the representation of
type (b) can be found in [9], § 1, and we shall refer to [9] for properties
of this matrix form. We may assume R, acts on V, as [, where o is a field
automorphism of F,. There exists an he H, such that if v is the second
vector in a natural basis for I?, then v, v" are the third and fourth
vectors respectively in this basis. In particular,

{uay (1), (%), u$H(x y), 3 (e y?), w3 *2(x), w2 y), 132 (x y?), up(1)}

may be taken as a natural basis for I, where x, yeF ;. Also R, is irre-
ducible on V; =U, /Uf>* U3'** Uy2. Since [R;, HNK,]=1 and HNK, is
faithful, ¥, may be regarded as a vector space of dimension 2 over F on
which R, acts irreducibly. Then R, on V; is necessarily of the form I,
where p is a field automorphism of F,. We may take as a natural basis

{uy (1), u3' (1)}
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As usual there are field automorphisms t,, 7,, 73 of F, such that 7, is
associated with U, and U2, 7, is associated with U;* and U;'*, and 1,
is associated with U, and Uj;'.

The definition of I; depends on the choice of an element 0€F; of
order ¢* — 1. Given ocqug, We may express o =&, + o, 0 +a, 07 for suitable
%y, 0y, 8, €F,. The matrix forms of I'” and Iy then give

[u, (@), uy (BT =u3' (@ f”™)

1 mod U2 Uy'*2 U?).
[y (B, up (@] =ug (x B (g2 +af ™ y+o3 ™ y? ))}( 7 U

Thus a = =x 7" 2(ag2+o]? y+0o3™ y?) for all aeF; and feF,. This
implies that x=1,pt,=1{ ' 7,,0 7,=1,and y =0. We relabel the elements
of R, by replacing u,(B) by u, (™ ). Let be the automorphism of F,

deﬁned by x—» x% The matrix form of I then gives the following relat1ons

(i) [ug*2(Bo), uz(“)]-“f(“ﬂo'*‘“ﬂo"’“ﬁo)
(i) (w5 *2(B, 0), uy ()] = u* (O a By + 6al$1+9aﬁl), 9.27)
(iii) [“Slsz(ﬁzgz)» u,(2)] =up(0*af, +9_2&ﬁ2 +§2&B2)

for By, By, B,€F, and a€F ;. Using the commutator identity on [xy, z]
we obtain

(i) [u3(B), ux(@)] = M‘I’(aﬁ+aﬁ+aﬂ)

9.28
(i) [ (B), s ()] =2 (2 f + 2+ B) ip-25)

the second relation coming from the first one by transformation by s, .
The same argument applied to the remaining relations given by the
matrix form of Iy’ gives

(i) [ (B). uy ()] =wy = @P + 3 ) up (B3 B+ T f+adp) up ™ (f (@ B)),
(i) [u,(B), uy ()] = us (e ) s (@@ B) ui (@ B) ui* (g (o, B) (9.29)

where f and g are functions from F; x F ; and F;; xF, into F,. Trans-
forming (9.29) (i) by s, shows that

flo, B)=apB+aBp+app. (9.30)
The following table gives the action of h;(x), h,(f) on selected root

subgroups.
S v, U, Ups

h(e) | o= o o~ ! (9.31)
h,(B) BBB B~ 1
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The entries other than that of h,(x) on U7?* come from the matrix
forms of I, and I', and from (9.25). The exception comes from (9.25) and
(9.28). Transforming (9.29) (ii) by h, () h,(u) gives

glp 2o, A2 upap)=2""g( p).
Setting u?=21, we obtain g, u=' f)=p"2 g(x, B). Setting A=pjij, we
obtain g(@au~" o, (uif)~" f)=(uaf)~" g(x, f). Since
pRAp=@EAE" YT and  (@° -1 g7 +g-1)=1,
it follows that g, p)=azapreg(l,1). 9.32)
The commutator identity on [x, yé], (9.28), (9.29) (i), and (9.30) then give

(N(@+o)+N(@)+N(@)) g(1, )=T(o'&d)+ T(xd'a’) (9.33)

where N and T are the norm and trace functions from F, into F,. If
q=4, we choose o' =1, and x€F, so that o?+a=0. Then (9.33) becomes
(@*+0)g(1, 1)=0®+a so that g(1,1)=1. If g=2, then Fy is the splitting
field over F, of each of the irreducible polynomials f'(x)=x>+x*+1
and f”(x)=x3+x+ 1. Let « be a primitive 7th root of unity in Fg and
set o' =a~!. Then a+a’'+0 and (9.33) becomes g(1, 1)=T(a®)+ T (o™ >).
Since the inverses of the roots of f'(x) are the roots of f”(x), it follows
that T («®)+T (2~ )= 1, so that g(1,1)=1. Thus

g(o, B)=a@Zp>. (9.34)

The group R, is irreducible on Z(U,) and [R,, H}'**]=1. Using
(9.31), we can see that H3'* induces a faithful group of operators of order
q—1on Z(U,)). Thus Z(U,,) can be regarded as a vector space of dimen-
sion 2 over F, on which R, acts irreducibly. We may assume R, on Z(Uj,)
has the form I'* for some field automorphism t of F,, and take as a natural

basis (1), (1)

Then there is a field automorphism 7, of F, such that acui*(f)=uy*(x® p)
and ouj?* (B)=uj**(x™ p) for all a, e F,. We obtain as usual the relation

[ui?(@), uy (B)]=up* (2 7).
If we transform this by s, and compare the two relations, we see that
17,=1and thus
[up(@), uy (B)]=uy** (a f). (9:35)

It is now clear that R, U, has a unique multiplication table. It follows
from (9.26) that the theorem of Thomas [34] applies, so G=>*D,(q).
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The groups G,(g) and *D,(q) have also been characterized by Tits
in unpublished work. Indeed his methods do not require that G be finite,
but it is assumed that G has a root data system in the sense of [37].

§ 10. Identification of G in the Case |W|=16
(10A) Suppose |W|=16. Then G=2F,(q).
Proof. By (6H) we have that

R,=SL(2,q) R,=Sz(q). (10.1)

In particular, |H|=(q —1)* and g=2", where n has the form n=2a+1,
a=0. We recall that in the definition of Sz(q), the automorphism 0 of F,
given by x—x2*"" plays an essential role. We note that

(1+07HQ2-0)=0—-0"")0=0-1)(O+1)=1

so in particular, all the factors are bijections. By (6 H) the following rela-
tions hold:

(i [G;, O+ =1,

(il [U,, Up=]=0;  [9,(U), Up]=1,
(i) [0, Upo]=@,Us™=),  [2,(Uy), Upn =1,  (102)
()  [U, Upns]=[U, U] =1,

) [(U,), U] =@ (UF™).

The relations (10.2) also imply the additional relations obtained by
transformation by elements of N=<(H,s,, s,. Finally we have by (6 H)

M) [U,, U,]=2(U,)

= (U3*=) U=t 0, (U *2) Up™ 2,(Ug),
i)  o@U,)=1,
(i) [@(U,), U, 1=, (Us***)=Z(U,)=Z(V).

It follows from (10.2) (iv) that R, normalizes T,=[U,,, U] U;**%,
and so R, acts on V,=U, /T,. Now R, is faithful on V¥, by (5D). Thus R,
is irreducible on V, by (4F). As [R,,HnK,]=1, |[HNnK,|=¢g—1, and
HnN K, is faithful on V,, it follows that ¥, may be regarded as a vector
space of dimension 4 over F, on which R, acts linearly. We may assume
R, on V, has the form A° where A is the natural representation of Sz(q)
discussed in §4, and o is a field automorphism of F,. We note that if
{v;,v,,v5,0,} is a natural basis for A° then the lines &, %,, %5, %,
spanned over F, by v, v,,0;,0, are distinguished by the action of the
triple (H,, U, , s,) when ¢>2. If g=2, , is the unique line in the under-

PR

(10.3)

16 Inventiones math., Vol 24
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lying space ¥~ of A° centralized by U, . The line &, is determined (mod %))
since <(#,, Z,>={¥(1—u) for ueU> Now v$2=uv,, vj?*=v,. Thus
v, +v, and v, can be distinguished since

(o, +0) (L —u):ue U <4, £5>

whereas (v$(1—u): ueU,>=<{¥%;, %,. With these remarks it follows
by (3G) and (10.2) that a natural basis in V) for A% has the form

{ug2(1), w5 "2 (x), @5 (x), u; (1)} (mod T3) (10.4)
where %2 (x)=u3*(x,0) Q,(U;'™), and xeF,. There are field auto-
morphisms T, , 7, of F, such that cui*(f)=uy (@™ f),

afty (B x)=uy2 (@ fx),  auy (fx)=u3 (2 Bx),
xu, (B)=u,(a"* p) for all a, BeF,. The matrix form of A% implies

[U3, U,]=U;5'*2 Uf? (mod T,). (10.5)
The relations (10.2) (ii) and (iii) imply that

[ . Sl] g Ulszsl Ql(UZSlSZSl) (]lszsrsz Ql(Uzswz) Ulsz_

Moreover (3G) and (10.5) imply that
[U231’ Uz]E Uiv;sz Ulsz (mod U]Sz sy Uzsmz s1 Ulsz S182 QI(U;ISZ))'

In particular, there exists a function f: F,—F, such that

g (@) w2 (f(@)e[Y,,, Uy,

for all xeF,. Since H, centralizes U;'*>®* by (10.2)(iv) and H, acts
regularly and faithfully on U$'** from the matrix form of A, it follows
that Us*= <[, , U] whenever q>2. If we set

sy
—J7528%1 S152 81 $28152 §152 S2
T, =Uss Ui U5 U Uy,

then T,<[U,, U, ] and @(U, )= Q,(UsH) T; Q,(U,) whenever g>2. In
particular, Q,(Us") T, 2,(U,) is characteristic in U wheever q>2. The
last conclusron holds when g=2. Indeed, if U"52<[ » ] then the
above argument applies. On the other hand, if Us2£[U;,, U, ], then
(10.5) implies

[ i ] <Ulszslg (Uslszsr) Uszslsz Q (USNZ) Ulsz, usrszsl(l 0) u5132(1,0)>'

Then U, /[U,,, U] has order 25, and Q,(Us") T, Q,(U,) is the inverse
image in o on (U N, ])

The quotlent group v, =U, /Q2,(Us") T, 2,(U,) has order ¢*> and R,
is faithful and irreducible on V by (5D). Thus R, is irreducible on V;.
Now [R,,HnK,]=1 and |HnK1|— —1. Smce Hn K, is faithful on
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V,, it follows that ¥, may be regarded as a vector space of dimension 2
over F, on which R, acts linearly. We may assume R, has the form I'"*
on V, where p is a field automorphism of F,, and take as a natural basis

for I'’ on V} B _
{u,(1), 75 (1)} (mod <15(Ul)). (10.6)

There is a field automorphism 75 of F, such that modulo ®(U,,) we have
the scalar action aii,(f)=i,(a"f), ocﬁ;‘(ﬂ) u5! (™ p) for all o, [ieF The
matrix forms of A° and I'” now give the following congruences

[y ), (o, BY] =85 (x 77 "2 o)

do(U.).
[, (o), 4, ()] =5 (a7° ) }m“’ (T

Thus ocy“”’—xy”"’zoc’”2 for all «,yeF,, and so x=1, o7,=1, and
pTy=17'1,. We now relabel the elements of R, by the field automor-

1

phism t, 17!, thereby replacing u,(x, ) by uz(oztztl , B ). The matrix
form of A° then gives the following:

(i) [@5=2(y), uy(e, Y] =uy*(@y),
(i) [ () uy(o f] =052 y) (@ 0+ B)7)
(i) [uy (), up(a, )]
=iy (o) iy 2 (B ) ug (2 +a f+ B°)7)
We may clearly rewrite (10.7) (i) as

[u5*2(y, 8), uy (o, B)] =up*(@?). (10.8)
We may also rewrite (10.7) (i) in the form

[u3(y, 0), u,(a, Bl =1 sz(aoﬂ);) uiz((al +6 +B) 7)
(mod Uf’ Si U251$z St UlSz 5152 QI(U;lSZ))-

(mod T,). (10.7)

Transforming this congruence by s, , we derive
[uzl (‘y, 5)) u2(“9 ﬁ)]
=1 w0+ 8) @) B U +B)y) (109)
(mod Q, (U$**) Uy Q.(Uz*)),

We have the following table giving the action of h,(x) and h,(f) on
the following root subgroups.

s2 T 7751 775152 JIS152S1
Ul Ul UZ 2 UZ U2

hy(a) | a2 o? o ottt otf (10.10)

ha(B) | B0 BT B B BT

16*
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The entries other than those of h,(x) on Uj**, Us**, U5 come from
(10.1) and the matrix forms of A and I'. The exceptions come from (10.8)
and (10.9). In particular h, () h,(x~*)e C(U,) and so h, («) h,(x~")e C(U,).
Thus hy (@) hy(a~")e C(R,) and HNK,={hy(@) hy(a™'): aeF,). In the
proof of (6H) it was proved that Cy(U,)n C,(U)=1 for independent
roots r, s. It follows that Hn K, is faithful on ®(U,,)/Z(U,,).

Consider R, acting on @(U,,)/Z(U,,). Since s, and u,(0,1) have
distinct actions on ®(U,,)/Z(U,,) by (10.2)(iii), R, is faithful and hence
by (4F) irreducible on &(U,))/Z(U,,). Now [R,, HnK,]=1 and HnK,
is faithful on @(U,,)/Z(U,,). Thus &(U,,)/Z(U,,) can be regarded as a
vector space of dimension 4 over F, on which R, acts linearly. We may
assume R, on @(U,,)/Z(U,,) has the form A" where 7 is a field automor-
phism of F,. As in the earlier discussion of R, on V,, we may make

{1320, 1), u3>**2(y), up* (v), u3'(0, 1)} (mod Z(U,))

as a natural basis for A%, where yeF,. There are then field automorphisms
14, Ts of F, such that 7, is associated with Q,(U;'*?) and Q,(U;"), and 15
is associated with U;2***2 and Uf**'. The matrix form of A® gives

[13H(0, 8), uy (o, BY] =S (O™ '™ oF ™) uf2 1 2(y 5% '™ B°™)
u3*2(0,0 (02 +a f+ ) ™) (mod Z(U,,)).

1

Comparing this with (10.9) we see that yo* *a"*=ad for all ¢, in F,.
Thus y=1, 77! 15 =11, =1. The matrix form of A° then gives

(1) [ug™=2(7) uy(e, B)]=u3'*2(0, ay),
(i) [u™ () uy(, B)]
=u*52(aly) usz“‘z(O, (*°+p) 7) (mod Z(Usl)), (10.11)
(i) [43'(0, 9), u, (e, B)]
=052 (0 8) w2 2B 6) ur (0, (120 + o« f+ B%) 8) (mod Z(U,,).
Now [“2(1’ ﬁ)3 uz(% 6)] =u2(0a a.y0+a6y), and [Uzy Uz] ‘_‘_Ql(Uz) if
q>2. If an element heH induces a multiplication by { on U,, it then
induces a multiplication by {**? on Q,(U,), this holding for ¢=2. Thus

(10.10) and (10.11) (iii) give the following table of the action of h,(x)
and h,(p).

QI(UZ) QI(U;l) Ql(Uzslsz) QI(UZSIHSI) Ulszsl Ulszslsz

hy(e) | a?*? a1« ot a”?® 1 (10.12)

hz(ﬁ) ﬁ1+8 ﬂ—l—{)‘l ﬁ1+9“ 1 B—O“ ﬁo"

In particular, (10.12) implies that H, "nH,=1so H=H H,.
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We may rewrite (10.11) (i) and (iii) in the form

(1) [us2*1(y), uy(e, )] -
= usiz s;sz(aﬂy) u521 31(0, (al +6 4 ﬁ) ‘)’) u321 szsl(O’ g(a’ B, '}’)),

(i) [u3(0, 8), u, (o, B)] (10.13)
=u';2 S)(aa) u-;n: sz(ﬁ 5) uszlsz(o’ (a2+0+aﬁ+ﬂ0) 5) u? 52 51(07 h(o, ﬁ’ 5))

where g and h are functions from F,xF xF,—F,. The commutator
identity on [x, yz] gives

(i) gla+o,aa®+B+p,7)=g( f,7)+8, f.7), (10.14)
(ii) h(a+o',aa®+ B+, 8)=h(x B, )+ ho, B, 8)+g(a, B, xd).

In particular, g (o, $, 7)=g(x, 0,7)+g(0, B, ) and
h(x, B, 0)=h(x, 0,08)+h(0, B, ).
Setting a=a', f=p in (10.14), we find that g(0, al*? y)=0,
h(0, a' +%,8)=g(a, B, 2d).

Since 140 is a bijection, it follows that g(0,,7)=0 for all §,yeF,.
Transforming (10.13) by h;, (1) h,(u) gives

g(Apo, 0,470 u= 0 9)=2""g(,0,7),
and h(Apa, 0,470 170" §)=2"" h(x,0, J). Setting u=4"", we obtain
g(0,0,297 " =0) =(10 "'~ g(2,0,7) and h(,0,2° " ~*8)=(2"""~*)" h(2,0,9).
Setting u=4"2 and p=4"" we obtain respectively
g(A'a,0,7)=A""g(®0,y) and h(1'~°0,0,8)=(""""*""h(x0.9).
Thus g(a, 0, y)=a3’ g(1,0, 1), h(0, B, §) =’ g(1,0, 1), and
h(a, 0,8)=a®+1 & h(1,0, 1).

If we transform (10.13)(ii) by s, and set x=0, we see that g(l, 0,1)=1.
Ths gl B ) =2t (10.15)

Choosing f='=0, =1 in (10.14) (ii) we obtain
(@o®+ala’) h(1,0, )=ao®+a’a.
If g>2, then it must be the case that h(1,0, 1)=1. Thus if g>2, then

ha, B,0)=at+' & +Bo°. (10.16)
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We can show (10.16) holds for g=2 as follows. R, acts on the elementary
2-group spanned by {u5°2°1(0, 1), u5(0, 1), u5*2(0, 1), wiz*1(1), uj>**2(1)}.
Relative to this basis s, and u,(1,0) are represented by

10000 10000
00100 x1110
01000/J [oot100 (10.17)
00001 10111
00010 00101

where x=1 if and only if (10.16) holds. Since s,u,(1, 0) has order 4, the
product of the above matrices has order 4. This is possible if and only
if x=1.

Consider the characteristic subgroup X, =9, (U;") T, Q,(U,) of U,,.
Now (10.1), (10.2), and (10.11) imply that

B(X,)=Q, (Us2%) U552 Q, (Us)

and [U,, X,]=U Uf?* @(X,). Thus R, acts on U U* @(X,)/P(X,).
Since s; and u, (1) have distinct actions, this representation of R, is faithful
and hence irreducible. Now (10.10) implies that h, (a) h, (x>~ *) centralizes
U, and hence R,. Thus Hn K, =<hy(@) hy(0*°~*): acF,». Also (10.12)
implies HN K, is faithful on Uf?*'. Thus we may assume R, acts as I'
on U2 Up*™ @(X,)/®(X,), where w is a field automorphism of F,, and
take as natural base
{w2(1), u*(1)} (mod ®(X,)).

There is a field automorphism 4 of F, such that cu*(f)=u?(a" f) and

oy *(f)=uz** (o ) for all o, B in F,. We then have the congruence
[u?(B), uy ()] =ui** («”* B) (mod P(X,).
Transforming by s, implies
[u(B), uy ()] = 2 * (27 B) uf? *1*2(a 2 ) (mod Q, (Us**2*1)). (10.18)

If we transform (10.18) by h,(y), we obtain (y°f)(y~ 2 a)* 6=y~ (Ba>)
for all o, B, yeF,. Thus y*“*=7?% and w1, =0.

We may rewrite (10.18) in the form
[u2(B), uy ()] = ui?* (o B) w2 *2(x f0) usr 2510, f(o, f))  (10.19)
where f is a function from F,xF,—F, . The commutator identity on

D Y ShOWS AC o v, )= S, )+ £ . (10.20)
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Transforming (10.19) by h, (1) h,(n) gives
fA2p 0 e, 22T B)=2"" fl(a, B).

Setting A=p~¢ '~ *, we obtain f(u’ ‘o, B)=(u" )" ** " f(2 p). and
setting A2=u~'7? "', we obtain f(x, 202 B)=(A-2)+"" f(a, B). Thus
f(a,ﬁ)z(aﬁ)”"”f(l. 1). Choosing f=1 in (10.20) we obtain

(ea’® '+ ") f(1,1)=0.
If ¢ > 2, it must be the case that f(1, 1)=0, whence
f(a, p)=0. (10.21)

We can show (10.21) holds for g =2 as follows. R, acts on the elementary
2-group spanned by {uj***(1), us 2510, 1), u3*2(0, 1), us (1), ui(1)}.
Relative to this basis s, and u, (1) are represented by

10000 10000
00100 01000
01000 |, 01100 |, (10.22)
00001 00010
00010 1x011

where x=0 if and only if (10.21) holds. Since s, u, (1) has order 3, the
product of the above matrices has order 3. This is possible if and only if
x=0. We note that the multiplication table of U, is now complete.

In order to determine [uS(y,d), u,(a, B)), it suffices to determine
[13:(7, 0), u, (e, 0)] since the previous calculations and the commutator
identities on [x y, z] and [x, yz] will then give the expansion for

[ (7, 0), uy (o, B)]
We may rewrite (10.9) in the form

[u;‘(Y’ O)a uz(da 0)]

oy O g (' £ ) ) (0 n ) (10.23)
cu(af*ty)

where #, m, n are functions from F, x K, =~ Transforming (10.23) by
hy(2) h, (1) gives

CApa, A" u 0 ) =271 y)
m(Apo, A7 y)=p" mi,7) (10.24)
Bk y):k#

1461

n(Apo, A=t pm n(,y).
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Setting A=p "', we obtain m(x, u' ~° " y)=(u' =% )" +® m(a, y) and

Clo pt =0 )= =02 ().

-1 1-0-1!

Setting A=p~ we obtain m(u o0, 7)=(""")**my) and
At ="t y)=(u' =0T+ £(o ). Thus m(e, y)=a*"y"*"m(1,1) and
(o, y)=a*1y°*2 £(1, 1). Transforming (10.23) by s, implies that

£(a, y)=n(y,a)+a®*'y0+2,

Thus n(x, 7)=a?*2y+1 n(1, 1) and #(1, 1)+ n(1, 1)=1. The commutator
identity on [x, yz] used for yz=u,(a, 0)u,(o, 0) and for

yz=u,(a+o,0)u,(0,an’®)
implies that
m(o+o, p)=m(o, y)+m(, y),

Cla+o,y)=C(a, 7)+£(, 7).
If we choose y=1, we find that (xa’®+o’o’) m(1, 1)=0 and
(xa’®+a'a®)£(1,1)=0.
If g>2, then m(1,1)=/(1,1)=0 and n(1,1)=1. If g=2, we can use the
identity [x?, y]=[x, y]* [x, y] with x=u$'(1,0), y=u,(1,0) to show that
m(1, 1)=0. Thus for g=2, we have
m(e, )=0. (10.25)

The values of #(1, 1) and n(1, 1) in case g=2 will not be determined at
this point. We have
£(,7)=0, n(ay)=a®+2y**1 if g>2

£, )=¢ n(l,1)=1+¢ if g=2 (10.26)

where ¢=0 or 1. The multiplication table of U, is now complete aside
from the ¢ in case g=2.
We now consider the commutator [u,(y), u,(a, f)]. We may rewrite
(10.7) (iii) in the form
[y (7). (o, BY] =85 (ory) 52 (B y) w2 (02 +0 + a B+ %) y) 52 (e (a, B, 7))
(mod [U,,, U, ). (1027
The commutator identity on [x, yz] implies that
ela+o,aad®+B+p,y)=ela, B,y)+e(, f,y)+a'a®’. (10.28)
In particular, e(a, §, y)=e(a,0,y)+e(0, B, y). Transforming (10.27) by

hy (A hy () gives e(Apa, A'+0pt+0B 2=2 =1=0"" )=]1"%¢(q, B,7). Set-
ting u=4""', we obtain e(x, f,A" 1+ " y)=(A"'*® "Pe(x, B,7). Setting
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u=A2%"*we obtain e(12°~ 30, 0,7)=(42°"2’*' e(«, 0, y) and
e(0, 217 B,y)=2"""e(0,B,7).

Thus e(x, 0, 7)=0’*' % e(1, 0, 1) and e(0, B, y)=By" e(0, 1, 1). If we choose
a=o'=f=f =y=1 in (10.28), we find that e(0, I, 1)=1. If we choose
B=p =0, y=1 in (10.28), we find that (xa’®+a’x') (1,0, I)=co'® +o’o’.
If g> 2, this implies that e(1,0, 1)=1. Thus

e(o, B, ) =01 7"+ B7". (10.29)
If g=2, we can show (10.29) remains valid as follows: R, acts on the
elementary 2-group spanned by {@5**(1), uy (1), u(1), 5 (1), u5 (1)}
(mod [U,, U,,]). Relative to this basis, s, and u,(1, 0) are represented by

the matrices of (10.17), where x=1 if and only if (10.29) holds. But we
showed that x=1 in (10.17) and thus (10.29) holds for g=2.

We may now rewrite (10.27) in the form

[y (). (o, BY] = 5 (o, 7 B, 7)) 152 (s (o, B, 7))
U (o 04 By, b, B, ) (0 B 7)) (10.30)
cuy =By, wio, B, 7)) (0 +af+ ) )

where r,s,t,v,w are functions from F, xF xF,—F,. The following

table gives the action of h, (1) h,(A~") and h,(4) hz(ql””ﬁ) on the relevant
subgroups.

v, QU U r s t v w

hy(A)hy(A~Y) | 1 1 JoTist g=0=t 397t g-1 87t g-ed
hl(i)hz(/l”_"’) )..29_3 /11—9 1 11—9 ,{e—z i_l 12—20 /1—1

Since (0~ '—1)(@+1)=—0"",(0"'—=1)(0+2)=—1, and
20-3)O+1)=1-0, (20-3)(0+2)=0-2,

(20—-3)20+3)=—1, and (1-0)0=60-2, (1-0)(O+1)=—1, we find
that

r(e, 0, p)=(ay)’*! r(1,0,1), r(0, B, N=py"*1r,1,1)

(e, 0, p)=0a+27%+1 5(1,0, 1), s(0, B,7)=py"*"'s(0, 1, 1)

(o, 0, 7) =020+ 3042 1(1,0,1), 10, B, 7)=F+17*+2£(0,1,1) (10.31)
v(e, 0,7)=0a20+2y**1 p(1,0,1),  v(0,8,7)=p>y"*"v(0,1,1)

W, 0,9) =02+ 330+ 1w (1,0,1),  w(0, B, 7)=F+1 1+ w(O0, 1, 1).

We shall determine these functions in the order r, s, v, w, t.



230 P. Fong and G. M. Seitz

The commutator identity on [x, yz] with

yz=u,(a, B) u, (&, B)=uy(a+o', xa’®+p+p)
gives
ra+o, oo O+ B+p,7)=r( B, y)+r@, B, y)+o' e’y 0. (10.32)

In particular, r(a, 8,7)=r(x,0,7)+7(0, f,y). Choosing 1 = a=o' ===y
in (10.32) we find that r(0, I, 1)=1. Choosing f=p'=0, y=1 in (10.32)
we find that (ao’®+0’o’) r(1,0,1)=aa’®+o’a’. If g>2, this implies that

r(1,0,1)=1, and thus
r(o, B, )=+ + ). (10.33)

We can show that (10.33) remains valid for g=2 as follows. s, u;(1) is an
element of order 3, and (s, u; (1))*: u,(1,0)— 5 (1, x + 1) u,(1, 0) (mod T7),
where x =1 if and only if (10.33) holds. On the other hand,

u (1)s;: u,(1,0)—us(1,0)u,(1, x+1) (mod T;).

Thus x=1 and (10.33) holds for g=2.
The commutator identity on [x, yz] shows that

sla+a,ad®+B+p.7)
=50 1)+ B+ b pypet. 103

In particular, s(a, 8, 7)=s(a, 0,7)+s(0, B, )+ af7?+1. Choosing
a:a’:/j:ﬂ’:’y:l

in (10.34), we find that s(0, 1, 1)=1. Choosing f=f'=0, y=1 in (10.34),
we find that (o’ +02a’%) s(1,0, 1) =o' 2 +a?o’. If g>2, this implies
that s(1,0, 1)=1 and thus

s(a, B,7)=(" "2+ +a )y’ (1035)
We can show (10.35) holds for g=2 exactly as before. Indeed
(syuy (1)%: uy(1, 0)—u3' (1, 0) w2 (x)us*2*1(0, t(1, 1, 1))
w2 (v(1, 1, D) w2 (1, w(l, 1, D) upr(1) u,(1,0),
where x=1 if and only if (10.35) holds. On the other hand,

uy (1) sy u,(1,0) > uy(1, 0) ug(x) ug *2(0, £(1, 1, 1)) wi**2(u(1, 1, 1))
. u-;lSZSl(l, w(l, 1’ 1)) uizsl(l)uszl(l’o).

After rearranging the elements in the last expansion in proper order, we
find that x=1. Thus (10.35) holds for g=2.
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We shall not compute the functions v, w, t explicitly when g>2. Tt
will suffice to show they are uniquely determined. The commutator
identity on [x, yz] implies relations of the form

v(at+o, a0’ +B+BL y)=v(x B, y)+o, B 7)+ v o, B, B 7)
wiato', e+ B+, ) =wle B, ) +w, B 7)+wola o', B, f7) (10.36)
ta+o,oa®+B+p,y) =t B, )+, B, 1)+ ol o, B, B, 7).
Here v, is an explicit function computable from the commutator identi-

ties; w, can be computed once v is known; and ¢, can be computed once v
and w are known. In particular,

v(a, B, y)=0v(a, 0, )+ 0(0, B, y)+1,(, 0,0, B, 7).

Choosing a=a'=p='=y=1 in (10.36), we see that v(0, 1, 1) is deter-
mined. Choosing f=p'=0, y=1 in (10.36) we find an equation for
v(1, 0, 1) with a coefficient of the form (22a' % +a? o’ 2%). If g>2, we can
solve for v(1,0, 1) and thus determine v(a, 8, ). The arguments for w
and t are similar. The relevant coefficients in these cases are of the form
a2 4+02%3 If g>2, we can determine w(a, f,7) and t(x, B, 7).
Thus U has a uniquely determined multiplication table for > 2.

Suppose g=2. For notational convenience we set

x,=uy (1), xy=ui?*(1), xg=u"%2(1), x,=u(l),

(10.37)
X,=u3(1,0), x,=uy=%(1,0), xe=ul(1,0), xg=u,(1,0).

It remains to determine [x,, xq] and &, since [x,, x3] can be determined
by the identity [x, y?]=[x, y] [x, y]*. Thus far we have the identity
[k Xs]=%5" %5 2,727 2T 062 * %5 (10.38)

where p, o, 7 are 0 or 1. We proceed as follows: s, x, is an element of
order 3. It can be checked that

5 2 . =1 -1 1+2p 0o (21 -1
(8;x1)%: Xg~ = X5 X3X4 P XX x,Xg

. -1 -1 1+214+2e+20 0 L 2p+20+2¢ -1
(x;81): xXg —X5 X3Xy x5 X¢g X7 Xg .

Thus
p+o+1t+6=0 (mod 2). (10.39)
x; has order 2. It can be checked that the following holds:
x2: xgz! _)xia'+2rx§1.

Thus by (10.39) we have
o=1, p=2¢&. (1040)
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Finally s, x4 has order 4. It can be checked that if o =t =0, then (s, %)
X, Xg— X5 ' x4 x3° x2 x4, Which is impossible. If g =7 =1, then

(55 xg)*: x5 Xg—» %4 X5 %3P X5
Thus
o=1=1, p=¢=0, (10.41)

and the multiplication table of U is completely determined.

We can now complete the proof of (10A). Let h3(B)=h, (x)h,(y),
where x, yeF,. Using (10.10) and (10.12) to evaluate both sides of this
expression on U, and @, (U3*2*), we find that =% =xy, p*** ' =x""1.

Thus .
hg(B)=hy (B~ 7% ") hy(B). (10.42)
Now let h$2(x)=h, (x) h, (y), where x, yeF,. Evaluating both sides of the
expression on U;***> and Uj', we find that «™°= Y7 and of 1=
~1,,-6-1
x~"y™" . Thus B2 (@) = hy (o) by (2 2). (10.43)

We label the root subgroups by
Ul’ U2’ U‘lsz:7 U;‘a (]15251’ Uzslsz’ Ulszslsz, Uzslslsl’
U]sn, Uzsz’ Ulsl Sz, U;z sn’ Ulsl S2 Sl’ Uzszs;sz’ Ulsl 5251 sz, U252 S1852 sl'

Since [s,, R3**]=[s,, R§***]=1, it follows that the action of 5, and s,
on these root subgroups is completely determined. Moreover, C((s, 5,)°)
>{U,, U,). Using (10.10) we see that (s, s,)® = L. It now follows from the
(B, N)-properties that G has a unique multiplication table. Since F,(q)
satisfies (10A), we have that G=?F,(q).

§ 11. Some Consequences

We prove two results in this section. The first of these is the following
extension of Theorem A to a group with a Tits system of rank n=2.

Theorem C. Let G be a finite group with a Tits system (B, N) of rank
n=2 satisfying (x). Let Go=U®, By=BN G, and Z= ) B. If the Weyl
geGo
group W=N/H of G is indecomposable, then G,/Z is isomorphic to a
Chevalley group of normal or twisted type. In particular, if G is simple,
then G is isomorphic to a Chevalley group of normal or twisted type.

We first establish several lemmas. We may assume that n=3 by
Theorem A, and that G=G,, Z=1, U=F(B), and (B, N) is saturated by
(1A), (1B), (1C), and (1 D). It should be noted at this point that the Weyl
group of a Tits system is unchanged by the successive reductions (1 A),
(1B), (1C), (1D). Moreover, if K= ﬂ Bt, then it easily follows that

geG
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K Gy=Z so that Go K/K~G/Z. Set P;=(B,s;,s,», K;;= () B and

geP,,
L,;=U" K;/K; for i+, i,jell,. . Then (B, <H, s;,s;») is a Tits
system of P; J of rank 2. This system satlsﬁes (*) and has Weyl group iso-
morphic to W,;={s;, s;,» H/H. The structure of L;; is then known by

Theorem A.

(11A) W=N/H is isomorphic to a finite reflection group corresponding
to a root system A of type A,, B,, D,, E¢, E;, Eg, 0r F,.

Proof. This is immediate from [3].

(11B) Let U,=U N B,,, U7 =UNB,, and U;=U N B;. The following
hold:

(a) There is a prime p such that U =0,(B).

b) If W, is non-abelian and we W;, then

UK,;nU* K;=(UnU" K.
(© U,aU,U=U, U,U,nU;=UnH=1fori=1,....n

Proof. (11A) implies that any two distinct integers from {1, . }
are connected by a sequence of integers from {1, ..., n} such that
non-abelian whenever i, j are consecutive terms of the sequence. Applymg
Theorem A to LU, we see that UK, ;/K;; is a p-group for some prime p
depending on i, j. Since UnK <B NnB,=UnH and UnK;=
B;n B, <Ur\H it follows that |U;: Ur\Hl and |U;:UnH| are powers
of p- Hence there exists a prime p such that |U Un H | is a power of p for
1<i<n.By(1E)there is a sequence iy, i,, ..., i of integers from {1, ..., n}
such that

B=B; B Bj**'...=HU, U U=* ...

Thus |B:H|= nlB :H| so that |U:UnH|= HlUI.J:Ur\HI and
j=1 i=1
|U: U~ H|is a power of p. In particular, 0, (U)< H. LetgeG and express
g~ '=bnb’, where b,b'eB and neN. "Then 0, (UF '=0,(U\"'=
OP,(U)"”'gH"”'gH”'§B and so O, (U)<B-: Thus o, (U)<ﬂBg=1.
Since U = F(B), (a) then holds. geG
Letwe W,;. Wehave UK} NnU"K;;<BnB"=B, =U,H=(UnU")H
by 3A). Since U U*< UK nU‘”KU, it follows that UK ;N UY K=
(UnU")(HANUK,; nUWK”) The structure of L; nmphes that
HNUK,; <K1and (b) follows.
(3A)(c) implies U=U, U and U,nU=UnH for i=1,...,n Also
UnHZK;;since UK, mHK by the structure of L;;. But UnK;;
=0,(K;) and UmK <UmUS*-—U Thus UnH=U,nK;; so that
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UnH=Ufori=1,...,n.But UnH=0,(H)=N as well. Thus
N{UNH)2{U,N>=G and UnH=1.

In particular, U, =U n U, K;;. Since U; K;;=(Un U™ K;;=2U K;; by (b)
and the structure of L;j, we then have U Un U, K;;=U and (c) holds.
This completes the proof of (11B).

Let i,je{l, ..., n}, i=}, let 4;; be the set of all roots in 4 which are
linear combinations of v, and r;, and let U;;=(U;: red;;and r>0). If W;
is non-abelian, let w;; H be an element Wthh asa word in s;H and s; H
has greatest length.

(11C) If W, is non-abelian, then the following hold :
@ U,,= U NnK;=2U

==

(b) U, 1s a subgroup of U, U;; U, =U, and U;n U, =1.
(©) Un Uvas =0, U,

Proof. The structure of L;; implies that U, <K;;, and since U K;;=
0,(K;)sUnU” for we W, it follows that U =UnK; and (a) then
holds (b) holds since U=U,, U, U, n U‘,—l and U,..=U; by
(3C)(a). Finally the structure of L;; lmphes ‘that U K;=U,(Un Uwe S') i
and U, K;jn(UnU""*)K;;. Smce U=U, U by (11 B)(c) and U=
Un UW'JS' by (3C)(a), we then have U n U»is = U(UnU"n U, K=
U(UnK;). But UnK;; =0,(K;) is contained in Un U™ Thus (c)
holds. ’

(11D) If W,; is abelian, then [U;, Ul=1.

Proof. Since U;=U; U and U;=U, =, it follows that [U;, U;]=
U,nU; nU;. But W is abelian and so U;=UU; by (3 c)(a) Thus
[U,,U] U, mU nUU_I

We note that (11 C) and (11 D) imply the following: Let r and s be
roots in 4,;. If W,; is non-abelian, then the commutator relation [U,, U]
isdetermined by [U,, U;](mod K;))in L;;. If W;;is abelian, then [U,, Us] =1.

(11E) There exists a power q of p and an ordering of the fundamental
reflections s, ..., s, such that one of the following holds:

(a) U, is elementary abelian of order q for 1<i=<n.

(b) U, is elementary abelian of order q* and U, is elementary abelian
of order q for i>1.

(c) U, is elementary abelian of order V/q and U, is elementary abelian
of order q for i>1.

(d) U, is non-abelian of order ]/53 and U, is elementary of order q for
i>1.

(e) U, U, are elementary abelian of order g, and U,, Uy are elementary
abelian of order g*.
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In cases (b), (c), (d) the Weyl group W is of type B, and in case (¢) W is
of type Fy.

Proof. By (11 A) Wisof type A,, B,, D,., E¢, E;, Eg,or F,. We order the
reflections as in the diagrams below

A 1 2 -1 n
g &——2° o——0
B 1 2 —1 n
i G—————0 - o—— o
n
D 1 2 n—Z/O
n --~a/\o
n—1
6
E6 (l; 2 3I 4 S
7
E, 1 2 3 4I 5 6
8,
1 2 3 4 5 6 jré
By — 3 7
4 1 2 3

IS

Note that given i>1 there exists a unique j<i such that Wj; is non-
abelian. Moreover, such a Wj; is dihedral of order 6 except in types B,
and F, where W,, is dihedral of order 8.

Suppose W is of type A,, D,, E¢, E,, or Eg. If W, is non-abelian, then
Theorem A implies L;;= PSL(3, q) for some power q of p, so in particular,

U, and U; are elementary abelian of order g. Since any two distinct
integers in {1, ..., n} are connected by a sequence of integers iy, iy, ..., i
from {1, ...,n} such that W, ; is non-abelian for 1<j<k—1, we see
that (a) holds

Suppose W is of type B,. The above argument shows there is a power q
of p such that U, is elementary abelian of order q for i> 1. By Theorem A
L,,=PSp(4,q,), PSU@4, g,), or PSU(5, q,) for some power g, of p. Since
|U,| =g, we see that (a) holds if L,, = PSp(4, g,), (b) or (c) hold if L,,=
PSU(4, q,), and (d) holds if L, , = PSU(5, 4o)-

Finally, suppose W is of type F,. As above there exist powers q
and q" of p such that U, U, are elementary abelian of order ¢’, and U,,
U, are elementary abelian of order q”. By Theorem A L,,=~PSp(4, q,)
or PSU (4, g,) for some power g, of p, and so (a) or (€) holds. This completes
the proof of (11 E).

The following are consequences of (2D) and the proof of (11E). If
W,; is non-abelian, then L;;=PSL(3, q), PSp(4, q), or PSU(S, q) for some

ij=

power q of p, the first case occurring whenever {i, j} {1, 2}. If W; is

j+1
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abelian, then Ll ~R;K;/K;;xR;K;;/K;;, where R; K ;/K;;= PSL(2, g;) or
PSU(3, q;), /KU:PSL(Z q,) or PSU(3, q;), and g;, g; are powers
of p. HereR (U Us.

Each of the cases of (11F) corresponds to a Chevalley group G.
Indeed, if (a) holds, then W is of type A4,, B,, D,, Eq, E,, Eg, or F,. We
take respectively the Chevalley group of normal type A4,(q), B,(q) or
Cn(q_)’ D”(q), E6 (q)’ E7 (q)s Es(‘])’ or F4(q) The ChOiCC Of Bn(q) or C..(Q)
for G when W is of type B, is decided as follows: for p=2 B, (q)= C,(q);
for p#+2 we choose B,(q) or C,(q) according as [U,, Uy*]=1 or
[U,, U] =1. Since L, =PSp(4, q) ‘and n=3, one and only one of these
commutators is trivial so that the choice is unambiguous. If (b), (c), (d),
or (e) holds, we take respectively the Chevalley group of twisted type
2D, 1 (@), Ay (@), 245, (q7), OF 2E(g?)

The Chevalley group G has a Tits system of rank n satlsfymg (*).
Applying the previous notation and results to G, we may defin€ sub-
groups U, K and the section L We assume the root systems used in
the indexing of G and G are the same By the choice of G there exists for
each unordered pair i, je{l, ..., n}, i+ j, an isomorphism 09 of LU onto

;; mapping U K;;/K;;onto U K i/K;; for all re4;;. Since U,_ UK, /K
and U=UK, /KU, OU then 1nduces an 1som0rphlsm 09 of U, onto U

Now 4; r\Ak,—ﬂ if {i,j}n{k,¢}=0 and AUnAM—{%-r} if
{i,ji}n ik, ¢ } ={i}. We shall show by induction that the isomorphism 6”
can be chosen so that

09=6% and 07 =0%, (11.1)
whenever i, j, ke{l, ..., n}, i+j, i+k. Since (11.1) certainly holds for
i, j, k<2, we may suppose by induction that the " for i, j<d—1 have
been chosen so that (11.1) holds for all i, j, k<d— 1. We shall change the
0 for 1<i<d—1so that(11.1) holds when i=d or k=d.

There is a unique positive integer ¢ <d such that W, is non-abelian.
In fact W,, is dihedral of order 6, L ,~L_,~PSL(3, q), and R, ~R ~
SL(2, q) since d=3. For the same reason there exists a positive integer
b+c, 1=b<d—1, such that W, is non-abelian. By induction (11.1)
holds fori=c, k=b,and 1 <j<d—1. Hence (11.1) will hold fori=c, k=d,
and 1<j<d if it holds for the special case i=c, j=b, k=d. We shall
choose 0¢ so that this is so. Isomorphisms ¢ and @ in the diagram
below may be defined by

7: xK,,—»xK,, and ¢: xK_—xK,,

since R,nK,,=R, mK,,c—l and R.nK_,=R.n K, =1 by the structure
of L,;~L, and L,.~L, . In partlcular we have the following (not
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necessarily commutative) diagram:

ﬁc Ebc/Ebt — Rc Kbc/Kbc

ﬁ'Ecd/Ecda—Cd’R'K d/ch'

The composition 8¢ (6*°)~* @~ " is then an automorphism of R,K, /K,
fixing U.K,,/K, and U’ K_,/K_,. The structure of PSL(3, q) implies
that such an automorphism extends to an automorphism A of L_,, where
A is the product of a diagonal automorphism and a field automorphism.
In particular, 2 fixes U, K, ,/K,, for all re4,,. Replacing 6 by 2~1 0,
we see that (11.1) holds in this special case.

Ifi%cand 1<i<d—1, then W, is abelian
LidzR'Kid/KidXRd id/Kid’

and 0'?=(0"y x (0"?)’, where the factors are respectively isomorphisms of
R,K, /K, onto R, K,,/K;, and of R,K,/K,, onto R,K,,/K,;,. We may
change (0“’) so that (11.1) holds whenever i*c, k=d. Finally we may
change (6’%)” for j#c and 1<j<d—1 so that (11.1) holds whenever
i=d, k=c. Then (11.1) holds for all possible cases of i, j, k<d.

We can now complete the proof of Theorem C. We first claim that G
and G satisfy the hypothesis of [ 7], Theorem 1.4. Indeed, this is immediate
once the following has been shown: let s, t be independent roots in 4,
and let re 4 be expressible in the form r=i"s+j't with i, j=0. Then

U=,

It suffices to check this in the groups PSL(3, q), PSp(4, q), PSU(4, q),
and PSU(5, q). Since the case PSL(3, g) is obvious, it will be enough to
show

i,j=20and is+jt=r).

|s+]l

U2<(U,, U, Uy and Ust={U,, U2, Us') (11.2)
in the remaining cases. The roots in PSp (4, g) may be labeled so that

[z (y), uy (x)] =15 2xy),
[u, (1), uy ()] =u (xy) u3 (x* ).

If p=2, then (11.2) holds. If p=2, then R, and R, act non-trivially on
U,/U* and U, /U5 respectively, so that [U, Uz] Us' (mod U;?) and
[Ul, U,1=U (mod U;'),whence (11.2) holds. In PSU(5 q) (11.2) holds
by (6 A)(c), (8 15), and (8.33). With suitable labeling in PSU (4, q), we may
assume by (6 A)(b) that [U,, U;']=U;>. Moreover, R, acts non-trivially
on U, /U so that [U,, U,] = Us* (mod U;?). Thus (11.2) holds in PSU (4, g).

17 Inventiones math , Vol. 24
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Let G* and G* be the central extensions of G and G respectively
given by [7], Theorem 1.4, and let

¢: G*>G, §:G*—>G

be the corresponding epimorphisms. Since Z(G)=1, Z (G)=1, it follows
that kero=2Z(G*), ker = Z(G*). Thus G=G is implied by G*~G*.
But G* and G* are generated respectively by subgroups U* and U*,
where rel ] 4;;. By the remark following (11D) the defining relations

LJ
are the commutator relations on these root subgroups obtained from the
L. Since the 0% have been chosen so that these generators and relations
are isomorphic, it follows that G*=~G*. This completes the proof of
Theorem C.
The final result is a variant of Theorem A, where the hypothesis
that U is nilpotent is replaced by a condition related to the splitting of U,
U,,and U,.

Theorem D. Let G be a finite group with a saturated Tits system (B, N)
of rank 2 such that B has a normal subgroup U satisfying B= HU,HNU=1,
and U, =UnU* U fori=1,2.Let Go= USB,=BnG,,and Z= () Bf.

geGo

If the Weyl group W=N/H of G is indecomposable, then Go/Z is a Chevalley
group of normal or twisted type.

Proof. It will suffice by Theorem A to show that U is nilpotent. We
may assume that G=G,, Z=1, and | W] =8, 12, or 16 as well. Let we W.
By (1 E) one of the factorizations

B; =B, By BP* ..., B,=B,B’By" ...
holds. We claim the corresponding factorization
u; =003 U ..., U =0,07205...
also holds. Indeed, B,,=HU,, for w'e W, do in particular,
HU; =HU, Us* U>*t ... or HUS =HU, U ;' ...
holds. The claim will follow from Hn U =1 once we show
U; 20, U3 U ... ot Uy 20, U2 U™ -

Since U; =Un B, this is equivalent to showing U2U, U;' s
or U2U, U2 U2 ... Now U,=UnB,sUnB,, =0, =UnU" and
so U3 <U, <U. Similarly U, U><U. Next, U= UnB3:<UnB,=U,
and so U2, U?** < U. Similarly Uy, Us'2< U. Continuing in this way,
we have the desired inclusions and the claim. Consequently (3G) applies
to G since its proof remains valid. In particular, U, and U, are subnormal
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in U. Moreover, we have the factorization U =U, U;* Up?*' ... Uy' %%,
Thus U is nilpotent if we show U, and U, are p-groups for some prime p.

Now G,=HU,u HU;s;U; is a subgroup of G by (1G). Moreover, G;
is 2-transitive on the cosets of HUj, and U, is transitive on the cosets of
HU, different from HU,. Since UnU*<U,nBnB*sUnH=1, U acts
regularly on these cosets. By [14] Theorem 1.1 U is either a p-group for
some prime p or a Frobenius complement. In either case there is a prime
p; such that O, (U;)=1 for i=1,2. Since U, is subnormal in U, we have
0,(U)=0,(U).

Let p=p, and let C, be the kernel of G, acting by transformation on
U,,/0,(U,). Since [0,(U;), U;1=0,(U)n U =0,(U)), it follows that
0,(U)=C;. Let T = () B%. Then G,/T, is faithfully represented as a

eGy
2-transitive group on %che cosets of B, in G,, and since U; nU' =1, we

have T, <0,(U,) T;. Thus T,<C, ,=G,, C, T)/T; is a transitive sub-
group of G,/T,, and C, T, B,=C, B;=G,. In particular, C;s;,=C;b
for some be B,. Suppose g=+p is a prime divisor of |U,|. Then

1< U3 0,(U,)/0,(U,)S U, /0,(U,).

Now (3G) implies that b and hence s, normalize Us' O,(U; )/0,(U;,). If
X,=[]U,, where U, U, , U,+U,, U+ U3, then Uy' X, 2V, by 3G).

r= “sp’

But then U,=Uj' X, 0,(U;), and in particular, 1+0°(U,)SU' X,
which is impossible. Thus p is the unique prime divisor of |U,|. Inter-
changing the roles of U, and U,, we see that U, is also a p-group. This
completes the proof of Theorem D.

Paul Fong Gary M. Seitz
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Concordance and Bordism of Line Fields*

Ulrich Koschorke (New Brunswick)

Introduction

Let & be a line bundle over a smooth, compact n-dimensional mani-
fold M, and assume that an injective vector bundle homomorphism
j: E|éM— TM|0M represents & as a line field, 1.e., a subline bundle of
the tangent bundle TM, along the boundary M of M. One purpose of
this paper is to establish some sort of “ultimate Poincare-Hopf theorem”,
that is, to relate the behavior of a (singular) extension v: {— TM of j
around its isolated zeroes to the global topology of M, ¢ and j.

In § 1 we introduce invariants € Z, (for the case when n is odd and ¢
is nontrivial) and f€Z (otherwise), which both depend only on M, £ and
the regular homotopy class of j. For the isolated zeroes of any extension v
of j over all of M we can define an index, and the sum of these indices
equals 0, resp. @: also when M is connected, then j admits an extension v
without zeroes if and only if 6, resp. 0, vanishes. Furthermore, if n is
even (or & is trivial), we have aninvariant f which measures how far j is
from being everywhere tangential to M; and we give an identity (in
Proposition 1.3) relating § to the difference between 0 and the Euler
number y(M). Our methods are rather geometric and do not directly
involve standard obstruction theory; however, we indicate the connection
with the latter in Remark 1.9.

When we restrict our attention to closed manifolds, the identity
mentioned above leads to certain relations among the Stiefel-Whitney
numbers of & and M (see Remarks 2.3 and 2.9). Using Wu’s formulas, we
explore such relations somewhat more systematically, and in several
cases we can considerably simplify the invariants relevant to existence
and concordance questions for vector bundle imbeddings j: {— TM.
As a result, the answers often do not depend fully on M, £ and j, but only
on the bordism class of (M, &), or on M or its dimension n. E.g., if M is
connected, then ¢ occurs as a line field over M if and only if 0=y (M)=0
(when n is even), resp. the Stiefel-Whitney number O=w(é)"'w(M)[M]
vanishes (when it is odd), see Theorem 2.1. As a consequence, if n=1(4)
and w, (M)*=w,_, (M)=0, then every line bundle over M embeds into
TM (Proposition 2.16). Also, the orientation bundle Ey=A"TM of M
embeds always when n is odd (Theorem 3.1). Furthermore, for odd n, any

* Partially supported by: Sonderforschungsbereich fiir Reine Mathematik, Mathemati-
sches Institut der Universitit Bonn.
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two embeddings of any fixed line bundle ¢ into TM are concordant
(Proposition 2.6). For even n and connected M, an embedding j of £ into
TM is concordant to its negative —j, if and only if p=w(&)~ > w(M) [M]
vanishes (Proposition 2.8); in particular, j and —j are concordant if M
is orientable (Proposition 2.13). Also, for arbitrary M of dimension n=0(4),
every embedding of the orientation bundle &,, into TM is concordant to
its negative (Proposition 3.2).

As a side result, we obtain in this context a simple and homogeneous
proof of the theorem of Wu and Massey to the effect that w,_, (M)=0 if
M is orientable and of even dimension (Remark 2.15). More generally,
we characterize those polynomials of dimension n—1 which vanish for
the Stiefel-Whitney classes of all orientable n-manifolds, in terms of the
relations among the Stiefel-Whitney numbers of arbitrary (n— 1)-mani-
folds (Remark 3.4).

Now we can apply our general treatment of singular “twisted vector-
fields” with prescribed boundary behavior to concordance and bordism
questions of line fields on closed manifolds M. In §4 we prove that every
such M carries only a finite number a(M) of concordance classes of line
fields, and we characterize this number in terms of solutions of certain
polynomial equations defined for elements in H'(M,Z,). Using the
computations of § 2, we also determine a(M) explicitly when M is orient-
able and of dimension nz3(4).

In § 5 we define and discuss bordism groups of manifolds with g-plane
fields. In §6 and § 7 we study these groups, for g=1, by means of the
natural forgetful homomorphism finto the bordism groups @, (B(S) O(1))
and N, (B(S) O(1)) of manifolds with arbitrary line bundles (not necessarily
sitting in the tangent bundle). f fits into a long exact sequence with third
term O or Z,, and we can determine the bordism groups of line fields
completely; (this has already been applied to certain bordism questions
concerning foliated manifolds, cf. Remark 6.4.) An interesting pheno-
menon here is the occurence of 4-torsion (in § 7); to detect it, we have to
draw on some crucial computations in § 3.

Finally, in § 8, we sketch the construction of a “singularity homomor-
phism” which generalizes the homomorphism ¢, derived in § 6 from our
invariants 6 and 0, to the case of (singular) g-plane fields for higher g.
The underlying approach has already proved to be quite powerful [9].

In §8 we also describe B. Reinhart’s refined bordism groups within
our framework.

_ Acknowledgements. 1 would like to thank G.Bredon and P. Landweber for several
useful conversations, and also W. Iberkleid for bringing R. Stong’s stimulating paper [19]
to my attention.

I am also indebted to the Sonderforschungsbereich of the Mathematical Institute of the
University of Bonn for support during the time when my interest in this subject developed.
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§ 1. Imbedding Line Bundles into the Tangent Bundle

Throughout this paper let M be consistently a compact, smooth, not
necessarily orientable manifold of dimension n>0. Also, in § 1, M may
have a boundary éM. Later, from §2 on, we will assume M to be closed
unless otherwise stated.

To any isolated zero z (off M) of a smooth vector field v on M we can
assign a well-defined integer, the index. It is the degree of the map

dgovod™!
——e e ¥ S"_l—‘>Sn~1,
ldgpovod™'|

where ¢ is any chart from a small neighborhood of z onto R” taking z to 0.
We have the classical

Poincaré-Hopf Theorem. Let v be a smooth vector field on M with
isolated zeroes, and pointing outward at all boundary points.

Then the sum of indices at the zeroes of v is equal to the Euler number
1 (M) of M.

For an elegant geometric proof see Milnor [14].

Phrased differently, the theorem deals with zeroes of vector bundle

maps from the trivial line bundle into the tangent bundle TM of M.
So we may ask the following more general question.

Question 1.1. Let £ be an arbitrary line bundle over M, and let j:
£|oM — TM|3M be a smooth bundle imbedding. Clearly there exists a
smooth bundle map v: & — TM over all of M, extending j and having only
isolated zeroes. How does the behavior of v near its zeroes relate to the
global topology of M, & and j?

First we assume that n is even. Near a zero z of v we can trivialize &
and therefore consider v as a vector field. Its index at z does not depend on
the trivialization, since the antipodal map on §"~! has mapping degree
+ 1. In particular the sum of indices at the zeroes of v is defined without
ambiguity.

On the other hand think of j as being split into a tangential component
j': £ldM— T(@M) and a normal component j”: {[0M— 0M x R. Here
the trivial line bundle is imbedded into TM|0M by means of a field of
outward pointing vectors. Note that j* does not vanish anywhere on the
zero set of j’, and therefore j can be deformed into a bundle mapji:
£|0M — T(9M) with only isolated zeroes, and such that j; agrees with i
on a neighborhood of the zero set of j”. Near a zero z of jj trivialize
£|dM by j". So j, can be interpreted as a vector field on OM around z,
and its index i(z) at z is well defined.

Now attach a collar C=8M x[0,1] to M by the identity map
OM x {0} =0M. Extend the bundles ¢, T(0M) etc. to C in the obvious
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way. Then j can also be extended to a map v.: E— TC=T(OM)x R
without zeroes on dM x [0, 1), and such that on dM x [1/2, 1] v is given
by

UC(x: t)=(111 (x)9 (1 - t) ‘j”(x)) J

Using v and v we get a smooth bundle map from ¢ (extended over C U M)
to T(Cu M). If we lift it to the double cover S°(£) which makes (the
extended) & trivial, we obtain a vector field © with two types of zeroes.
Those which come from v keep their index unchanged (but there are
twice as many as before). And then we have also the zeroes (z,, 1), I=
1,...,N, on the boundary, coming from the zeroes z,, ..., zy of j;. Each
(z,, 1) lifts to two points: there is the point Z, such that around Z, ¥ corres-
ponds to the vector field around (z,, 1) mapping (x, t) to (jioj” =" (x), 1 —1).
And there is the point %, where § corresponds to the negative of this
latter vector field. If in a suitable neighborhood of the boundary of $°(¢)
we add an outward pointing vector field to 7, the zero at Z, disappears,
while Z, gives rise to a zero with index equal to minus the index i(z,) of
Jiof'~" at z.

Now we can apply the Poincaré-Hopf Theorem. We obtain that twice
the sum of the indices of v at its zeroes, minus the sum of the indices
i(z)) of jioj"~*, equals the Euler number of S°(&) (which is twice the Euler
number of C U M = M). Since we can vary v while leaving j; etc. unchanged,
and vice versa, each of these sums of indices is independent of the choices
involved in their formulation. We summarize:

Definition 1.2. Let ¢ be a line bundle over the even-dimensional
manifold M, together with a bundle imbedding j: £|0M — TM|0M.

(i) Define A(M, &, j)eZ to be the sum of indices of a bundle map
v: ¢— TM at its zeroes, where v extends j and has only isolated zeroes.

Let (M, &, j)eZ, be (M, &, j) reduced mod 2.
N

(i) Define (M, &,j)€Z to be the sum ) i(z,) of indices of the modi-
=1

fied tangential component j; of j (as constructed above; note that this
sum also depends on the normal component of j).

Proposition 1.3. The numbers O(M, &, j), (M, &, j) and B(M, ¢, j) are
well-defined invariants depending only on M, ¢ and the regular homotopy
class of j. Moreover, we have the following relation with the Euler number
x(M) of M:

2-0(M, & )—PM, L, j)=2- x(M).

This follows from the discussion above. Furthermore, we have
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Proposition 1.4. Assume M is connected. Then j extends to a nowhere
vanishing bundle map from & to TM over all of M if and only if

(M, &,j)=0.

Proof. Assume 0(M, &, j)=0. Choose an extension v of j with isolated
zeroes. We may use isotopies of M (which leave M fixed) to push all the
zeroes of v inside a small disc D over which ¢ and TM are trivial; e.g.
move along the trajectories of a suitable vector field in the tubular neigh-
borhood of an imbedded curve. Over D, v can be viewed as a map into IR”,

v
Il
of v at its zeroes, and hence, by assumption, it vanishes. Now by a theorem

of Hopf, v can be altered inside of D so as to have no more zero.

and the mapping degree of : 0D — 8" ! is just the sum of indices

Corollary 1.5. If the image of j lies entirely in the tangent bundle of OM,
or if it is everywhere normal to T(0M), then B(M, ¢, ) is zero. Hence in
both cases j extends to a bundle imbedding of & into TM over all of M if and
only if each connected component of M has vanishing Euler number.

Proof. If the image of j is normal to T(0M), then £|6M must be trivial,
and j viewed as a vector field can be rotated into a nowhere vanishing
vector field on the odd dimensional manifold M. The rest of the corollary
follows from the definition of # and from the propositions above.

Now we turn to the case when n=dim M is odd. Here the situation
is quite different. If locally we trivialize ¢ and interpret v as a vector field,
the sign of its index at a zero depends on the trivialization. Moreover, the
double cover argument, which works so well in the even dimensional
case, now gives us nothing better than the well-known identity y (OM)=
2 x(M). .

So our previous approach centering around 6(M, ¢, j) and B(M, ¢, )
will in general not be of too much use here. However, an appropriate
generalization of the invariant 0(M, &, j) to the odd-dimensional case
will help us.

Definition 1.6. Let ¢ be a line bundle over the odd-dimensional
manifold M, together with a bundle imbedding j: £|0M — TM|JM.

Define 6(M, &, j)eZ, to be the number of zeroes of v taken mod 2,
where v: ¢ TM is an extension of j which, when considered as a section
in the homomorphism bundle Hom (¢, TM), is transverse regular to the
Zero section.

The existence of such a v follows from standard density theorems for
transversal sections. Also note that this definition of 6(M, &, j) would be
equivalent to the one in Definition 1.2 in case M were even dimensional.
This is a consequence of Lemma 4 in § 6 of [14].
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Proposition 1.7. 0(M, &, j) is a well-defined invariant, depending only
on M, ¢ and the regular homotopy class of j.

Proof. Let © be another section of Hom (£, TM) transverse regular
to zero and extending some bundle imbedding j: &|0M— TM|iM,
which is regular homotopic to j. Then, on M x R, we can find a section w
of the lifted bundle n¥(Hom (¢, TM)) which coincides with © on
M x(— o0, ] and with 7 on M x [1 —¢, o0) for some small ¢> 0. Further-
more, w may be required to be transverse regular to the zero section, and
to have no zeroes on M x IR. Then the set of zeroes of w in M x [0, 1] is
a l-dimensional compact submanifold of M, and its boundary is just
the union of the zero set of v in M x {0} with the zero set of v in M x {1}.
Hence this union consists of an even number of points.

Proposition 1.8. Assume that the odd-dimensional manifold M is
connected, and that & is non-trivial. Then j can be extended to a bundle
imbedding of & into TM over all of M if and only if 6(M, &, j)=0.

Proof. For n=1 this is clear, so suppose n=3. Let v be as in Defini-
tion 1.6. We may assume that all the zeroes of v lie in a small open disc
Dc M —0oM. If we fix a trivialization of ¢ over D, these zeroes have well-
defined indices. Since ¢ is non-trivial, we can find a circle S' imbedded
into the interior of M such that £|S! is non-trivial, and such that S’
contains just one zero of v. (If v has no zero at all there is nothing to
prove.) Let N be a small compact tubular neighborhood of §" in M —dM ;
moreover, let z’ %z lie in the connected component of z in S' A D, and let
N,.= N be the normal disk at z'. Then over N — N, we can trivialize ¢ and
consider v as a vector field. Also we can construct another vector field
which is parallel to S' inside N —N,. and vanishes everywhere else. The
isotopy resulting from such a vector field can be used to move the zero z
of v around S! by nearly a whole circuit and back into D. However, the
index of this new zero (with respect to the fixed trivialization of £ on D)
is the negative of the index of z. Hence this modification changes the index
sum of v by + 2, and we can continue until the index sum is either 0 or + 1.
In the first case we can modify v further within D to cancel all zeroes.

To complete our analysis of the odd-dimensional situation let us
take a quick look at the case when ¢ is trivial. If we choose a trivialization,
any extension v of j with isolated zeroes can be considered as a vector field
and has a well-defined index i(v, x) at each zero x. Also, as in the even
dimensional case, we can split j into a tangential component j' and a
normal component j”, and modify j’ outside of the zero set of j’ so as to
obtain a vector field j, on dM with only isolated zeroes. If y,, ..., y, are
those zeroes of j; where the normal vector field j” points inward, we have:

13 i(v,x)+k2i(i;,yk)=x(M>.
=1

x zero of v
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Hence the integer

dM.Ep=Y| ¥ iwx)
M’ x zero of v|M’
(the first summation goes over the set of connected components M’ of M)
is a well-defined invariant, depending only on M, ¢, and the regular
homotopy class of j. Clearly 8(M, ¢, j), when reduced mod 2, is just
0(M, &, j). Furthermore we have: j can be extended to a bundle imbedding
of & into TM over all of M if and only if (M, ¢, j)=0.

Remark 1.9. Much of our treatment of Question 1.1 can also be
obtained from classical obstruction theory (e.g. as presented in [17]).
Indeed, let us assume that M is triangulated and connected. Then the
obstruction to extending j to a nowhere vanishing section of Hom (&, TM)
lies in H"(M,dM;Z), where the coefficient bundle Z =17, (S""!) has
fiber Z and can be viewed as being associated with the orientation bundle
A"(Hom(&, TM)) of Hom (&, TM). Now pick an n-simplex ¢ of M, and
let Z__ be the fiber of Z at some reference point xeo. Then the homomor-
phism -
h:Z.,— H"(M,oM;Z),
taking AeZ, to the cohomology class of -, is onto. Its kernel is zero
iff Z is associated with the orientation bundle of TM ; otherwise its kernel
is 2-Z, (see e.g. [15], p.461).

Now, if n is even, there is a natural isomorphism between ft,,\_/l (s h
and the corresponding coefficient bundle for TM, and therefore we can
canonically identify H"(M, dM ; Z) with Z. If n is odd and ¢ is non-trivial,
then the first Stiefel-Whitney class w, (4"(Hom (¢, TM))) does not equal
w,(A"(TM)), and hence H"(M, dM ; Z)=Z, . Finally, for odd n and trivial
& we have H"(M,0M;Z)=Z, but the isomorphism depends on the
trivialization of & We choose it so as to make our obstruction non-
negative. So in each case the obstruction to extending j can be expressed
by either an integer number or by an integer mod 2, and these numbers
are precisely 0(M, &, j) resp. (M, &, j).

§2. The Invariants 6 (M, &) and ¢ (M, &)
for Line Bundles on Closed Manifolds

From now on we will assume that M is closed, i.e. 0M =¢ (unless
we explicitly state otherwise). So the “boundary condition” j plays no
more role, and we will drop it from our notations. Thus, for instance,
0(M, &) denotes the number, taken mod 2, of zeroes of any section in
Hom (£, TM) which is transverse regular to the zero section.

Theorem 2.1!. Let & be a line bundle over the closed connected
n-dimensional manifold M.

' T have learned that this result was obtained simultaneously by D. Toledo.
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Then ¢ is isomorphic to a sub-bundle of TM if and only if Euler number
% (M) of M vanishes (when n is even), resp. if and only if (M, £)=0 (when n
is odd).

This follows from Corollary 1.5 and from Proposition 1.8 except in
the case when n is odd and ¢ is trivial. But then y(M)=0, and a vector
field on M generates the sub-bundle of TM in question.

Next we compute 8(M, &) in terms of the Stiefel-Whitney classes of M
and ¢ and of the mod 2 fundamental class [M] of M.

Proposition 2.2. For a line bundle ¢ over a closed manifold M we have
0(M, &)=(w(&) ™' w(M)) [M]= 3 (wy ()" w;(M)) [M].
i=0

Proof. This follows from Proposition 5.2, 5.1 and Theorem 5.2 in [5].

n

Also clearly Y w; (€)'~ "w;(M)=w,(Hom (£, TM)). Therefore, Remark 1.9
i=0
leads to another proof.
Remark 2.3. If n is even, then Proposition 1.3 implies the following
additional identity

O(M, é)=w, (M) [M]=(x(M), taken mod 2).
Hence the relation
0=wy B+ w, (B~ wy (M) +---+ wy (& Wi (M) -+ w (€ w,_ (M) (1)
holds for all line bundles £ over a closed even-dimensional C ©-manifold M.

Example 2.4. Consider the canonical line bundle A over the real
projective space RP(n). It is well known that a=w,(4) generates
H*(RP(n); Z,), and that w(RP(n))=(1+«)"*'. Hence 6(RP(n), A)=
(14+2) ' (14+a)*'[RP(n)]=a"[RP(n)]=1. On the other hand, we can
also see this easily from the geometry of RP(n). Note that T(RP(n))=
Hom (4, AY)=A® A*, where A* is the orthogonal complement of 4 in
RP(n)x R"+!, Hence Hom (4, T(RP(n))=A® A® A*=A". If we project
a fixed element x€ " orthogonally into [* at each line /e RP (n), we obtain
a smooth section of Hom (4, T(RP (n))) which has just one non-degenerate
zZero.

Next we want to classify line bundle imbeddings up to concordance.

Definition 2.5. Two imbeddings j,,j, of the line bundle ¢ into the
tangent bundle of the closed manifold M are called concordant if they
are homotopic through bundle imbeddings of ¢ into TM @ R.

Clearly this is the case if and only if there is a bundle imbedding
p*(&)—=T(M x I) which extends the imbedding of p*(&)|0(M x I) into
T(M x I)|0(M x I) given by j, and j,. (Here I is the unit interval [0, 11,
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and p: M xI—M is the projection on the first factor.) Hence we can
treat this problem with the methods developed so far.

Proposition 2.6. For a line bundle & over an odd dimensional manifold M
any two imbeddings of & into TM are concordant.

Proof. This follows from Corollary 1.5 and the fact that y(M'x )=
%(M")=0 for every component M’ of M.

Proposition 2.7. Let & be a line bundle over a connected manifold M
of even dimension n. If & is trivial, then all imbeddings of & into TM are
concordant. However, if & is non-trivial and y(M)=0, then there are pre-
cisely two concordance classes of imbeddings of { into TM.

Proof. To get the first conclusion, observe that all embeddings of a
trivial line bundle into TM can be deformed, within TM @ R, to an
imbedding into the added trivial line bundle.

So assume that & is non-trivial. If y (M) =0, then we can find a nowhere
vanishing section j, of Hom (£, TM) and split Hom (¢, TM) into the
trivial bundle © generated by j,, and an (n— 1)-dimensional complemen-
tary sub-bundle 7. Also there is an imbedded circle St =M over which ¢
is still non-trivial. Now observe that the normal bundle v of S' in M is
isomorphic to 5|S!, because w,(v)=w, (TM|S")=w, (Hom (¢, T™)|S")=
w, (7|S"). Hence, we can find a section s of # which, in a tubular neighbor-
hood of S!, has S* as its set of zeroes and is transversal to the zero section
there. Choose a real-valued function o on M which is + 1 outside of such
tubular neighborhood and —1 around S'. Then the section j, =(a - j,, s)
of Hom (¢, TM)=1 @ 1 has no zeroes.

Next pick a section of ¢|S' with just one non-degenerate zero z;
extend it in the obvious way to ¢ over the whole tubular neighborhood
of S* and then over all of M to get a section fof £ Now if, in the obvious
way, we deform j, = (a - j,, 5, 0) within t@ 7 @® ¢ first into (« - j,, s,f), then
into (j,, s, /), and finally into (j, 0, 0), this homotopy will vanish precisely
once, namely at the zero z of f; halfway thru the middle part of the defor-
mation. Expressed in terms of imbeddings of &, this just means that
O(M x I, p*(£),j,Uj,)=1, and therefore the imbeddings j,,j;: ¢— ™
represent two different concordance classes. From Proposition 1.8 it fol-
lows that there can be no other concordance classes than these.

Proposition 2.8. An imbedding j of the line bundle ¢ into the tangent
bundle of the connected, even dimensional manifold M is concordant to
its negative —j if and only if the number

w(&) - w(M)[M]eZ,
vanishes.
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Proof. Since this is clear for trivial , we may assume & is non-trivial.
Let 1 be a complement of j(£) in TM @ IR, and let h: £ —# be bundle map
with only non-degenerate zeroes z,, ..., z,. As in the proof of Proposi-
tion 2.2 one can show that the number r of zeroes, taken mod 2, equals
(W& "w(n) [M]=(w(&) *w(M)) [M]. Now the bundle map

[ p* (@) T(M x D=p*(j(&)) ®p*(n),

given by .
ﬁx. 1)= cos (TE t) .jx+Sln (ﬂt) ° hx’

has its only, non-degenerate zeroes at (z,, 1/2), ..., (z,, 1/2) and coincides
with j on M x {0} and with —j on M x {1}. Therefore O(M x I, p* (&),
ju —j) equals r mod2, which is w(&)~2w(M)[M]. Proposition 2.8
then follows from Proposition 1.8.

Remark 2.9. A similar argument involving Proposition 1.3 can be
used to show that for a line bundle & over an odd dimensional manifold M
the characteristic number w(&)~2w(M)[M] vanishes.

Thus we have the relation
0=w, (&) " wy (M)+-- +w (& 2!
Wy (M) +w (€ w,_ (M)+w,(M).
Definition 2.10. For a line bundle ¢ ovér the n-manifold M define
the invariant ¢ (M, £)eZ, by

M, E)=( 5 w (&) 2wy (M) [M].
0

<2isn

@)

If n is even, then
& (M, &)=(w, (&) +w, (&) 2wy (M) + -+ +w, (& W, , (M) +w,(M)) [M]
=w(&)?w(M)[M],
and the significance of this invariant is explained by Proposition 2.8.
If n is odd, then

(M, &)=(w, ()" +w, (&) 2- wy (M) + - +w (&) w,_, (M) [M].
Adding Eq. (2') above, and comparing with Proposition 2.2, we obtain:

Proposition 2.11. For all line bundles & over an odd dimensional
manifold M the invariants 0(M, &) and ¢ (M, &) are equal.

Next we elaborate a little on the relations (1) and (2) in Remarks 2.3
and 2.9. This will enable us in various situations to simplify considerably
the polynomial expressions which define ¢ (M, &) and 0(M, &).

Lemma 2.12. The following relations hold for the Stiefel-Whitney
classes w, = w, (M) of an n-dimensional manifold M and for all xe H' (M ; Z,).

If n and k are even and 0=k <n, then

X"kwe=x"" 1w, . (1)
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If n and k are odd and 0<k<n, then
x"""w,=0 (2)

Moreover, for arbitrary n, k with 0< k<n—2 we have

n—k—2 k k—1
n— +(n—k) (k+1 X k-1 ( ) n—k—=2,,
( 2 )X Wy (l’l )( )’C Wk+l+ 2 X Wiy2 (3)
=(n—k)x"* " w we+kx 2w w xR W] g

Note that (1)and (2) refine the relations (1) and (2') obtained previously.
Proof. Using the well-known identities of Wu [23, 24] we get:

—k—1 1
x" wyw, =8¢ (x wy)

=(n—k—=1)x""*w +x""* " (w, w+ (k+ D) we,,).

n—k—1

The resulting equation
(n—k—1)x""*w,=(k+1)x"*tw,
implies (1) and (2). Furthermore we have
X" 2w, we+ X" 2 wiw,

:SqZ(xn——k~2wk)

_(n—k—2

Ty 2

n—k—2 k-1

% Wy W tkw o w,  + 5 ) Wi

This leads to relation (3).

) X" R (n—k) x" 7 (wy wit (k1) )

Proposition 2.13. For every line bundle £ over an orientable manifold M
of even dimension n we have

(M, &)=w,(M)[M]=0(M, ).

In particular, if n=2(4), then ¢ (M, &)=0.

Proof. We write x for w, (¢). At first we assume only that w} =w, (M)’
=0, rather than the stronger condition w, =0 which is equivalent to M
being orientable. Then the Eq. (3) in the last lemma implies the following
identity for even k, 0<k<n—2

n—k—2 k—1\ , ,_
( 5 )x""‘wk:( . )x 2 Wia-

It follows that

X" Fwe=x""*"2w,,, if n,k=0();
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and
x"*w, =0 if n,k=2(4)(evenif k=n).

This already proves the proposition in case n=0(4).

Now let us assume that actually w, (M)=0, so that one side of Eq. (3)
vanishes. Then if k is even, 0<k<n—2, apply (3) to k+1 and use (1) to
obtain the equation

n—k—3 k _
(et

This implies that

n k

xX"rw=x"" 2w, , if n=04), k=2(4);
and

x"*w, =0 if n=2(4), k=0(4)(evenif k=n—2).
This completes the proof also in case n=2(4).

Remark 2.14. In contrast it can be shown that in every positive even
dimension n there exists a (non-orientable) connected n-manifold M
with vanishing Euler characteristic and with a line bundle & over it such
that ¢ (M, &)+0.

Remark 2.15. If M is orientable and of even dimension n, then the
equations in the last proof can easily be combined with relation (1) in
Lemma 2.12 to show that for all xe H' (M, Z,) the following relations
hold

0=x"=x""'w,(M)=x""2w,(M)=---=x""*w,(M)=---=xw,_(M). @)
This implies and refines the theorem of Massey and Wu to the effect
thatw,_,(M)=0(seee.g [11]).

Proposition 2.16. Let & be a line bundle over an n-dimensional manifold
M satisfying w, (M)* =0. Then, if n=1(4), we have the identity

OM, H=w, (&) w,_, (M)[M].
Ifn=3(4), then
B(M, &)=(w; )" +w, (€N * wa(M)+---+w, (&)~
wy M)+ +w (&) w,_;(M)[M].
Proof. We write x for w, (£), and we use the identities (2) and (3) of
Lemma 2.12. For even k, 0<k=n-—2, we get
(n—k—z

k—1
n—k n—k—2 — ph=k=1 n—k—1
5 )x wk+( ) )x Wi 2=X W W, +Xx Wit

wn—k-1
=X Wi W,.
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But this last expression vanishes also: if k=0, this follows from (2); if
k>0, we get it by substituting (k— 1) of k in equation (3) and simplifying
by means of (2).

If now n=1(4) and k=0(4), then

n n—k—2

X" Ew,+x
If n=3(4) and k=0(4), then

n—k—2 —
x Wy, ,=0.

Wi, 2=0.

Proposition 2.16 follows.

§3. The Case of the Orientation Bundle

Every n-manifold M has a naturally arising line bundle over it.
Namely, the orientation bundle ¢,, = A"(TM). For later use we want to
apply some of the results of §2 to &,,. Observe that clearly wy (€p)=w, (M).

Theorem 3.1. The orientation bundle &y of a closed manifold M is
isomorphic to a sub-bundle of TM if and only if the Euler characteristic
of each connected component of M vanishes. (In other words, M admits an
oriented hyperplane field if and only if M admits an oriented line field).

In particular, if M is odd-dimensional, then &,, imbeds into TM.

Proof. We apply the Egs. (2) and (3) of Lemma 2.12 to
x=w; ({p)=w; (M)

and to odd k, and we get: for each closed manifold M of odd dimension n

the following relations hold
O=w,;(M)'=--=w, (M)" ' w,(M)="--=w (M)*w,_,(M) @
=w,(M)w,_, (M)=w,(M).

In view of Theorem 2.1 and Proposition 2.2, this suffices to establish
Theorem 3.1.

Proposition 3.2. Let M be a closed manifold of dimension n. Then:
If n=2(4), then ¢ (M, &,,)=0; if n=0(4), then

(M, &) =(1+w, (M) *wM[MI= Y w (M)~ * w,,(M)[M].

0<4i<n

Proof. Apply identity (3) of Lemma 2.12 to the case when x =w, (M),
nis even and k=0(4), to obtain

(7573 1) o+ o= o420 o,

The proposition follows.

18 Inventiones math., Vol. 24
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Proposition 2.6, 2.8 and 3.2 imply that every imbedding j of £,, into
TM is concordant to —j, provided n#0(4). In contrast we have:

Proposition 3.3. In each positive dimension n, n=0(4), there exists a
closed n-manifold M and an imbedding j: &p— TM which is not concordant
to its negative —j.

Proof. In view of Theorem 2.1 and Proposition 2.8, it suffices to
exhibit a connected n-manifold M with vanishing Euler number y (M)
and such that ¢ (M, &,,)#0. For this purpose, write n=4r, and consider
the projectification M =RP(l, ..., 1,1,0) of the vector bundle
4@ @1, ®R over ('), where 4 is the pullback of the non-trivial
line bundle over the i-th factor. Then using the notation of the proof of
Lemma 3.4 in [20] (and putting o,=w;(L,® - D41,,)), we have

2r
wM)=(1+0)-[T((1+0)+a)
i=1

=(14+0)((1+e) +--+(1+¢) 02y 1+02,)-

Also w, (&)=w,(M)=c+oy+-+0,; and since of=0, we get
w(y)?=(1+c).

Hence

(M, &) =((1+¢)"* w(M))[M]
=((1+c)? '+ Fay, H(l+ct +c"a,,)[M]
=c?" o, [M]=c*"-a, ... 0,,[M]
=,

Remark 3.4. Here is a geometric clue to some of the analogies between
the relations which we got at the end of §2 for line bundles over orientable
manifolds, and the relations which occur in this section (compare e.g. 4)
in Remark 2.15 with (4) in the proof of Theorem 3.1).

For a closed manifold M consider the total space M'=RP (¢, ®R)
of the projective line bundle which belongs to &, ®R. M’ is naturally
equipped with a line bundle & over it. Also M’ bounds an oriented
manifold (it is diffeomorphic to the sphere bundle in &, ®R). Hence,
assigning the bordism class of a classifying map of ¢ to the bordism class
of M, we obtain a homomorphism

w: N,—82,,,(BO(1),
where @, ., (BO(1)) is the kernel of the obvious forgetful map
Qn+1 (BO(l))—> Qn+1 2

It can be shown by elementary geometric arguments that w is actually an
isomorphism, the inverse being a “Smith homomorphism” (compare
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P.E. Conner and E.E. Floyd, Torsion in SU bordism, Mem. AMS 60;
and [18], p.217). Obviously, » extends to a canonical isomorphism
N,SQ,, ,=Q,.,(BO®1)).

Next we identify H* (M, Z,) with its image in H*(M’, Z,) under the
obvious homomorphism, and we write x for w (¢). Note that x? = x - w, (M),
and that

W(M)=(1+x)(1+x+w, (M) w(M)=(1+w, (M) w(M).

Now consider Whitney numbers of the form
w & T w (MY (M1, ®)
i=2

where 0<j,,..., j,and Y i-j,=k<n. We have

(" =TT wiMy [
=(x - w, (My—* [Twi(M)+w, (M) w,_, (M)y)[M'] (6)
=(wi (M) T (wi(M)+wy (M) w,_, (M)Y)[M]

which is a sum of Stiefel-Whitney numbers of M. On the other hand,
observe that the last expression in (6) equals (wy (M=% T w;(My) [M]

plus a sum of Stiefel-Whitney numbers containing higher powers of
w1 (M); so we can express the Stiefel-Whitney numbers of M recursively
and in a natural way by Whitney numbers of (M’, ¢) of the form 5).
This way those relations among Whitney numbers of the form (5) which
hold for all line bundles ¢ over oriented (n+ 1)-manifolds M’, correspond
in a one-to-one fashion to relations among Stiefel-Whitney numbers of
arbitrary n-manifolds. In particular, using Poincaré duality and the fact
that every xeH'(M’, Z,) is the first Stiefel-Whitney class of some line
bundle £ over M’, we get for fixed coefficients a;, . .EZy:

.....

Ga.in” [ LMY e H" (M, Z,)
0=j2,....Jn i=2
Sij,=n
vanishes for every closed, smooth, oriented (n+1)-manifold M’ if and
only if

2 4 [T+ w (M) w,_ (M) [M]=0
*Fh =
for all closed, smooth n-manifolds M.

18*
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For a nonnegative integer k<n the Eq. (6) specializes to yield
(xn+l—k . Wk(M/)) [M']

7
= (wy (MY * w (M) +w, (M)~ ¥+ 1w, _, (M))[M]. (

This explains the analogy e.g. between the relations (4) and (4') mentioned
above. As another example, note that (7), together with the relation
w (M) -w,_,(M)=w (M)w,_,(M)=0 for n =0(4) (as obtained in the
proof of Proposition 3.2), suffices to prove the first part of Proposition 2.16
for orientable manifolds.

Finally observe that
oM, §)=w,(M)[M]
(this was already noticed in [19]), and that
¢ (M, &)=0(M, &)

§4. Counting Concordance Classes of Line Fields

By a line field on a manifold M we mean a smooth one-dimensional
subvector-bundle of the tangent bundle TM. Thus a line field can also
be viewed as a smooth section in the projective space bundle belonging
to TM.

Definition 4.1. Two line fields &, ¢, = TM on M are called concordant
if there is a subline-bundle of T(M x I) restricting to

£, T(M x {i})c T(M xI)

on M x {i} for i=0, 1.
Equivalently, &, and ¢, are concordant if they are homotopic as
sections in the projective space bundle of TM @ R.

Theorem 4.2. Let M be a closed connected manifold of dimension n,
and let b denote the Z,-dimension of H'(M, Z,).

Then there is only a finite number a(M) of concordance classes of
line fields on M.

If n is even and if the Euler characteristic x(M) vanishes, then a(M)
equals 2°—1 plus the number of those xe H ' (M, Z,) such that

(14+x)"2w(M)[M]=0.

(However if x(M)#0, then M admits no line field.)

If nis odd, then there is a canonical one-to-one correspondence between
concordance classes of line fields on M, and those cohomology classes
xe H'(M, Z,) which satisfy the condition (1+x)~" w(M)[M]=0.
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Proof. First recall that BO(1) is an Eilenberg-MacLane space of
type (Z,, 1); hence if we associate to each line bundle over M its first
Stiefel-Whitney class, we obtain a bijection between isomorphism classes
of line bundles over M, and elements in H'(M, Z,). Now two concordant
line fields on M have isomorphic underlying line bundles; so we get a
well defined map w, from the set of concordance classes of line fields
on M into H'(M, Z,). We will see presently that w, maps at most two
different concordance classes to a given xe H'(M; Z,). Therefore a(M)
is finite, since H'(M, Z,) is.

If n is odd, then xe H'(M, Z,) lies in the image of w, precisely if
(1+x)"'w(M)[M]=0. Indeed, according to Theorem 2.1 and Pro-
position 2.2 this mod 2 number is the obstruction to imbedding a line
bundle ¢ with w (§)=x into TM. Moreover, Proposition 2.6 implies
that w, is injective. Thus w, gives the one-to-one correspondence we
claim in the last statement of the theorem.

Next assume that n is even and y(M)=0. For a fixed cohomology
class xe H'(M,Z,) let ¢ be a line bundle with w,(¢)=x. If x+0, but
(1+x)"2w(M)[M]=0, then we can conclude from Proposition 2.7 and
2.8 that there are imbeddings j,, j,: €= TM such that [j,]=[—j,] and
[j;1=[—J,] are the two concordance classes of imbeddings of ¢ into TM.
Clearly the image bundles j,(¢) and j, (£) represent two different con-
cordance classes of line fields, and these are all which get mapped into x
under w,. On the other hand, if x=0 or (1+x)~% w(M)[M]%0 and if
j: £—=TM is some imbedding, then j and —j generate all concordance
classes of imbeddings of ¢, but give rise to only one class of line fields.
Hence if we count all xe H'(M, Z,) with x=0 or (1 +x)" 2 w(M)[M]+0
once, and all other x twice, we get a(M). This completes the proof.

Corollary 4.3. If M is even dimensional, orientable and connected and
if x(M)=0, then
a(M)=2+1—1.

Proof. According to Proposition 2.13 we know for every line bundle
¢ over M that

S (M, &)=w,(M)[M]=(z(M)),=0.

Hence (1+x)~? w(M)[M]=0 for all xeH'(M,Z,), and the corollary
follows.

Similarly Theorem 4.2, together with Proposition 2.16, implies the
following.

Corollary 4.4. If M is a connected manifold of dimension n=1(4) and
with w (M)? =0, then

b 3 —
a(M)={2 if w,_,(M)=0

221 if w,_,(M)%0.
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Example 4.5. The only closed connected surfaces which admit a line
field, are the torus and the Klein bottle.

The torus carries seven concordance classes of line fields. In contrast,
the homotopy classes of line fields over S' x S' correspond to elements in
the homotopy set [S' x S', RP(1)]=~[S' xS", S']=Z D Z.

The Klein bottle K carries five concordance classes of line fields,
which can be represented as in Fig. 1.

A Y

AR

(]

o

Fig. 1. The integral curves of line fields on the Klein bottle which represent the five con-
cordance classes

Here we use the basis «,, ¢ of H'(K,Z,), which is dual to the basis
(4], [B] of H,(K,Z,), to indicate under each line field its first Stiefel-
Whitney class.

In contrast, K has infinitely many different homotopy classes of line
fields; it follows from [17], 36.4, 36.6 and 37.2, that they correspond to
the elements in H'(K;#,)~H,(K;Z)~Z®Z,, since the coefficient
bundle 7, of the projectification of TK is associated with the orientation
bundle of K.

§5. Bordism Groups of Manifolds with ¢-Plane Fields

Definition 5.1. Let Q,(q) (resp. Q2(¢)) be the bordism group of
oriented n-dimensional manifolds with an arbitrary (resp. oriented)
g-plane field; and let N,(q) (resp. M2 (q)) denote the corresponding
bordism group based on unoriented manifolds. Finally let 9%°*" (g) be the
bordism group of (unoriented) n-manifolds with a co-oriented g-plane
field.

Thus, to define 21°”(g), we consider pairs (M, &), where M is a smooth
oriented closed n-manifold, and ¢ is an (oriented) g-dimensional sub-
bundle of TM. Two such pairs (M,, ;) and (M, &,) are called bordant
if there is (i) a compact oriented (n+ 1)-manifold X whose boundary ¢X
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is the disjoint union of M, (with its original orientation) and of M,
(with the opposite of its original orientation), and (ii) an (oriented)
g-dimensional sub-bundle { of TX which extends

(oué cT(OX)=TX|X

(inducing the original orientation on both &, and ¢,). Clearly bordisin

is an equivalence relation. Disjoint union provides an addition, which

makes the resulting set of bordism classes [M, ] into a group. Actually

there is also a natural product operation which gives ) Q"”(g) the
n.q

structure of a bigraded ring. In particular, Q¥ (q)= > Q%" (q) (¢ fixed)

is in a natural way a module over the classical bordism—rqing Q,SQ(0).
Similar remarks apply to the groups 9" (q).
To define N°"(q) we use pairs (M, &) with an orientation of the
quotient bundle TM/&. In the bordism X we identify (TX/{)|0X with
U R®(TM,/E)) by means of an outward pointing vector field, and we

1=0,1
require an orientation on TX /{ which restricts to the original orientation

on TM, /¢, and to the opposite of the original orientation on TM,/&,.
Observe that these co-orientation conditions can actually be expressed
without resorting to quotient bundles. Indeed, the orientation bundle
A""HYTM/E) of TM/E is canonically isomorphic (via exterior multi-
plication on the left) to the bundle Hom (A&, A" TM).

We can also introduce bordism groups 'Q"(g), 'R (¢g) and "N (q)
by calling two pairs (M, £,) and (M, ¢,) bordant if the (g+ 1)-plane
field on 0X, spanned (and possibly oriented) by an appropriate vector
field normal to X and by &, U &, extends to a (g+ I)-plane field over
all of the bordism X.

However, this gives nothing new:

Duality Lemma5.2. Taking complementary plane fields induces
canonical isomorphisms

'Q.(Q=Q,(n—q); '@~ (n—q);
NAP=N,(n—q); NT(QP=N"(n—q); "N (q) =N (n—q).

Thus we may restrict our attention to the groups introduced in
Definition 5.1. To study them, let us consider forgetful maps such as
the Q, -linear homomorphism

i Q@) Q,(BO(q) (resp. f: Q3 (9)— Q,(BSO(q))),
or the 9, -linear homomorphism

I+ N (q) >N, (BO(g) (resp. f: NI (g)— N, (BSO(9))).
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Here we identify e.g. ©, (BO(qg)) with the bordism module of oriented
manifolds with arbitrary g-dimensional vector bundles over them, and f
associates to g-plane fields their underlying vector bundles.

Now, as J. Alexander pointed out to me, it is convenient to introduce
relative bordism groups. So consider triples (M, &, j) where M is an
oriented, compact n-manifold, possibly with boundary, ¢ is an (oriented)
g-dimensional vector bundle over M, and j: £|0M — T(OM) is a vector
bundle imbedding. Two such triples (M,,&,,j,) and (M,&,,j;) are
called bordant if there exist (i) an oriented compact smooth (n+1)-
dimensional manifold X whose boundary contains the disjoint union
M, U —M,, (ii) an (oriented) g-bundle { over X which extends the
(oriented) bundles &, and &, and (iii) a vector bundle injection ffrom
Cl&X—(MouM,) into T(0X) which restricts to j, over dM,, [=0,I.
This defines an equivalence relation: to obtain reflexivity and transitivity
we use the technique of straightening the angle. Clearly the bordism
classes [M, &, j] form a group which we denote by

Q,(BO(q).q) (resp. ,(BSO(q),q)).-

The relevance of these groups stems from the fact that they fit into
sequences
= Q,(q) > 2,(BO(g) — 2,(BO(9). ) ——>2,_ (@) > -~
and
o Q0 (q)—L> Q,(BSO () — 2,(BSO(q), ) —2> Q" (q)— -+

Here the occurring (forgetful) homomorphisms are obvious, and
standard arguments show that the sequences are actually exact.

Similar relative bordism groups and long exact sequences are
obtained if we use unoriented manifolds.

§6. Computation of 2{°” (1) and RN (1)
The invariant (M, &)=w(E)~! w(M)[M] induces homomorphisms
0: Q,(B(SO(1)—>Z,, and 0: N,(B(S)O0(1)—Z,.
Similarly, we have homomorphisms
o Q,(B(S)0(1),1)»Z,, and o: N,(BS)0(1),1)>Z,,

which associate O(M, &, j) to a relative bordism class [M, ¢, j]. To see
that o is well-defined, consider a bordism (X, ¢, j) between (M, &, jo)
and (M, ¢,,j,), and let j, extend to a section v, of Hom (&, TM)) with
only non-degenerate zeroes, =0, 1. Then vy, v, and j, together with a
vector field normal to 90X, define a section in Hom((@®R, TX)|0X
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which can be extended into a section s over all of X. Next, for p=0 or 1,
consider the p-(n+ p—1)-codimensional submanifold A,= U A,(x) of
the total space of Hom (@R, TX), where xeX

A, (x)={heHom({ ® R, T X)|dim Ker h=p}

(compare [5], p.120). Our section s can be required to map X into
AyU A, and to be transverse regular to 4,. Then s '(4,) is a one-
dimensional compact submanifold of X whose boundary consists of the
zeroes of j, and j,. Thus (M, &, j,)—0(M,,&,, j,) is the mod 2 number
of points in the boundary of s~'(A4,), and therefore vanishes.

Observe also that, if n is even, o ([M, &, j]) equals the mod 2 Euler
number y (M), of M (cf. Proposition 1.3 and Corollary 1.5).

Theorem 6.1. Under all four orientedness assumptions & is injective.
More precisely, a gives the following isomorphisms:

Qu(BO(1)1) =Ry (BO()1)  =Z,,

Q,,(BSO(1),1) =M,,(BSO(1),1) =1Z,:

and
QZk_l(BO(l), l) =N, (BO(), l) =Z,,

QZk~l(BS0(1)’ 1):m2k_1(BSO(1), 1)20,

Jor all positiven (=2k or =2k—1).
(Note the similarity of these groups with the (co)homology groups of
BO (1) with coefficients in Z,, resp. Z.)

Proof. Let [M, &, j] lie in the kernel of 6.

First let n be even. Then y(M)=0(2). For n>4 consider M x I with
the lifted line bundle p* (¢). If we attach a handle D' x D" (resp. D* x D"~ ')
in small disks (over which & is trivial) in the interior of M x {0}, the part
of the boundary of M x I corresponding to M x {0} decreases (resp.
increases) its Euler number by 2 [16]. This is due to the following well-
known additivity property of the Euler characteristic: if we identify two
compact, even-dimensional manifolds M, and M, along full components
of their boundaries, then the Euler characteristic of the resulting manifold
equals y (M,)+ x(M,). Thus we can extend M x I to obtain a manifold X
such that X =M x {1} UdM x I UM’, where M’ is connected and has
vanishing Euler number. Also p*(¢) can be extended suitably to a line
bundle { over X. According to Corollary 1.5, we can extend the vector
bundle injection j: {|dM’ — T(0X) injectively over all of M’, and of
course also over M x I. Thus [M, ¢, j]=0.

If n=2, we have to do without attaching handles of the form D? x D"~ !,
since this would in general disconnect the boundary of M x I. Let OM
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consist of the circles S,, ..., S;, and extend M to a closed surface M by
glueing in disks D, .. D Since &|6M has to be trivial, we can also
extend & to a line bundle Z over M. Now if M is oriented, (M, &) bounds
because Q,(BO(1))=Q,® N, =0 (see Remark 3.4), resp.

Q,(BSO(1))=2,=0;

moreover, since y (M) and x(M) are even, so is I. If M is not oriented,
then (M, &) is bordant to I=y(M) times (RP(2), R) plus a multiple of
(RP(1,0), 2) (see [19], Lemma 3.2); now A occurs as a line field on the
Klein bottle RP(1,0); and the complement of a disk in RP(2) admits a
nowhere vanishing vector field, tangent to the boundary circle. In any
case, attaching an appropriate bordism to M x I, we obtain a bordism
from (M, &, j) to an even number of triples of the form (D?, R, vector field
along S'). But these can be cancelled pairwise by handles D' x D%, There-
fore [M, &, j1=0 also when n=2.

Finally, if n is odd, we may again assume that M is connected. Then,
applying Proposition 1.8 if ¢ is non-trivial, or otherwise using the fact
that 2y (M)= )(((,M)_O we can extend j to a line bundle imbedding over
all of M. Hence again [M, &, j]1=0.

This establishes the injectivity of ¢. To determine its image, observe
that

o([D**, R, vector field on S2¥~'])=y(D*),=1;
and that
O([RP(2k—1),2])=1  (see Example 2.4).

Thus it only remains to show that o([M, &, j])=0 if [M,¢,j] lies in
Q,,_(BSO(1), 1) or in MN,,_,(BSO(1), 1). But this follows immediately
from the discussion in §1 (preceding Remark 1.9) and the fact that
¥ (M')=(1/2) x(@M")=0 for each component M’ of M, since the nowhere
vanishing vector field j is tangent to M. |
Next recall that Q (BO(1))~Q,®N, , (cf Remark3.4), and
N, (BO(1)=N®H (BO(I) Z,)[3] are well known. Hence the following
result determmes the groups Q" (1) and NE" (1) completely.

Theorem 6.2. All of the following sequences are exact (for all k=0
resp. n>0).

@) 0 ——Qu, ()12, 4(BO() 25 Z, 0
0 — Quu3() 5 Q4 5(BO(1) —4—Z, -0

( ==

( )

0 — Q21 )—"Q4k+2(30 ))
0= Z;—2> Gy (1 )——’94k+1(30(1))——>22—>0
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M 0 Q%) HZ, -0
0 —’nguzs(l)i’gaus —0
0 —’Qg’k+2“)i’g4k+2 —0
0-Z,— 0%, () L Q,,  —0,

G 0 —N,(1) —L>N,(BO()—2>2Z, -0,

(iv) 0 — N V)L Ny, 527,50
0 —¢ ?k-;-l(l)i)mﬂu—l —0.

Here y, assigns to [M, &] or [M] the mod 2 Euler number
1 (M), =w,(M)[M].

In (i) and (il) e=0- 0~ " can be defined by e(1)=[S***+', trivial line field]=
[S' x CP(2k), trivial line field].

Moreover, Q,, . (1) and QF, . ,(1) consist entirely of 2-torsion.

(The image of /" in Q,(BO(1)) and N, (BO(1)) was already determined
in [19].)

Proof. Using Theorem 6.1 and Example 2.4, we can extract the (short)
exact sequences here from the long exact sequences of §5.

To exclude the possibility of 4-torsion, consider [M, E]eQYp. (1).
Since 2, .1(BO(1))=Q,,.,®N,, and Q,, , consist entirely of 2-
torsion, there exists [ X, {, j1€Q,,, »(B(S) O(1), 1) with

oLX,(j1=2[M,&].
To show that [M, &] is of order 2, or, equivalently, that
o([X,( jD)=x(X),=0,

we use the following

Proposition 6.3. A class o in the bordism ring Q, can be represented
by a manifold which admits an orientation reversing diffeomorphism, if
and only if 20=0.

As R.J.Rowlett pointed out to me, this follows easily from Pro-
position 5 in [1].

Thus let Y be an oriented bordism from M to a manifold M’ with an
orientation reversing diffeomorphism h. Identifying via h, we can make
YUXUY into a closed oriented (4k+2)-manifold which necessarily
has even Euler number. The last statement of Theorem 6.2 follows.

Remark 6.4. The image of the forgetful map fin R, (BO (1)) has already
been computed previously by Stong [19], who uses a suitable explicit
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basis of the N, -module 9N, (BO(1)) to represent sufficiently many classes
in ‘Jln(BO(l)) by manifolds with line fields. This basis, and the deter-
mination of M?(1) in Theorem 6.2, allow one to prove: every element
in 9N°7(1) can be represented by a line field transversal to a foliation of
codimension one. The corresponding statement for Q”(1) holds at
least if the signature of the underlying manifold vanishes. For more
details see [7].

§7. Computation of 9::°°"(1)

Let ¢ = TM be a line field over the closed n-manifold M. Then exterior
multiplication to the left gives a bundle isomorphism

A" Y(TM/E) —5Hom(¢, &,)),

where &,,=A"TM as in §3. Thus orientations on the normal bundle
TM/E correspond to isomorphisms (given up to multiplication by
positive functions) between & and &,,. Therefore we can identify 9%, (1)
with the bordism group of classes of pairs (M, j), where j is a vector
bundle embedding of &,, into TM. Two such pairs (Mg, j,) and (M4, j,)
are bordant, if there is a bordism X between M, and M, with an injection
j:&y— TX such that j=j - is; hereis;: &y, —= &4|M, is the isomorphism
given by left exterior multiplication with an outward pointing (if [=1),
resp. an inward pointing (if /=0), vector field of X along M,. Note that
—[M,j1=[M, —j].

To compute N (1),it will again be convenient to use relative bordism.
Thus consider pairs (M,j°), where M is a compact n-manifold, and
j%: Es— T(OM) is an injective vector bundle map. We call two such
pairs (M, /) and (M, , j%) bordant, if there is (i) a compact (n + 1)-manifold
X whose boundary X contains the disjoint union of M, and M, and (i1)
a bundle injection j from &,,|0X —(M,uUM,) into T(0X) such that
ji=Jj-is, =0, 1, where the isomorphisms is;: {5y, — Sax|0M, are given
by vector fields pointing into M, and out of M,. The group of bordism
classes [M, j°] is denoted by M (BO(1), 1).

Again we have a well-defined homomorphism

o: N (BO(1), 1)~ Z,,
which associates 0(M, &,;,j%) to [M,j7] (using an outward pointing
vector field, we identify j° here with an injection from &,,|0M into T(¢M ).

For even n we then have also o [M, j°]=x(M),.

Theorem 7.1. ¢ is an isomorphism for n> 1.

Proof. To establish injectivity, we proceed precisely as in the proof of
Theorem 6.1, except for the discussion of the case n=2, where we have to
replace (RP(2), R) by (RP(2), 4) (compare Example 2.4).
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For even n, the surjectivity of o is clear (e.g. ¢ [RP(2k)]=1). Hence
assume that n=2k+1, k>0. Consider the vector field on D?* which
attaches to each point its locus vector, and homotop it, around §2*-,
into a vector field tangent to S**~'. Identifying D?* with D?*x {0} in
D?*x D', we can combine a suitable extension of the vector field above,
with the locus vector field along D', to obtain a homomorphism bv:
&y— TM over the solid Klein bottle

M=D**x D' /(x,, X5, ...s X255 )~ (=X X5, -0 X505 — ).

The only zero of v lies at (0, ..., 0; 0), and v restricts to an embedding
j%: &g — T(OM). Clearly o ([M, j°]1=1.

R\

Fig. 2. The integral curves of the vector field on D?* x D', k=1, which defines v

Finally note that R{°"(BO(1), 1)=0.
Theorem 7.2. For all positive, odd n the natural forgetful map
[ (1) - N,
is an isomorphism.
If n is even, then the sequence
0-’22 dog ! m;‘m,(]) f mn X2 ZZ_’O
is exact.
Furthermore, M (1) has 4-torsion if and only if n=0(4).

Proof. For n>1 consider the diagram

,_‘_>mf‘aar(l)i,mn_,mzoor(Bo(l), 1)—0'9220_0'1(1)“*'”

a |l
x\

z,

The horizontal sequence is exact. Moreover commutativity follows easily
from the relations in Remark 2.3 and in the proof of Theorem 3.1. Thus
the vanishing behavior of y, implies the first two statements of the
theorem.
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To check for possible 4-torsion, let [M, j]Je N5’¢" (1), and assume that
M is connected. Consider M x I with

P=iUj Eannxn=EnVEn— TOM x D)=TM UTM.

Then 0[M x1,j°]1=2[M,]; furthermore, from the way we have to
identify &, , With &, ,|0(M X I), we see that

a[M X1, jJ=0(M x I, p*(&y), jU —)).
Thus, since ¢ and d are injective here, 2[M, j]1=0 precisely if
O(M x I, p* (&), j U —j)=0.

But according to § 1 and 2, especially Proposition 1.8, this is equivalent
to j being concordant to its negative —j. The results of § 3 now imply
the remainder of Theorem 7.2.

It follows that for n=2(4), there is still a (non-canonical) isomorphism
N (1)~N,. For n=0(4), however, N*"(1)~Z,+(Z,)*~ 2, where d is
the dimension of N, over Z,.

§8. The Case of ¢q-Plane Fields for Higher q

If g>1, and ¢ is a g-dimensional vector bundle over a compact
n-manifold M, then a homomorphism v: ¢ — TM needs by no means be
injective even if it has no zeroes. However, if n > 2 g — 3, then we can always
modify v so that it becomes injective outside of a closed (g — 1)-dimensional
submanifold S of M, and that the kernel of v is one-dimensional at every
point x of S. Since v|S has constant rank, the singularity S comes naturally
equipped with the one-dimensional Kernel bundle and the (n—g+ 1)-
dimensional cokernel bundle of v|S. From arguments as the ones in the
beginning of §6 we can see that this construction is compatible with
bordism, and therefore it gives rise to well-defined homomorphisms such

as
%,(BO(q),q)—>N,_, (BO(1)x BO(n—gq+1))

(for the other orientedness cases, the range of ¢ has to be modified). This
seems to be the appropriate generalization of the homomorphism o
defined in § 6. It can be shown [9] that these “singularity homomorphisms”
o are injective, and combined with the long exact sequences in § 5, they
provide a powerful tool for the study of the bordism groups Q©"(q)
and N (q).

Now we turn to the case g=n which in general is excluded from the
discussion above, but which still can be treated, via duality (cf.: Lemma
5.2), by line field methods. Indeed, our groups, identified with ‘Q!”(0),
"IN (0) or "IN (0), occur near the end of long exact sequences where
the relevant third term can be determined by invariants such as 6 or .
We obtain:
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Theorem 8.1. None of the groups Q" (n)='Q"(0) and N (n)=
‘N (0) and N (n)="N2"(0) has 4-torsion. They fit into the following
exact sequences (for n=1):

M 0 —Qm L0, -0, if nEl@)
0-Z,—>Q,mn —5 Q,—0, if n=1(4).
(i) 0>Z —>Qo(n) —5 @, —0, if niseven;
0 —Qr(n) —LH Q, >0, if n=3(4);
05Z,—>Q"(n) —> Q, -0, if n=1(4).
(i) 0 —R,m —L>N, >0, foralln.
(iv) 0>Z, >N (n) —L>Im,—0, if niseven;
0——N"(n) —L>Im,—0, if nisodd

(here I'm,, is the image of Q
forgetful homomorphism).

(V) 0-Z —> NP7 (n) ’f“ﬁ,, —0, if niseven;
0 —>Nrm—LHN, —0, if nis odd.

Here we always define (1) to be the class of the sphere S" with the
obvious structure; 'f comes from taking the underlying manifold.

, in 9, under the natural

Finally observe that classes in ‘Q%(0) and '9t"(0) are formed by
closed manifolds M =M, UM _ where the trivial O-plane field on M
and M _ is oriented according to the subscript. It is not hard to show that
every class can actually be represented by some M alone. Thus " (n)=
'Qr(0), resp. M (n)="M2"(0), can be identified with the refined bordism
group Qf, resp. My, of Reinhart [16], who considers two closed mani-
folds M, and M, as bordant if a bordism from M, to M, admits a
non-singular vector field pointing outwards at M, and inwards at M, .
Furthermore the sequences (ii) and (v) are the ones which Reinhart
uses to compute his groups.
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On Surfaces of Class VII,,

Masahisa Inoue (Tokyo)

§ 0. Introduction

In this paper, we study (compact complex analytic) surfaces S
satisfying the following two conditions:

(A) the first Betti number b,(S) equals one and the second Betti number
b, (S) vanishes,

(B) S contains no curves.

We shall construct three kinds of such surfaces Sy, SY') 4 i SV 1.4
in § 2-4, respectively, and, in § 5, shall give a theorem to the effect that
any surface satisfying (A), (B) and an additional condition (C) is one of them
(see §5 for the condition (C)). The remaining sections §6-9 will be
devoted to the proof of this theorem.

We recall some results of Kodaira concerning the structure of

surfaces. He defines surfaces S of Class VI, by the following condition:
(VIIp) b, (S)=1 and S is minimal.

He has completely determined the structure of surfaces other than
those of Class VII, and their quadric transforms in [1-3]. Moreover, he
showed that some kind of elliptic surfaces and all of Hopf surfaces satisfy
(A) and belong to the Class VII, but do not satisfy (B), and proved a
theorem to the effect that surfaces which satisfy (A) but do not satisfy (B)
turn out to be elliptic surfaces or Hopf surfaces. He showed that any
deformations of elliptic surfaces of Class V1, or Hopf surfaces are elliptic
surfaces of Class VI, or Hopf surfaces. In the preface of [2], he questioned
whether there exist surfaces of Class VII, other than elliptic surfaces
and Hopf surfaces. By the theorem of Kodaira quoted above, it suffices
to consider the following two problems:

1) Find surfaces S of Class VII, with b, (S)=+0.

ii) Find surfaces which satisfy both (A) and (B).

Our result may be regarded as an answer to the second problem.

I would like to express my hearty thanks to Professor Kodaira, who introduced me
to this problem and whose suggestions throughout the writing of this paper were invariably

helpful. Most important, he allowed me to read his unpublished note on surfaces of Class
V1I,. I would also like to thank Professor E. Bombieri who kindly communicated that he

19 Inventiones math., Vol. 24
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discovered such surfaces independently and gave a characterization of them. Last but not
least, I would like to thank Dr. S. Iitaka who read throughout my illegible manuscript and
corrected many errors.

§ 1. Preliminaries and Some Lemmas

In this paper, by a surface we mean a connected compact complex
manifold of dimension2. We employ the notations used in Kodaira
[1-3]. For example, we write H" () instead of H (S, &) for a sheaf & on
a surface S, and we denote by c2 (S) and ¢, (S) the Chern numbers of S.
The irregularity dim H'(0) and the geometric genus dim H?(0) are
indicated by q(S) and p,(S), respectively.

By using Theorem 3 of Kodaira [1] and the formula of Riemann-
Roch, we can easily prove

Proposition 1. Let S be a surface satisfying (A). Then ci(S)=c,(5)=0,
q(S)=1, p,(8)=0, h"°(S)=dim H°(©Q')=0 and H'(C*)~H"(O*) canon-
ically. Moreover

2
(1) Y (=1)"dim H*(O(F))=0 for any line bundle F, and
v=0
2

@ Y (—1ydimH*(©)=0 for the sheaf © of holomorphic tangent
v=0
vector fields.

In what follows we let S denote a surface satisfying conditions (A)
and (B).

Lemma 1. (i) Any unramified covering surface S' of S satisfies the
same conditions (A) and (B).

(ii) Any deformation S” of S satisfies (A) and (B).

(iii) m K %0 for any m=*0 in Z, where K denotes the canonical bundle
of S.

(iv) H'(0(F))=0, v=0, 1,2, for F+0, K.

Proof. (i) It is clear that S’ satisfies (B). Hence, by the classification
theory of Kodaira [1], we see that §" is a K3 surface, a complex torus
or a surface of Class VII,. Since ¢,(S)=c,(S)=0, " is nota K 3 surface.
If S’ is a complex torus, then S is a Kéhler surface and, consequently,
b,(S) is even. Thus b, (S")=1. From ¢,(5)=0 it follows that b,(S)=0.
Hence S’ satisfies (A).

(ii) Evidently S” satisfies (A). If §” contains a curve, then §" is an
elliptic surface or a Hopf surface and therefore S is also an elliptic
surface or a Hopf surface by theorems of Kodaira quoted in §0. Thus
S satisfies (B).
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(iii) If m K =0 for some m=+0, then there exists an m-fold unramified
covering surface §’ such that p,(S’)=+0. This contradicts the above state-
ment (i) and Proposition 1.

(iv) The vanishing of H"(¢ (F)) follows from (1), the duality theorem
of Serre and the fact that S contains no curves, q.e.d.

For any FeH'(C*)~H" (0%, we write Q'(F)=Q'Q®0 (F). By C(F)
and d O(F) we denote the sheaf of germs of locally constant sections of
F and the sheaf of germs of d-closed holomorphic 1-forms with coefficients
in F, respectively (cf. Section 11 of Kodaira [2]). Then we have the
following exact sequences:

0— C(F)—0O(F) 4d0O(F)—0,
0—dO(F)— Q' (F)-% Q*(F)—0.

From these sequences, we can derive the exact sequences:

0— H°(C(F)) —H°(O(F)) — H°(dO(F))
- HY(C(F)) —>H'(0(F) — H'(dO(F))
— H2(C(F)) —H?*(O(F)) — H*(dO(F))
— H3(C(F)) —0,

0— HO(dO (F)) - HO (2'(F)) — H°(Q2 (F))
— H'(dO(F))— H* (Q\(F)) %> H' (Q2(F))
— H2(dO(F)) - H* (Q\(F)) —> H*(Q%(F))
— H3(dO(F))—0.

(3)

Hence, in view of Lemma 1 (iv), we obtain, by using Q*(F)~0 (K +F),

5) 9: H'(dO(F))~H"*(C(F) for F+0,K,
©6) H'(dO(F))~H'(Q\(F))  for F+0, K.

Let § be the universal covering surface of S and G the covering
transformation group of S over S. Defining j(u) to be §x €/~ for any
#eHom(G, €*), where (p,{)~(g(p), u(g)~"-L), peS, (e, for geG,
we have a canonical isomorphism j: Hom (G, C*)~H'(C*). For sim-
plicity, we write F,=j(u) and u,=j'(F). It is easy to check that the
Chern class ¢ (F)=0 if and only if ;| Tor(G/[G, G])= I. (For any abelian
group H, we denote by Tor H the torsion group of H.) Let 2=Ker(c:
H'(0*) — g2 (Z)) and let Hom(G, €*), denote the subgroup

{neHom(G, €*)| u| Tor(G/[G, G])=1}.
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Let G={geG|g mod[G, G] is of finite order}. Then we have the exact
sequence:

(7) 0-G—>G—>Z—0.
From the above remark, it follows that
j|Hom(G, €*),: Hom(G, C*)o~2.

We fix an element g,€G representing a generator of G/G~Z. For
a given peHom (G, C*), C can be considered as a G-module by defining
g-({=pu(g){ for any geG and {eC. We denote by H,(G) the v-th coho-
mology group of G with respect to u. Regarding € as a trivial G-module,
we form the v-th cohomology group H'(G).

Let g§ be the automorphism of H *(G) induced from the inner auto-
morphism of G: g — g0 g 80 ', g€G. We define H"(G)* to be

{yeH(G)|gty=4y} for AeC*.

Using exact sequences of cohomology groups derived from (7), we
obtain

8) H!(G)~H' (Gy*®, for any non-trivial
ueHom (G, €*),, and
©9) H'(G)' =0.

Refering to [4], we have

(10) HY(C(F))~H..(G) forany FeH'(C¥).
Hence it follows from (8) that

(11) H!(C(F))~H'(G)*r®  for any non-trivial FeZ.

Kodaira establishes the following duality theorem and the stability
theorem:

(12 dim H’(C(F)=dim H*~*(C(~F)) for FeH'(T¥),
4

(13) Y (=10 dim H¥(C(F))=c,(S)=0 for FeZ.
v=0

(See § 13 of Kodaira [3].)

__We define e Hom(G, €*) for peHom(G, C*) by putting f(g)=

p(g) for any ge G and define Fe H'(C*) for Fe H'(C*) by putting F =j(fg)

In case u=ji and F=F, we say that y is real and F is real, respectively.
For later use, we give a lemma.



On Surfaces of Class VII, 273

Lemma 2. If we H°(Q'(F)) and ne H°(Q"(E)), @ +0, n+0, then either

1) F=E and w=cn for a constant c %0, or

ii) F+E+K=0 and o An=+0, o anneH(Q*(F+E)), and moreover
weH°(dO(F)) and neH®(dO(E)).

Especially if 2F + K #0, then dim H°(Q' (F))< 1.

Note that we H%(Q'(F)) and ne H®(Q'(E)) are written, respectively,
in the form {w;} and {5;} by using local holomorphic I-forms w;, #;
where ;= fj;w;, n;=e;n;, F={f;}, E={e;}e H' (C*)~H"(0*). w Ay
is then defined to be {w; A #;}.

Proof of Lemma 2. Assume w A n=0. Then w;= f; ; for some non-zero
local meromorphic function f;. Evidently {f;} gives a meromorphic
section of F —E. Since S contains no curves, { f;} turns out to be a non-
vanishing holomorphic section of F —E. Hence we obtain F—E=0. If

Assume w A n#0. Then the corresponding divisor (w A 1) is 0, because
S contains no curves. Since w AneH®(Q*(F+E))=H°(0(F+E+K)),
we obtain F+E+ K =0. Moreover if do={dw;} +0, then dw gives a
nonzero element of H°(Q*(F)). Hence from Lemma 1(iv) we see that
K+ F=0 and therefore E=0. This implies that ne H°(Q') and h*-°(S)> 1.
Thus, by (4), we obtain we H®(d® (F)) and, similarly, e H°(dO (E)), q.ed.

§ 2. Surfaces S,,

Let M=(m;)eSL(3,Z) be a unimodular matrix with eigen-values
a, B, B such that a> 1 and f+B. We choose a real eigen-vector (a,, a,, a;)
and an eigen-vector (b;, b, bs) of M corresponding to x and f, respectively.
Clearly « is an irrational number and

(14) (a4, by),(ay,b,), (a3, bs) are linearly independent over IR,
3
(15) (xa;, Bb)= Y my(a,b) for j=1,2,3.
k=1

By IH we denote the upper half of the complex plane. Let G,, be the group
of analytic automorphisms of IH x € generated by

8o: (W, 2) = (a@w, B2),

(16)
g: w,z)>(w+a;,z+b;) for i=1,23.

(14) and (15) imply that the action of G,, on IH x C is properly discon-
tinuous and has no fixed points. We define Sy, to be the quotient surface
H x €/G,,. Then it follows from (14), (15), (16) that S, is differentiably
a 3-torus bundle over a circle and the relations between the generators



274 M. Inoue

2081, 22,83 of Gy are as follows:
2:2,=8;8i for i,j=1,2,3,
g0gigo =gigyregse  for i=1,23.
From this we derive

GM/[GM$ GM] :Z @Zel®zez@193

where e,, e,, e; +0 are the elementary divisors of M —I. Hence ¢,(Sy)=
0, b;(S))=1 and, consequently, b, (S,,)=0.

Let I'={g,,g,,g3) be the subgroup of G,, generated by g, g, g3-

Lemma 3 (Kodaira). Any I'-invariant holomorphic function on H x C
is constant.

Proof. Let f(w, z) be a I'-invariant holomorphic function on IH x C.
Fix Imw. Then f is bounded as a function of (Rew, z) by (14). Hence
f(w, z) is bounded as a function of z for each fixed w and therefore f
does not depend on z, i.e., f(w, z)=f(w, 0). Moreover,

3
f(W,0)=f (W+ z njaj,O)
joil
for any (n,, n,,n3)€Z>. On the other hand,

{im%

j=1

(ny,n,, n3)el3}

is everywhere dence in IR, because

3
otaje{z n;a;

j=1

(ny, ny, n3)EZ3}

by (15) and « is irrational. Hence f(w,z)=f(w,0) is constant, q.e.d.
Proposition 2. i) S, contains no curves.
ii) dim H” (S, ©)=0 for v=0,1, 2.
Thus Sy, satisfies (A) and (B), and is rigid.

Proof. i) By Proposition 1, any complex line bundle F on S, is
defined by ure Hom(G,,, €*), and any holomorphic section

YyeH(Sy, O(F))
is regarded as a holomorphic function f=f(w,z) on IHx C satisfying
g*f=u@f
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for any ge Gy,. Since I'/[G,,, G,] is a finite group, there exists a positive
integer m such that uy(g)"=1 for geI". Hence g*fM=pp(@)mfm™=f" for
any gel'. In view of Lemma 3, we see that /™ is constant and therefore
J is constant. Thus H°(Sy,, O (F))=0 for any non-trivial F and, conse-
quently, S,, contains no curves.

ii) Each e H°(S,,, @) can be written in the form:

0 0
O=a(w, Z)W-i—b(w, 2)73?

where a(w,z) and b(w,z) are holomorphic functions on H x C. (16)
3

. d . .
implies that Em and ——aoz are I'-invariant. Hence a(w, z) and b(w, z) are
w

also I'-invariant. From Lemma 3, we infer that a(w, z) and b(w,z) are
both constant, while by (16)

Jd 1 90 Jd 1 0

* = *

Bow waw 5% F oz
Hence g§a(w,z)=aa(w,z) and g&b(w,z)=pb(w,z), so a(w,z)=b(w, z)
=0. Therefore 0 =0, and consequently H°(S,,, ©)=0.
Each ne H°(S,,, 2' ® Q) can be written in the form:

n=aw,z)dw®(dwA dz)+b(w,z)dzQ(dw A dz)

where a(w, z) and b(w, z) are holomorphic functions on IH x €. From
(16) we infer that dw®(dw A dz) and dz@(dw A dz) are T-invariant.
Hence a(w,z) and b(w,z) are also I'-invariant. Again, by Lemma 3,
a(w, z) and b(w, z) are constant. (16) implies

gedw@(dwadz)=a? Bdw® (dw A dz),
godz @(dwadz)=ap?dz ®(dw A dz).

Hence g§a(w,z)=(0*p) 'a(w,z) and g&b(w,z)=(ap> ' b(w,z), so
a(w, z)=b(w, z)=0 since a? §, « = 1. Therefore n =0 and, consequently,
H(Sy, Q'®9Q?)=0. By the Serre duality we have

H?(Sy, ©)=H®(Sy, ' ® Q%) =0.
Combined with (2), this proves that H!(S,,, ©)=0, gq.e.d.

§ 3. Surfaces S§")

N,p.q,r;t
Let N=(n;)eSL(2,Z) be a unimodular matrix with two real eigen-
values a, 1/, > 1. We choose real eigenvectors (a,, a,) and (b,, b,) of N
corresponding to « and 1/a, respectively, and we fix integers p, g, r (r+0)
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and a complex number t. We define (c;, ¢,) to be the solution of the
following equation:

bia,—b,a
(17 (c1.c2)=(e1, €2)- N+ ey, €2) +————"—(, )

where e;=4 n; (n;,— 1) @y by +% ni5 (i, —1) @y by +nyy nyy by ay (i=1, 2).Let

G\') o.r.ibE the group of analytic automorphlsms of H x C generated by

2o: (W, 2) > (aw, z+1)
(18) g w,z)—>W+a;,z+bwtc) i=1,2
g, (w,2)— (w,z+—lﬂ:b—2al—).

Let I' be the subgroup {g;, &>, g3> of G\ ,.»..- For each fixed y=Imw,
I' defines an automorphism group I, of R x C~ IR3 inan obv10us manner.
Then g3 commutes with every element of G§) g8 82"'8182=85
and g, normalizes I". Moreover,

(19) the action of I', on R? is properly discontinuous and has no fixed
points.

This follows from the fact that (a,,b;) and (a,,b,) are linearly inde-
pendent over RR. (17), (18) and (19) imply that the action of G\') g O
H x € is properly discontinuous and has no fixed points. We define
S\') 4.r to be the quotient surface H x C/Gy') , ,..- By (18), SUE) v 18
differentiably a fibre bundle over a circle with typical fibre S,= lR3/

where S, is differentiably a circle bundle over a 2-torus. In view of (17)
and (18) we have the following relations between the generators g¢, 81, 82

g3 Of GN,p,q,r,t
g:gi=ggs for i=0,1,2, g'g;"'gig,=¢5,
808185 =81 g3 25, 80828 =g g7 gl.
Note that as an abstract group G§') , ., does not depend on ¢, and that
§V+; o ,/[G;f;,’q,,,;,, G;vf‘);,q.m] ZZ(—BZQ_‘@ZQ@Z,,
where e,, e, +0 are the elementary divisors of N —I. Hence
b(SNpqrr)_l and bZ(SNpqu) 0

Lemma 4. Any I-invariant holomorphic function on IH x € is constant.

Proof is similar to that of Lemma 3.
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Proposition 3. i) Sy') , ... contains no curves.
i) dim H°(S§') 4.re» @)=dim H'(S§') . ... O)=1,
dim H2(S§!), 4.rie» ©)=0.
Thus SY) ,. .. satisfies (A) and (B).
Proof. The proof of i) is similar to that of Proposition 2.

Each 0e HO(S{') , .., ©) can be written in the form
0 0
0= —— o
A, 2)5—+b(w, 2)=—.
where a(w, z) and b(w, z) are holomorphic functions on IH x C. Since

) d
ng:(T"_ for l=0, 1,2,3,

0z
0 1 0 %, é 0

S . ¥ __ — S T | =

Bogw ™2 ow’ S 5w ow “ 0z for i=1,2,
0 0

x ° Y

LE ow  ow’

we get
gdaw,z)=aw,z), giaw,z)=aw,z),
gfaw,z)=a(w,z)+b;bw,z) for i=1,2,
gtb(w,z)=ab(w,z), gFbw,z)=b(w,z) for i=1,23.

Hence, by Lemma4, we have b(w,z)=0 and a(w, z)=constant, ie.,
0 .
0=a 3 Therefore dim H°(S§') . ....@)=1.
Each ne H°(S§"! Q' ® ©2) can be written in the form

N,p.q,rit>

n=aw,z)dw®dwAdz)+b(w,z)dzQ(dw Adz)
where a(w, z) and b (w, z) are holomorphic functions on IH x C. Since

g dw@(dwAdz)=0a* dw®(dw A dz),
g¥dw®dwAadz)=dw®(dw adz) for i=1,2,3,

g¥dz @(dwnrdz)=0dz®(dwAdz),

g*dz @(dwAdz)=dz@(dw Adz)+b;dw®(dwnadz) for i=1,2,
g¥dz @(dwrdz)=dz®(dw ndz),
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we get
gsalw,z)=a"2a(w,2),

g¥aw, z)=aw,z)—b;bw,z) for i=1,2,
gl a(w,z)=a(w,z),

g5 b(w,z)=a""b(w,2),

gFfbw,z)=b(w,z) for i=1,2,3.

Hence, by Lemma 4, we have a(w,z)=b(w,z)=0, i.e., n=0. Therefore
H*(S§), 4.ri6 )= HO (S} 4. vis Q1 @ Q7)=0.

By (2), we conclude that dim H'(St), , ... ©)=1, q.e.d.

It follows from Proposition3 that Sy) ., has a I-dimensional
locally complete family of deformations. In fact, the family is explicitly

given in the following:

={S§"). o.r: Jrec is a locally complete family of

Proposition 4. . H

deformations.

Proof. It is evident that &%, , ., is an analytic family of deformations.
We calculate the infinitesimal deformation

1
SN} qurs /Ot to €H' (SN 3. .1 100 ©)

for each t,. By (18) we find local coordinates (w;, z;) on S§*) , ,., such that

P q.r

= m
w=a™ w;+a;;,

z;=z;+b;;w;+c;j+tmy;,

where {m,;} is a Betti base of 1-cocycles on S§') , .., and a;;, b;;, ¢;; are
constants not depending on t. We define 0;; as follows:

aw; Jd 0z 0 i)
— et = m—

ot ow; Ot 0z; 0z;
Then {0;;} is a cocycle which represents OSK ), aorii/0t]i—y. We assume
that {0,;} is cohomologous to zero, i.e., 0;;=0;— 0; where the

0

ow;

0,’]2

t=to 1=1o

0
9i=ﬁgz—.+gi

are local holomorphic vector fields. Then

1% 0 0 0 0
mge= (o) ~ (g 9 )
J t J J

Bl d d D Y
+o——, =

ow; =bij6—zi aw; 6_2,-= 0z;
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and therefore
m;;=fi—fi—b;jgj, O=gi—a™g;.

From this it follows that {g;} € H°(S§) , 1. 1o O(—K)), while

HO(S§V+; q,r;to> (Q(_K)):O
by Proposition 3. Therefore g;=0, and m;;=f;— f;. Hence {df}e
HO(S{), gori10» 2Y). Since O (S§) 4 1. 0))=0 by Proposition 1,df;=0and

therefore f; is constant. This implies that {m,;} is zero in H'(S) , 1., ©).
Thus we derive a contradiction. Therefore 0SY') . ,../0tl,_,,+0 for
each t,, q.e.d.

§ 4. Surfaces S\) .,

Let N=(n;;)e GL(2, Z) be a 2 x 2 matrix with det N= —1 having two
real eigen-values o, — 1/x such that a>1. We choose real eigen-vectors
(ay, a,) and (by, b,) of N corresponding to a and — 1/a, respectively, and
we fix integers p, g, r (r+0). We define (c,, ¢,) to be the solution of the
following equation:

oty
Q) (e e)=(er ) Nt(ey, ) 4127220

(. 9),

where e;=3 n;y(n;—1)ay by +31;5(niy —1) @y by +niy iy by ay (i=1,2). Let
G\ ). 4. » be the group of analytic automorphisms of IH x € generated by

go: W, z)—>(@w, —2),
(21) g Ww,z)>Ww+a,z+b;wt+c) for i=1,2,

bya,—b, aq )

g3: w,z)— (w,2+ "

Then the subgroup <g3, g, g2, g3 coincides with Gy, .. ..o for cer-
tain (p,, g,)€Z* of which index in Gy, or €quals 2. g, defines an involu-
tion of Si%),, 4 .o free from fixed points. Thus the action of Gy) , , on
HxC is properly discontinuous and has no fixed pomts We define a
surface S ) % to be the quotient surface H x C/Gy), ar It is clear that
S .o has S§E), . as its unramified double covering surface. Hence
Yoy 5 o Contains no curves and ¢, (Sy;) ».q.r)=0. In view of (20) and (21),
W(c have the following relations between the generators g, g1, 22, g3 of
G&)

N.p.q.r . o
g:8i=8:8 fori=12, g7 g; g g:,=g5,
808180 '=81"g%78%, 808280 '=g1"g%28% 808385 '=83""

From this we derive

G p.q,r /[GNpqr’ Npqr] Z®Zel®zez®ze39
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where e, e,+0 are the elementary divisors of N—I and e3—2 or 1
according as r is even or odd. Hence b;(Sy) . ,)=1, b,(SK.). 0. =0.
Therefore Sy ), ar satisfies (A) and (B).

Although S§) , . is very similar to SN}, arses it is @ rigid surface as
will be shown in the following

Proposition 5. dim H*(S,) ,.,,» ©)=0 for v=0,1,2.

Proof. Since 53!, g1.r:0— SN.p.q,» i an unramified covering map,
we have
dim H?(S\) 4., ©)<dim H*(S§% , 4.r;0, ©)=0
and
dim H®(S\).4,r» @)=dim H?(S§t, 4.ri0, ©)=1,

0 . . d
while the baseT of H°(S§%,,, a1, r: 0> @) is transformed by g, into TR

Hence dim H°(S§ ), . ,, ©)=0. By (2), this implies that dim H'(S§,}, ;... ©)
=0, q.e.d.
§ 5. Statement of the Theorem
First we remark that all the surfaces constructed in previous sections
satisfy the following condition:

(C) There exists a line bundle F, such that
dim H°(Q'(F,)) 0.

In fact, this follows from (16), (18) and (21). The following theorem
is a converse to this fact.

Theorem. If a surface S satisfies the conditions (A) (B) and (C) then S
is (complex analytically homeomorphic to) Sy, SN} 4 r.0 OF SN e

The rest of this paper will be devoted to the proof of this theorem.
First, H°(dO(F,))+0 will be proven in §6 and after a preliminary study
of a line bundle L such that H°(d@(L))+0, it will be established in §7
that two cases I and II occur. Then in §8 and 9 it will be proven that
surfaces in Case I turn out to be S, of §2 and that surfaces in Case II
turn out to be either Sy ..., of §3 or Sy, ,, of §4. In the proof, we
shall use the methods and ideas of Kodaira [2, 3; § 11, 13].

Remark. Bombieri informed us that he obtained the following

Theorem. If S satisfies (A) and (B) and if the canonical bundle K is
not real, then S is Sy, .

This theorem is obtained as a corollary to our theorem. In fact, if
dim H'(C(K))+0, we obtain, by (5),

dim H°(d0(K))=dim H'(C (K))=dim H'(C(K))+0,
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since K +K. If dim H'(C(K))=0, we obtain, by (3) and (4),
dim H'(Q'(K))=+0.
Hence, by the Serre duality and the formula of Riemann-Roch,
dim H°(Q'(K)) or dim H°(Q'(—K))*0.

Thus, in any case, S satisfies (C), and our theorem implies that S is
Su> SN ).q.rie OF S§} o, Since the canonical bundles of S§) . .., and

P
S§ ).ararereal, Sis S,,.

§ 6. Proof of H® (d O(F,)) +0

In this section we prove that H°(d((F,))+0 for any F, such that
H°(Q'(F,))#0. In order to prove this, we assume H°(dO(F,))=0 and
derive a contradiction.

In view of (4), the assumption implies that H® (¢ (F, + K)) 0. Hence
Fy=—K by Lemma I(iv). Moreover, recalling Lemma2 and using
O~Q'(—K), we have

dim HO(QI(—K))=1, dim H°(®)=1
(22) H°(Q'(F))=0 forany F+ —KeH'((0*)
H°(d@(F))=0 forevery FeH(0%).
Combining these with (4) and (5), we obtain
dim H'(C(F))=0 forany F#+0, K

(23) .
dim H'(C(K))<1.

Next we prove the following assertion:

There exists a surface S satisfying the conditions (A), (B) and (22) of
which canonical bundle K is defined by {x~™}, where k>0 and {m,;} is
a Betti base of 1-cocycles on S.

First of all, we note that any unramified covering surface S’ of S
satisfies (A) and (B) by Lemma 1 and

H(S,d0(~K)=0 and H(S’, Q'(—K))%0.

In fact, we let 6 be a non-zero element of H°(S, Q'(—K)). Denote by ¢’
the pull back of 6 on S'. Then, since d6+0, it is clear that 6’ +0. Hence,
by (4)and Lemma 2, dim H°(S", d0(— K)) <dim H(S’, 2'(— K))< 1. This
implies that H°(S",d0O(—K))=0 and H°(S, @'(—K))=1. Thus §’ sat-
isfies (22).

Therefore, replacing S by a suitable finite unramified covering surface
we can assume that ¢ (K)=0, since H?( Z)is a finite group (see Kodaira [2],
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Theorem 33). Hence K= {k~™3}, where ke C* and {m,;} is a Betti base
of 1-cocycles on S. By (23), we have two cases: dim H'(C(K))=1 and 0.
If dim H'(C(K))=1, then dim H'(C(K))=1. Hence it follows from
(23) that K =K and x=k. Replacing S by a double unramified covering
surface if necessary, we can assume that x>0.
Ifdim H'(C(K))=0, then, by (23), dim H'(C(F))=0 for any F e H'(C*).
On the other hand, (2) and (22) yield

(24 dim H°(@)=dim H'(@®)=1, dim H*(0)=0.
Since H*(d0(—K))~H?*(C(—K))~H'(C(K))=0 by (5) and (12), we
obtain from (4) and (24) the isomorphism
d: H'\(Q'(-K))=H"(®)— H'(Q*(—K))=H'(0).
Since H?(®)=0 by (24), there exists an analytic family & ={S} .. of

surfaces such that S, =S and the infinitesimal deformation 5[—' eH'(@)
=0

does not vanish. Since ¢,(S,)=c¢,(S)=0, the canonical bundle K, of S, is

defined by a 1-cocycle {x; ™/}, where k,e C* depends holomorphically

on t. Moreover, we can choose local coordinates (z;, w;, t) on % such

that dz; Adw; =« dz; Adw;. We have

oS dk
d|— ): o !
(at t=0 {m”K dt l=0}
: . e . a8,
(see Kodaira [2], pp. 715-716). Since d is injective and ar +0, we
=0
obtain d? #+0. Hence there exists a point t,, |fy|<e, such that
t=0

K, =T €Xp (Zn]/ -1 %) ,m,n being integers and r>0. By Lemma 1,

S,, also satisfies (A) and (B). Since H'(S,C(F))=0 for any F#0 in
HI(S, C*), we obtain H'(S,,C(F)=0 for any F=0 in H'(S,,, C*).
Combining this with (12) and (13), we obtain H?*(S,,, €C(—K,;))=0.
Hence it follows from (5) that HO(S,,, d0 (- K,,))=0and H'(S,,,d0(—K)))
=0. In view of (4), we infer that

dim H°(S,,, @' (—K,)))=dim H(S,,, 2*(—K,))=1.

)

Choose a suitable m-fold unramified covering surface S;, of S, . Then
the canonical bundle K;, of S;, is defined by {()~™-} where r™>0.
S;, also satisfies (A), (B) and (22) by the previous argument. Thus it suf-
fices to consider S;, instead of S.

In what follows in §6 we assume that S has the canonical bundle
K = {k~"} with k>0.
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Now, by (22), we can take a non-zero holomorphic vector field 6 on
S. Since S contains no curves and ¢, (S)=0, @ does not vanish anywhere.

Hence we can choose local coordinates (z;, w;) such that 6 = T By
0 _p_ 8 _0z 3 ow 0 '
0z,  0z; dz; dz dz; ow;’

we obtain 5

i=l nd sl =0
0z; 0z;

This implies that

wizgij(wj)a

z;i=z;+ f;;(w)),
where g;; and f;; are holomorphic functions of w;. Moreover
dw;ndz;=gi;j(w;)dw;ndz;,

jiﬁ (w)). This shows that the l-cocycle {g};} defines the
d

anti-canonical bundle —K. Thus {g;;} is cohomologous to {x™}, i.e.,

where gi;(w;)=

g;j(wj)zgi_l(wh z;)- K™ g;(w;, ),

o . ; : 0
where g; is a non-vanishing holomorphic function. Applying 0= e

0 . . .
F to this equation, we obtain

J

Ologg;/0z;=0log g,/0z;.
Hence y=01log g;/0z; is constant and
gi= gi(wi’ Zi) =e’™ h,-(W,-),

where h;(w;) is a non-vanishing holomorphic function of w;. Conse-
quently, we obtain
e”‘ hi (W') dwi = Kmlj e”j hJ(WJ) dWJ .

Comparing this with (22), we see that y=0. In fact, if y=0, then
{h;(w;)dw;}e H°(dO(—K)).

By replacing | h;(w;)dw; and yz; by w; and z;, respectively, we obtain
local coordinates (w;, z;) such that
0 Ja 1
25 ¢ L= My g% . .
(25) e dw;=Kk" e¥ dw;, PR P

and w;=g;.(w,), where gij is a holomorphic function of w;.



284 M. Inoue

For any holomorphic function f= f(w), we write f” =£—f— and denote
by &(f) the Schwarzian derivative of f, i.e, dw

S(UN=2(f"If Y =(["If).
Applying this to g; =g;;° g;x» W€ obtain
(26) 0(gi)=0(g;) (g}k)z"‘a(gjk)-

Since gj,=gi;- gjx» 1gi;} defines a line bundle E which is analytically
equivalent to — K in view of (25). Let m be an arbitrary integer. Any local
holomorphic section ¢ of mE is written in the form {¢,}, where holo-
morphic functions ¢; satisfy ¢;=(gi)" ¢;. We define ¢ to be {0¢;}.
Since 6g;;=0, we have 0¢;=(g;)" 6¢;. Thus 0¢ is also a local holo-
morphic section of mE. Let 0, (mE) denote the subsheaf of O(mE)
consisting of germs of holomorphic sections ¢ such that 09 =0. It is
clear that 8¢ =0 if and only if ¢; are holomorphic functions of w; only.
We have the exact sequence

(27) 0—0,(MmE)— 0(mE)-% O(mE)—0.

The formula (26) shows that {5(g,~j)}eH‘((9w(—2E)). Since O(—2E)=
0(2K), we have H*'(0(—2E))=H"(0(2K))=0 for each v by Lemma I.
Combining this with (27), we infer that H'(0,,(—2E))=0. Consequently,
there exist holomorphic functions ¢;=¢;(w;) such that

(28) 5(gij)=¢j—(g§j)2 b

The differential equation &(x;)=¢; has a solution x;= x;(w;) with non-
vanishing derivative x;j(w;) defined on some neighbourhood. Hence, by
an appropriate choice of the local coordinates, we may assume that
w; — X;(w;) is a biholomorphic map. We define a holomorphic function
li=1(x;) of x; by ;o x;=X;°8i;- Then we obtain

o(l;)) (x})z +5(xj)=5(xi)(g;‘j)2 +0(g:))-

Comparing this with (28), we obtain d(/;;)=0. This implies that [;;(x;)
is a linear function of x;, i.e.,

x;(wi) =(a;; x;(w;) + bip/(ci xi(w))+dy)

where a;;, b;j, ¢;;, d;; are constant and a;; d;;—b;jc;;=1. Replacing x; (W)
and log(Jez'/x:-(wl-)) by w; and z;, respectively, we obtain by (25) local
coordinates (w;, z;) such that

0 0

(29)
w;=(ay;wi+b))/(c;;w;+dy).
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This formula shows in particular that any one of the holomorphic
functions w;, say w;,, can be continued analytically along any continuous
curve on § and the totality of analytic continuations of w;, forms a
multi-valued meromorphic function W on S. Consider W as a single-
valued meromorphic function on the universal covering surface S.
Evidently W has no points of indeterminacy on S. Hence W is a holo-
morphic mappings of § into IP!.

By means of (29), we obtain

z/2 _ -m, /2 z,/2 ijl2 z,/2
eMt= (k™% e w4 M2 g, e%?),
wi €2 =+ (k™2 a w612 4 pmal? b;; e?).

By replacing w;e*/? and ¢*/? by ¢, and 7;, respectively, we obtain local
coordinates (;, »,) such that

&i=a; &+ Bin,
ni=7 8j+0yM;,

and ¢;/n;=w;, where a;;, f;;, 7ij» 0;; are constant. The totalities of analytic
continuations of &; and 1;, form single-valued holomorphic functions ¢
and x on S such that

(30)

g i=a(g)é+p(gn,
g*n=y@)¢+0(g)n,

for any ge G (the covering transformation group of § over S),and Ep=W,
where a(g), 5(g), 7(2), (g) are constant. It is evident that ¢ and 7 cannot
vanish simultaneously, and that d& Adn does not vanish anywhere.
Hence @=(&, ) defines a holomorphic non-degenerate mapping of S
into C*-0.

Proposition 6. We may assume that

1 =

€2))

32 Im W= I
(32) m 2T (En—<E,n)>0
and

33 a(g) p(g) GL* (0. R

o (y(g) sy O CR)

in the formula (31).

. 0 0
Proof of Proposition 6 (due to Kodaira). Let 9=éi¥+mﬁ and

0=the pull back of 6 on §. We denote by p(P, {, 1) the integral curve of
g passing through PeS where {eC. Then p(P,{,t) is defined for

20 Inventiones math , Vol 24



286 M. Inoue

— o0 <t<+00, since f is complete on S. Let f(P,{)=p(P.{, 1). Then
f is a holomorphic mapping of S x € onto S, and

E(f(P,O)=¢(P)- ¢,
1(f(P,0)=n(P)- €.

Let 7 be the canonical mapping of €*—0 onto IP'. Then
no®(f(P,{)=W(P).

We denote by Cj the orbit f(P, €) passing through P. Then, W(Cp)=
W(P). If Cpr Co+ ¢, then Cp=Co.

Now, take a sufficiently small disk 4, transversally to Cp s0 that W
is biholomorphic on Ap. Since @(f(P,)=(¢(P) ¢, n(P)€), Pof:
Apx € — 1~ Y(W(4p))~ W(4p)x C* is the universal covering. Let %p=
f(4px @). Then, f: 4pxC—%p is the universal covering and &:
WUp— =1 (W(Ap)) is an unlimited covering. Let S denote the set of orbits
C, in $, and let W(P)=CpeS. Then W is a mapping of S onto S. We
define a subset % =3 to be open if and only if W —"'() is open in S. Then
W is continuous and § is connected. Since W~ (W (%)= is open
in §, %p=W (%) is open in S. Thus, S=| WUy is an open covering of S
and %, is homeomorphic to 4p. ¥

Next, we prove that S is a Hausdorff space. Suppose Cp+Co- If
W(Cp)=W(P)+ W(Q)=W(C,), we choose 4p and 4, such that

W(dp) A W(dg)=9.

Then %, %= § and hence %, Ny =§. If W(Cp)=W(Cy), we choose
Apand Ay such that W(4,)= W (dg). Then, & (%p) =P (). [ U Up+ 9,
then %,=%y and Cp=Cy, since %p and %, are unlimited covering
spaces of @(%p)=®(%,). Hence %Pn%g=¢ and @pnﬂigz @¢. Thus S
is a Hausdorff space. _

Now, let ¢(Cp)=W(P). Then ¢ is a continuous mapping of § into
IP! and ¢ o W (P)=W(P). Moreover, ¢ is a homeomorphism of Up onto
W(dp)~4p. Hence ¢ is a local homeomorphism of S into IP'. This
implies that S has a structure of Riemann surface. We denote this Rie-
mann surface by C. Then W: § =5 and ¢: C=5—1P' are holo-
morphic. Moreover, W:S§— Cisa € or C*-bundle over C. Since any
geG maps orbits to orbits, g induces a biholomorphic mapping g:
Cc—C.

Let W, be the C*-bundle over C induced by ¢ from n: C? —0—1IP.
Then § is the universal covering of W,. Since n,(§)=0, m;(C)=0 and C
is P!, € or H.

If C=IP!, then ¢: C —»IP' is an isomorphism. Hence We=C?-0
and §=@2—0. Thus S is a Hopf surface. This contradicts (B).
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If C=C, then
g*W=g(W)=a(@) W+b(g),
where ae Hom (G, C*) and b (g)e €. Hence dW is an element of H(dO(F,)).
This contradicts (22).
Hence C=H and
i 4(8) W+b(g)
*We=g(W)=—2— 2
EW= = g Wrde
where

(a(g) b(g)
c(g) d(g)
Since dW =0 everywhere on §, this implies that there exist local holo-

morphic functions W; on S such that w;=¢,(w;), where d¢; %0, Im w;>0
and

) eSL(2, R).

Ty

CW—{-du ’

L e |

. a;W;+b;
wi=—_—

where

.. b..
(“” ”) eSLQR).
Replacing log(e* - ¢;) and w; by z; and w;, respectively, we may assume

that
a Imw,;>0,

and
(a“ b"f) eSL,R),
i dij

in (29). Hence

1 _
Imw,;= iMi—&in)>0,
271 Eitii—&im)
and
(“‘f 4 "f) eGL* (2, R),
i 0
in (30). By analytically continuating ¢i, and n,,, we obtain (32) and (33),

g.e.d.

We denote by 2 the image of @ in €? and denote by (X +]f =1y,
U+)/ —1V) the global coordinate of €2 such that (X +1/—1 Y)ed=¢
and (U +1/—1V)o @=p. The formula (32) leads to

@cg={(X+]/—_l Y,U+)/ —1V)|det (:/, §)>0}.

20*
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We identify ¢ with GL* (2, R) as a differentiable manifold, and consider
@ (P) as a matrix of GL* (2, R) for PeS. By (33) we know that
0

0 0 0
0,=9 (X U au) 0,=0 (Y6Y+V6V)

0 0 0 0
= ¢p* —_— =* —_— —_—
0= (X Eh% —+U 0V) and 0,=® (Y6 +V 6U)

define global vector fields on S. Hence any linear combination of 0,,0,,
6,,0, is complete on S. Let p(P,a,b,c,d.t) be the integral curve of
a6,+b62+c93+d(94 passing through PeS where a,b,c,deR. Then
p(P, a,b,c,d,t) is defined for —co <t< + 0. Let

fela,b,c,d)=p(P,a,b,c,d,1).
Then fp is a differentiable mapping of R* into S, and

d
(34) ®(fp(a,b, ¢, d))=D(P)- exp [i’: a] .

This implies that 2 coincides with 4. Let
V.= {(a,b,c,deR*|a’+b>+ > +d*<r},

Up=fp(V,) and Up=®fp(V, ). If we take a sufficiently small r>0, then,
by (34), fp: V,— Up and &: U,,—» Up are homeomorphisms for any PeS§.
We take an r' <r such that

exp V, -expV,cexpV,.

Let Up=fp(V,) and Up=® o fp(V,). Then we obtain that U, > Uy for any
Qed~(Up). Let U be a connected component of ¢~ ' (Up). Then

Up> Upo @ (0)

for any Qe U. Since UQn U+¢ and @: U,— U, is a homeomorphism,

we obtain that U,> U. Hence U=d" 1(U,,)mU and @: U U, is a
homeomorphism. Thus : §>9=9 is evenly covered. Namely,
S — % is the universal covering.

«(g) B8 ))

Let I denote the subgrou ( eG) of GL* (2,R) and
g p{v(g) o(g) . } R

let p: GL* (2, R) — GL* (2, R) be the universal covering group of GL* (2,R).
Then by (31) we establish that S is diffeomorphic to F ~GL*(2,R)
where I is a discrete subgroup of GL* (2, R) such that p(©)=T.

1
Let I;={A|Ael, det A=1} and Fl={—dl/,—t_;A[AeF}. It is easy
e
to see [I,[]1=[I, '] <I;. Note that I, T and I are finitely generated.
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Now we prove that
(35) T isirreducible over C. I is also irreducible over C.

Assume that I' is reducible over C, then we can find a matrix
AeGL(2, €) such that

<l b= 2

51) —4 (f’) . Then, by (31),

for any geG. Let ('1

g*m=d(g)n,.
Thus dn, defines a non-zero element of H(d0 (F,)). This contradicts (22).
Furthermore, we prove that

(36) I is discrete in SL(2, R).

Ker pc GL* (2,R) is an infinite cyclic subgroup of the center of
GL*(2,R). Let ¢ be a generator of Ker p and let [y =1" np~1(I;). We
write 4q=<g,[,>=p~'(I;y) and 4=(g,[y=p~'(I'). We assume that
Ip 1s not discrete in SL(2, R). This implies that 4, is not discrete in
GL* (2, R). Thus there exists a sequence {g,},>; of elements g, of 4,
such that

g,—id in GL*(2,R) as n— o
and g,¢(g) for any n=1. For any gel’,
8.88 '¢ '—>id in GL*(Q2,R) as n—w.
Since g belongs to the center of GL* (2, R), we have
[4, A< [, T,

Note that g, g g, ' g7 'e[4, 4] for any n>1 and that I is discrete in
GL* (2, R). Hence

8,88, g '=id for any sufficiently large n.
Recalling that I is finitely generated, we obtain
g.2=gg, forany gel' and for n>0.
Let 4,=p(g). Then it follows that A,+I and
A,A=AA, forany Ael’ andfor n>0

and det 4,=1. Since I" is irreducible by (35), this implies that 4,= —1I
for n>0 by virtue of Shur’s lemma. This contradicts that A,+1 and

A,—»! in GL*2,R) as n— .
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Finally we prove that
(37) I is discrete in SL(2, R).
If I} is not discrete in SL(2, R), there exists a sequence {A4,},>1 of
elements of I} such that
(38) A,—1 in SL(2,R) asn—o, A, #1.
For any Ael;,
A,AA;'A '] in SL(2,R) as n—oo.

Since A,AA;'A~'e[I},;]1<I; and I is discrete in SL(2, R) by (36),
we obtain

A,AA;'A" =1 for sufficiently large n.
Recalling that I} is finitely generated, we obtain
A,A=AA, forany Ael; and for n>0

and det 4,=1. Since I is irreducible by (35), this implies that A4,=—1
for n>0 by virtue of Shur’s lemma. This contradicts (38).

Now let I, denote the linear fractional transformation group of H
associated with I'. Then (37) implies that I, is properly discontinuous.
From (31) we see that W={/n gives a holomorphic mapping of § onto
H/I,. Hence there are many curves on S. Thus we arrive at a contra-
diction. This establishes H°(d0 (Fy))#0.

§ 7. Two Cases

Throughout this section we denote by L a line bundle such that
HO(d0(L))+0. After exhibiting certain properties of the line bundle L,
we shall prove a key proposition in which it will be shown that two
cases occur.

Property (@). If 2L+ K =0, then L*+K, K and L=L.

If L=K or K, then 2 L+ K =0 implies that 2K + K =0 or 2K+K=0.
In the latter case, K = —2K =4K. Thus, in any case, 3 K =0. This contra-
dicts Lemma 1. B

Next we assume that L+ L. Since LK, K, it follows from (5) that

dim H°(d0(L))=dim H'(C (L))=dim H'(C(L))=dim H*(d0 (L).

Combining_this with Lemma 2, we obtain L+ L+ K =0, while 2L+ K=0.
Hence L=L.

Property (B). dim H°(dO(L))= 1.
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We assume that dim H°(d@(L))22 and derive a contradiction. By
Lemma 2, we have 2 L+ K =0. Thus, by Property (x), L+K and L=L.
Hence L is represented by {l, j}» where |;elR—0 and, by (5), we can
choose two linearly independent elements {a;,} and {b, ;1 from H'(C(L))
such that a;, b;eR. Write £=9-"({a;;}) and n=29""({b;}). Then, since
¢ and n belong to H°(dO(L)), we have ¢={d¢} and n={dy,), where
local holomorphic functions ¢&; and #; satisfy

&i=1yéi+ay,

(39)
ni=lin;+b;.

We note that, by Lemma 2, & An={d¢& A dy,} does not vanish anywhere.
Let w;=Re&;+) —1Rey; and z;=Im &i+yY —1Imuy;. Then, by

(39), we obtain
(40) wi=ly, wi+(ay+1/ —1by),

where dw; A dz; Adw; A dZ; does not vanish anywhere. Hence, by taking
(w;, z;) as local coordinates, we can introduce a complex structure S*
on the underlying differentiable manifold of S. Clearly S* satisfies the
condition (4). Let I* be a line bundle on S* defined by {I;;}. Then
L*+0 in H'(S* 0*). In fact, if I*=0 in H'(S*, 0*), then z; does not
vanish anywhere. Hence, by (40), dlogz;=d log z; is a holomorphic
l-form on §*. This contradicts Proposition 1. Since {z;} defines a holo-
morphic section of L*, $* contains a curve. Thus, by the result of Kodaira
quoted in §0, S* is a Hopf surface or an elliptic surface with P, (8%)=
dim H°(S*, ©(12K*))>0, where K* is the canonical bundle of S*. If
S* is a Hopf surface, then =, (S)=mn,(S*) contains Z as a subgroup of
finite index. Hence S is itself a Hopf surface by Kodaira [3]. This is
absurd. If §* is an elliptic surface with P,,(S*)>0, then dim HO(S*,
O(—24 I*))>0since 2* = — K* by (40). This contradicts that dim H° (S*,
O(L*))>0 and L*+0.

In view of (5), Property (B) implies
(41) dim H'(C(F))<1 for F+K.
Property (y). mL+0 for any non-zero integer m.

We assume mL=0 for some non-zero m and take a non-zero
¢eH(dO(L)). Construct a finite unramified covering p: §’— S such that
p*L=0. Then p* ¢ +0eH(S', d(), which contradicts h'+°(8)=0.

Writing L={l,;}, I,;eC*, we can describe a nonzero EeH (dO(L))
as {dw;}, and hence we have

w[=ll'jwj+aij’ aUGC.
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Property (8). {a;;} +0 in H'(C(L)).

Otherwise, we have a;eC such that a;;= —a; +1;;a;. Hence w; +a;=
l;(w;+a;. Thus we obtain a non-zero element {w;+a;}eH°(O(L)).
Then L=0 by Lemma 1 (iv). This contradicts Property (7).

Now we take a non-zero element & of H(d© (Fp)) whose existence is
assured in § 6. We write Fo={ f;;}, K={k;'}, fij, ki€ C* and E={dw;},
where dw,= f;;dw;. Since ¢,(S)=0 and S contains no curves, &={dw;}
does not vanish anywhere. Hence, choosing appropriate holomorphic
functions z;, we obtain local coordinates (w;, z;. We have

dwi/\dz,=(gl—l-Ku-gj)dw_,/\dzj,

where the g; are non-vanishing local holomorphic functions. Replace

j'gi dz; by z;. Then we have

(dz,- —-f;..l- - Kij dZJ) A dWJ':O.
Hence we obtain local coordinates (w;, z;) such that

W,'_—' ,~~W<+ai-
(42) ’_l’ !
zi=fij | Kijz;t 8w,

where the a;; are constants and the g;;=g;;(w;) are local holomorphic
functions of the w;. Hence we obtain

B o, 0
2 Jike oy

Jj

Let m be an arbitrary integer. Any local holomorphic section ¢ of

mF,—K is written in the form {¢;}, where holomorphic functions ¢;
0b,  me1 09, 00 _ (00,

oz, Y dz;’ 0z | 0z

holomorphic section of (m+1)Fy. Let O, (mF,— K) denote the subsheaf

of @(mF,—K) consisting of germs of those holomorphic sections ¢

satisfy ¢, =f;7 k;;¢;. Since gives a local

which satisfy %{l:O. Note that ¢ satisfies —?%:0 if and only if ¢; are

holomorphic functions of w;. We have the exact sequence

(43) 0— @, (mFy,—K)— O(mF,—K)—0(m+1) F;)>0.
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From (42) it follows that
gik(Wi)‘—'gij(W’)"’fij_l Kij 8ik(w)),
giw)=gi;(w)+ fi > ki g,k (W),
g;';c(wi)zgij(wi)+fij Kij g]k( w;),
namely
{gi}eH" (0, (-F,—K)),
(44) {gi}eH' (0, (-2F, —K)),
{gi}eH' (0, (-3F, —K)).
Proposition 7. Only the following two cases occur:

Case (I). H'(0,(—2F,—K))=0

Case (IT). H'(0,,(—3F,—K))=0, and either 2F,+K=0 or 2F;+2K
=0.

Proof. If dim H'(0,,(—2F,—K))+0, then, by Lemma 1(iv), (43) and
Property (y), we have dim H'(¢(— 2F, — K)) +0. Hence, from Lemma 1(iv),
it follows that —2 F, — K =0 or K. If moreover dim H'(0,,(—3 F, — K))#*0,
then, by the same reasoning as above, we have —3F,—K=0 or K.
Hence K, 2K or 4K =0. This contradicts Lemma 1, q.e.d.

Proposition 8. In Case (1), there exist local coordinates (w;, z;) such
that

wi=fijw;+a;
45) -
z,-=f,, kijzj+bij,
where a;;, b;;€C, {a;;} 0 in H'(C(F,)) and {b;} +0 in H,(C(—F,—K)).

Proof. By hypothesis and (44), {g};}e H'(0,,(—2F,—K))=0. Hence
there exist holomorphic functions ;= h;(w;) of w; such that

gu(wx) fu Kij h/ W )—h:(wl)
Thus we obtain
gu j;j )_hi(wi)+bijs

where b;;e C. Replacing z;+ h;(w;) by z;, we obtain, in view of (42), local
coordlnates (w;, 2) satlsfymg (45). By Property (), {a;;} +0 and {b;;} +0,

g.e.d.
Proposition 9. In Case (I1), there exist local coordinates (w;, z)) such
that
(46) wi=fijw;+a;

z;=fi; 1 kijz;+bijwi+cyj
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where a;;,b;,c;;eC and {a;}+0 in H'(C(F)) and {b,/f;;)+0 in
H'(C(-2F,—K)).

Proof. By hypothesis and (44), {g{;}eH'(0,,(—3F,—K))=0. Hence
there exist holomorphic functions h;= h;(w;) of w; such that

g:;(wl)=./;_[- 3 Kij h}' (Wj) —hi (wy).

Thus we obtain

gi;w)=1fij ' Kij hj(w))—h;(w)+b;;w;+c;;
where b;;, ¢;;e C. Replacing z;+ h;(w;) by z;, we obtain, in view of (42),
local coordinates (w;, z;) satisfying (46). By Property (5), {a;,} +0. Now
we assume that {b;;/f;;} =0 in H'(C(—2F,—K)). Then there exist con-
stants b; such that _,

bij/fijzfi‘ Kij bj_bi-
Hence
zi+bwi=fi7 ' ki(z;+bjw) +bia+ ¢y,

and therefore {d(z;+b;w;)}eH (d0(—F,—K)). Hence 2F,+2K+0 by
Property (y) and therefore 2F,+ K=0. Thus {dw;} and {d(z;+b;w,)}
give two linearly independent elements of H°(d( (F,)). This contradicts
Property (), q.e.d.

Propesition 10. 2 F, + K 0.

Proof. We assume 2 F,+ K =0 and derive a contradiction. By Prop-
erty (), Fy is real, and thus we can write F,={f;;}, K={x};'}, where
fij» ki€ R =0, fif =K.

In Case (I), {(w;, z;)} in Proposition 8 defines two linearly independent
elements {dw;} and {dz} of H°(d0O(F,)), since F,=—F,—K. This
contradicts Property (f).

In Case (II), we use w;, z;, a;;, b;;, ¢;; in Proposition 9. In view of (41)
and Proposition 9, we obtain dim H'(C (F,))=1. We can take non-zero
element {r;;} of H'(C(F,)) such that r;;e R, since F, is real. Then

ai,-=a r,,-f-fu aj—a,-,

where ae C* and a;eC. Similarly if we take non-zero element {s;;} of
H'(C(—-2F,—K))=H"(C) such that s;;eR, then

bij ij=bsij+bj_bi’

where be C* and b;eC. Hence, replacing (w;+a;)/a, z;+ b;(w;+a;)/ab,
rij» fij Sij bY Wi, 2, a;j, by, respectively, we can assume that a;; and b;; are
real in (46). Then it is evident that

{Im ¢;;} eH'(C(—Fo— K))= H'(C (F)).
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Thus

Im Cij=C a,-j-{-f,-jcj—c,-,
where ¢, ¢;eR, and hence
zi—Y —llew;— f,, V—-(CW )} +by; Wit Cij— 1/—7 Imc;;.

Replacing z,—) —1(cw;—c;) and ¢;;—)/ —1-Imc; by z; and ¢;;, we

can assume that a;;, b;;, ¢;;€ R in (46).

The analytic continuations of w; and z; produce holomorphic functions
W and Z on § such that

) g* W=g, (@) W+alg)
g*Z=p;,(8)Z+b(g) W+c(g), for geG,

where piz, (2), a(g), b(g), c(g)eR and dW A dZ does not vanish anywhere.
Let U=Re W, V=Im W, X=ReZ and Y=ImZ. Then, by (47), we

obtain
g* U=1r,(g) U+alg)
g* V=gV
g* X =pp, (@) X+b(@) U+tclg)
g* Y=y (@) Y+b(g)V for geG,

(8)

where dU A dV AdX A dY does not vanish anywhere.
We take a normal subgroup G’ of finite index in G such that

r,(g)>0 for geG/,

and take the finite unramified covering surface S’ of S corresponding
to G'. We consider U, V, X, Y as multi-valued functions on S.

Let X be {PeS’|V(P)=0}. If Z is empty, V does not vanish anywhere.
We may assume that ¥ >0 everywhere. Hence V gives a differentiable
non-degenerate fibering of S’ over T'=R*/{u (g)|geG’> with con-
nected fibre S, over reT'. The restriction H'(S’,€)— H'(S,,C) is a
zero-mapping and the formula (48) implies that Ir,(8) " b(g) is an ele-
ment of H!(G)~H'(S’, €). Hence the restriction Y|S, of Y to S, is a
single-valued function on S,, while d(Y|S,)#0 everywhere on S,. This
contradicts the compactness of S,. Thus X is non-empty.

Let S*={PeS'|V(P)20}. Then S* is a compact manifold whose
boundary is X. Let M be a connected component of S* and M the
interior of M. Then M is connected and the inclusion of M into M is a
homotopy equivalence. Let p: S— S’ be the universal covering and M
a connected component of p~'(M). We denote by @ the differentiable
non-degenerate mapping of S into R* defined by ®(P)=(U (P), X(P),

Y(P), V(P)) for PeS. Then @ sends M into R3xR*.
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Let (4, x, y, v) be the global coordinate of R*. By (48) we know that

0 0 0 0
— D* I . — h* —— —
0,=® (y é’x+v au)’ 0,=0 ( 6y+v Ov)

0,= o (u%) and 0,=o* (”a_ay)
define global vector fields on S'. Hence any linear combination 6(a, 8,7,9)
=a6,+p0,+y05+50, of them is complete on S. We denote by
p(P,a, B,v,0,1) the 1ntegra1 curve of (x, B,y, 5) passing through PeS.
Then p(P,a, /3 y,0,1) is defined for — oo <t< +00. Moreover, by the
definition of M we obtain that p(P,a, 8,7, 9, t) lies in M for each Pe M.
Let fp(o B, 7,0)=p(P,0, B,7,0,1). Then fp is a differentiable mapping
of R* into M for PeM We can deduce from the definition of f, that

Ueofp(@ B,7,6)=U(P)+a V(P) (expf—1)/B,
Xofpla, B, 7, 5)=X(P)+(OC Y(P)+y V(P))-(exp f—1)/B
+adV(P)- (B expf—exp B+ 1)/8%,
Yo fp(a, B,7,0) =Y(P)-exp f+0V(P)-exp B,
Vofp(, B,7,8) =V(P)-exp p.

This implies that @ofp: R* > R*xR* is a homeomorphism. Hence
fpiR* > Up=f,(RY)<M and &: %,— R> xR+ are homeomorphisms.
From this we can easily derive that %, =M. Thus &: M >R3> xR* is a
homeomorphism.

Let I' be the subgroup of G’ formed by topological transformations
which send each point of M into M. The formula (48) defines a re-
presentation R: I'— R(I') of I' by affine transformations of R3>xR*.
@ induces a homeomorphism of M onto R3 x R*/R(I'). We note that
Ur,(g))*1 for certain gerl. In fact, if yg (g)=1 for any ge[, then (48)
implies that the restriction V|M of V to M is a single-valued function
on M since the inclusion M — M is a homotopy equivalence, while
VIM=0 on BM__and dV+0 everywhere in M. This contradicts the
compactness of M. Replacing W—(a(g,)/(1— p5, (g,))) and

Z —{c(g)+bg)(a@)/1—pr, @)L — 1r, (81)

by W and Z, respectively, we can assume that a(g;)=c(g;)=0 in (47) and
(48). Hence there exists an element g;el” such that R(I') is generated by

R(gy): (4%, 9,0) = (g, (81) s Mg, (81) X+b(g1) v, pig,(81) y+b(g1) v, ug,(g1)v)-

Thus we obtain that =n,(M)=<g,). Since the inclusion MM is a
homotopy equivalence, we obtain that =, (M)=<{g,>. Hence, by (48),
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@ induces a homeomorphism of M onto
{(u, x, y, )eR*|v20, (u, X, y, v)£0}/(R(g1)>-

Let C={PeM|U(P)=V(P)=0}. Then C is a compact real submanifold
of 8’ and is defined locally by W=0. Hence C is a curve in S’ and therefore
S contains a curve. This contradicts (B), q.e.d.

Remark. It is Kodaira who observed that one can choose such local
coordinates as in Proposition 8 and 9.

§ 8. Case (I)
By Lemma 2 we obtain

dim H°(dO(F))=0 forany F+F,, —F,—K.
From this and (5) it follows that
(49) dim H'(C(F))=0 forany F=0, K, Fp, —F,—K.
In view of Proposition 8
(50) dim H'(C (F))#0 and dim H'(C(—F,—K))*0,
where Fo+ — Fo— K by Proposition 10, and F,, — Fo— K=0.
Proposition 11. If F, is not real, then F,=K and —Fo— K is real.

Proof. Suppose that F, is not real. Then, by (50), dim H'(C(F,)=
dim H'(C(F))+0. Hence, in view of (49), we obtain

FozK or -'FO—K

If F,=K, then —F,— K= —K—K is real. We assume Fo=—-F,—K+K
and derive a contradiction. If F,=K, then K=F,= —Fy—K=—-2K.
This implies that 3 K =0. This contradicts Lemma 1. Thus F,+K. (41)
and (50) lead to

dim H'(C (Fy))=dim H'(C(- F,— K))=1.

We use w;, z;,d;;, b;; in Proposition 8. Since {a;;} +0 in H'(C(F,)), we
see that {a,}+0 in H'(C(Fp)=H'(C(~F,—K)). Since {b;}+0 in
H'(C(—F,— K)), we obtain

a;=ab;+fij ' k;ja;—a;,

where aeC* and a;eC. Replacing (az;—a;) by z;, we may assume in

45) t
(45) that i o

z; = fijz;+ai;.
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Let €i=wi and "’,’zfi. Then

(51)
ni=fijni+aij

and d& Adn; AdE; Adi; does not vanish anywhere. Hence, by taking
(&, 1) as local coordinates, we can introduce a complex structure S*
on the underlying differentiable manifold of S. Clearly S* satisfies the
condition (A). Let F§ be a line bundle on S$* defined by {f;}. Then
FF=+0 in H'(S*, 0*). In fact, if Ff=0 in H'(S*, 0*), then F¥=0 in
H'(S*,€*) by Proposition 1, and therefore F,=0. This contradicts
Property (y). By (51) {({;—#,)} defines a holomorphic section of FF.
Thus S* contains a curve, and, by the result of Kodaira quoted in §0,
S* is a Hopf surface or an elliptic surface with

Py, (S*)=dim H°(S*, 0(12K*))>0,

where K* is the canonical bundle of S*. If S* is a Hopf surface, then
7, (S)=m,(S*) contains Z as a subgroup of finite index. Hence S is itself
a Hopf surface by Kodaira [3]. This is absurd. If S* is an elliptic surface
with P, (S*)>0, then dim H°(S*, O (—24F))>0 since 2F¥= —K* by
(51). This contradicts that dim H°(S*, ¢ (F§))>0 and F¢+0, g.e.d.

By (45) and Proposition 11, we may assume, without loss of generality,
that F, is real.

Proposition 12. F, and — F,— K do not coincide with K.

Proof. We assume that F, or — F,—K coincides with K, and derive
a contradiction. If F;=K, then —F,— K= —2F,isreal. If —F;,— K=K,
then —F,—K=K=—F,—K is real by Proposition 11 (where we
consider — F, —K instead of Fy). In any case, — F,— K is also real. Hence
we may assume, without loss of generality, that F,=K. We can take
transition functions as F, = {k;;'} = K, where k;;€ R —0. Then (45) turns
out to be
wi=k;'w;+a;,

2,

Zi =KU Zl+bl."

It follows from (41) and (50) that dim H'(C(—2K))=1. Let {r;}+0
in H'(C(—2K)), where r;;e R. Then

b”=b rU+K,ZJ bj—bl

where beC* and b,eC. By replacing (z;+b;)/b and r; by z; and b,
respectively, we may assume in the above formula that b;;e IR.
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The analytic continuations of w; and z; produce holomorphic functions
W and Z on S such that
g* W=x(g)™' W+alg),
g*Z=x(g)?Z+b(g) for geG,
where k=pu_g, x(g), b(g)eR and dW AdZ does not vanish anywhere.
Let U=Re W, V=Im W, X=ReZ, Y=Im Z. Then
g*U=k(@®) ' U+a g
grV=x(@® ' V+a (g
g* X=x(g)?’ X +b(g)
g*Y=x(g?Y for geG,

(52)

where a,(g)=Rea(g) and a,(g)=1Im a(g). Consider Y as a multi-valued
differentiable function on S, and let ¥ be {PeS|Y(P)=0} and X, a
connected component of £. If X is not empty, X, is a compact 3-dimen-
sional real submanifold of S. (52) implies that o =dU AdV A dX gives a
closed real 3-form on S. Since wy=w|Z, gives a volume form on Z,, we

obtain
| 0+0.
2o

This implies that X, is not homologous to zero on S. Let S* be
{PeS|Y(P)=0}.

Then S* is a compact manifold whose boundary is X. Each 1-cycle y
representing an element of H,(S*, €) can be taken from the interior of
S*. Hence y - £,=0. In view of the duality this implies that each 1-cycle
in S+ ishomologous to zero in S, namely the inclusion H,(S*, €)— H,(S,C)
is a zero mapping. Therefore the restriction Y|S* of Y to S* is a single-
valued function on S*, while Y|S*=0 on dS*=ZX and d(Y|S*)+0
everywhere in the interior of S*. This contradicts the compactness of S*.
Hence X is empty, i.e., Y does not vanish anywhere. We may assume that
Y >0 everywhere. Since k(g,)> =+ 1, Y gives a differentiable non-degenerate
fibering of S over T'=IR*/{x(g,)?) with connected fibre S, over re T'.
The subgroup G of G defined in § 1 is isomorphic to m, (S,).
Now it follows from (41), (49) and (50) that

(53) dim H'(C)=dim H'(C(-2K))=1, dim H'(C(K))*0
and

(54) HY(C(F)=0 forany F+0, K, —2K.
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Since —2K e, we infer from (9), (11), (53), (54) that
(55) dim H'(G)*®”=1, dim H'(G)*=0 for u#x(ge) ", x(go)*

Since S, is compact, G is finitely generated and, consequently, the auto-
morphism g¥ of H'(G) is represented by an integral matrix M with
det M = + 1. (55) implies that x(g,)? is an eigen-value of M. If k(g,)* is the
only eigen-value, then x(g,)*>=1 and therefore 2K =0. This contradicts
Lemma 1. Thus we infer from (55) that the eigen-values of M are K(go)*
and x(g,)~!. In particular we obtain dim H'(G)*®* '4+0. Combining
this with (11), (53), (54), we obtain that Ke 2, namely, k=p_y is trivial
on G. Thus we infer from (52) that there exist on S, multi-valued functions
U, V,, X, such that

g* Ur=Ur+al(g)’

g* V; = V;'+‘12(g)s

g*X,=X,+b(g) for geG,
where G is considered as the covering transformation group of the
universal covering space S, over S, and dU, A dV, AdX, does not vanish
anywhere. This implies that S, is a real 3-torus and G~Z?>. Thus M is an

integral 3 x 3 matrix with det M= +1. Let m, n be the multiplicities of
the eigen-values x(g,)?, k(go)~* of M, respectively. Then

K(g0)*" " =K (go)*™ K (go) "=det M=+ 1.

Since |k(go)|+ 1, we obtain that 2m—n=0, while m+n=3. Therefore
n=2, namely, k(go)~" is an eigen-value of M with multiplicity 2. Hence
k(go)~'= +1 and 2K =0. This contradicts Lemma 1, q.e.d.
Proposition 13. — F,— K is not real.
Proof. We assume that — F,—K is real and derive a contradiction.

By (41), (50) and Proposition 12,
dim H'(C(F,))=dim H'(C(— F,—K))=1.

Thus, as in the proof of Proposition 12, we may assume that f;,k;;,
a;j, b;; are real numbers in (45). The analytic ~continuations of w; and z;
produce holomorphic functions W and Z on § such that

g* W=pp,(g) W+alg),

g*Z =pp,(8) ' k(@) Z+b(g), for geG,
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where pup,(g), x(g)=p_k(g), a(g), b(g)eR. Let U=Re W, V=Im W,
X=ReZ and Y=Im Z. Then

8*U=pr,(g) U+a(g),
g*V=ur @)V,

g*X =up(8)" k(@) X +b(g),

g Y=pur,(g)"'x(g) Y for geG,

where dU AdV AdX AdY does not vanish anywhere. We take a normal
subgroup G’ of finite index in G such that ug (g)>0 and x(g)>0 for
geG’, and take the unramified covering surface S’ of S corresponding
to G'. We denote by F; the line bundle on S’ induced from F, on S. We
consider U, V, X, Y as multi-valued functions on S'.

Let X~ be {PeS’|V(P)=0} and X, a connected component of Z. As
in the proof of Proposition 10, we obtain that X is not empty. Let S*
be {PeS’'|V(P)=0} and S~ be {PeS'|V(P)<0}. Then S* and S~ are
compact manifolds with X as their common boundary and S* NS~ =2.
Let £ be {PeS'|V(P)=0,Y(P)=0} and £, a connected component
of Z. Then & is not empty. In fact, if £ is empty, Y does not vanish any-
where in S*. Let f=V/|Y|* where c=1log s, (g,)/(l0g K (go) — l0g ur, (g0))-
Then f is a single-valued continuous function on S*. It is evident that
f=0 on 05* =% and df+0 everywhere in S* —dS*. This contradicts
the compactness of S*. Hence Z,, is a compact manifold with boundary
02,={Pe&,|V(P)=0}.

We note that the restriction H'(S,C)— H'(E,,C) is not a zero
mapping. In fact, otherwise, the restriction V|Z, of V to Z, is a single-
valued function on 5, while V|Z,=0 on dZ, and d (V| Z,) +0 everywhere
in 5, —05,. This contradicts the compactness of Z,. Similarly we can
prove that the restriction H'(S, C)— H'(Z,, €) is not a zero mapping.
Hence we obtain that

H° (5, C(F})=0
and
HO(Z, C(F))=0.

Now let S** be {PeS*|Y(P)20} and S*~ be {PeS*|Y(P)<0}.
Then S**+ N S*~=E. We take a connected component (S**+), of S*+.
Then, similarly to the proof of Proposition 10, we can prove that
m,((S**)o)~Z and the restriction H'(S,T)— H'((S**),,T) is not a
zero mapping. Hence we obtain that H'((S*+),, C(Fy))=0. Thus we
obtain that

H'(S*+, C(F)=0

2l Inventiones math., Vol. 24
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and, similarly,
H'(S*,C(F))=0.
From this and the Mayer-Vietoris sequence
HC(E, C(Fy))— H'(S*, C(Fp) — H'(S**, C(R)) @ H' (S*~, C(Fy)),

it follows that
H'(S*,C(Fy))=0.

Similarly we obtain that
H'(S™, C(Fy))=0.
From the above and the Mayer-Vietoris sequence
HO(Z, C(Fy) - H'(S', C(F)) - H'(S*, C(R) @ H'(S™, C(Fy)),

we derive that
H! (S’, C (F(;)) =0.

By this and (10) we can find a constant ¢ such that
a(g)=c—pg(g)c, for geG'.
Hence we obtain that
g*(W—c)=pg,(g)(W—c), for geG'.

This implies that S’ contains a curve and, therefore, S contains a curve.
This contradicts (B), q.e.d. o

This proposition together with Proposition 11 imply —F,—K=K.
From this we derive

dim H'(C(K))=dim H'(C(- F, — K))=dim H'(C(~F,— K)).

Thus, from (41), (49), (50), Proposition 12 and the above, it follows that

dim H!(C)=dim H'(C (K))=dim H'(C(F))
(56) =dim H'(C(-F,—K))=1,

dim H'(C(F))=0 for F#0,K, F, —F,—K.
If we write K = {x;j;'}, then, by —F,— K=K, we infer that

Fo={lx;|*}, —Fo—K=1{k;"}.
Hence (45) turns out to be
w;= Itc,‘j|2 w;+a;;,

=1
Zl- =KU Zj+bij’
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where we may assume a;;eR as in the proof of Proposition 12. The
analytic continuations of w; and z; produce holomorphic functions W
and Z on S such that

g* W=|k(g)|* W+al(g).

(57)
g*Z=x(g) 'Z+b(g for geG,

where k=p_g, a(g)eR, b(g)eC and dW A dZ does not vanish anywhere.
Let U=Re W and V=Im W. Then we have g*V=|x(g)]*V for any
g€G. Consider V as a multi-valued differentiable function on S, and let
2 be {PeS|V(P)=0} and X, a connected component of Z. If ¥ is not
empty, X, is a compact 3-dimensional real submanifold of S. (57) implies

1
2y -1

wo=w|Z, gives a volume form on X,, we obtain

ja)#:O.
Zo

that w= dU AdZ AdZ gives a closed real 3-form on S. Since

This implies that Z, is not homologous to zero on S. Hence, similarly
to the proof of Proposition 12, we can derive a contradiction. Thus ~
is empty, i.e., V¥ does not vanish anywhere. We may assume that V>0
everywhere. Since |k(go)[*+ 1, V gives a differentiable non-degenerate
fibering of S over T'=R*/{|k(g,)|*> with connected fibre S, over
reT". The subgroup G of G defines in § | is isomorphic to 7, (S,).

Since Fy= F,2€2, we infer from (9), (11), (56) that

dim H' (G)®l =1,
dim H'(G)*=0  for pu=|k(go)l>, x(go)~", K(g0)~".

Since S, is compact, G is finitely generated and therefore the auto-
morphism g* of H(G) is represented by an integral matrix M with
det M= +1. (58) implies that |k(go)|* is an eigen-value of M. If |x(g,)|?
is the only eigen-value, then |k(go)|*=1 and, consequently, F,=0. This
contradicts Property (y). Thus, by (58), we infer that (go)~" or k(go) ™"
is also an eigen-values of M, namely dim H‘(GX‘#O for p=xk(ge,)~*
or x(g,)~'. Hence, by (11) and (56), we obtain Ke# or Ke#. Thus
Ke2 and therefore « is trivial on G and the eigen-values of M are
% (20)1% x(go)~ " and K(go)~!, where K(g,) %k (g,). From this and (57)
we infer that there exist on S, multi-valued functions U,, X,, Y. such that

(58)

g*U,=U,+alg),
g*Xr=Xr+b1(g)’
g*Y,=Y,+b,(g) forany geG,
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where G is considered as the covering transformation group of the uni-
versal covering S, over S,,b,(g)=Reb(g), b,(g)=Imb(g) and
dU, A dX, AdY, does not vanish anywhere. This implies that §, is a real
3-torus and G~Z>. Thus M is an integral 3x 3 matrix with eigen-values
i (go)|% Kk (g0) ™%, K(go)~". In particular, MeSL(3, Z).

Now we take generators g, 85, 83 of G such that

(59) g08igo =g g7 gy for i=1,2,3,

where M =(m, ). Then g, g;, &,, 85 generate G. Replacing W—(a(go)/1—
|k (go)I?) and Z—(b(go)/1—K(g,)~') by W and Z, respectively, we can
assume that a(g,)=b(g,)=0 in (57). Then the restrictions ofaand bto G
give non-trivial elements of H'(G)*®"” and H'(G)*®” ", respectively,

namely
(©0) a(goggs ") =Ix(go)* a(g),
b(goggs")=K(go) 'b(g) for geG.

Let a,=a(g;), b;=b(gy) for i=1,2,3. Then, by (59) and (60), we obtain

(a,,a;,a3) - 'M= l"(go)|z -(ay,a3,a3),

(61) t (o V-1
(by, by, b3) - 'M=x(go)™" - (by, by, b3).

We can assume that |k(go)|?>>1 by writing, if necessary, g, and M for
g5 ! and M~ !, respectively. Now we define automorphisms ho, by, hy, hs
of H x € as follows:

hO: (W7 Z) - (IK(gO)l2 w, K(gO)_1 Z),
h: (w,z)—W+a;,z+b) for i=1,2,3.
Then (61) implies that the automorphism group of IHxC generated

by ho, hy, hy, hy coincides with G, defined in § 2. Thus, by (57), we see
that (W, Z) defines an isomorphism of S onto Sy =IHx C/Gy,.

§ 9. Case (II)
We infer from Proposition 10 that
(62) 2F,+2K=0 and F,#K.

If H°(dO(L))#0, then L=F, or —F,—K by Lemma 2, while, if L=
—F,—K, then 2L =0 by (62). This contradicts Property (y). Thus, by

Property (B).  4im HO(d0 (Fy)=1,
dim H°(dO(F)) =0 for F+F,.
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Hence, by (5), we obtain
dim H*(€)=dim H'(C (K))=dim H'(C(FK))=1,
dim H'(C(F))=0 for F+0,K, F,.

In fact, dim H'(C(K))=dim H'(C(-2F,—K))=1 by Proposition9
and, since H°(d0(K))=0 by K+F,, dim H'(C(K))<dim H'(0(K))=
qg=1.

Propesition 14. K and F, are real.

Proof. Assume that K is not real. Then dim H'(C (K))=dim H'(C (K))
=1. Hence K=F, by (63), and therefore 2(K+K)=0 by (62). Thus,
letting K= {x;;'}, k;;€ C*, we have |KUI4=Ki/Kj for k,eIR*. Replacing
Kk} Ki;-k7 % by K;; we can assume that |k;;|=1. Then, by using this
expression of K in (46), we have a volume preserving structure on S,
since dw; Adz;=x;;dw; Adz;. Hence, by Kodaira [2; the proof of Theo-
rem 38], we know that 12K =0. This contradicts Lemma 1. Thus K
is real, and therefore F, is also real by (63), q.e.d.

By this proposition and (63) we may assume, as in the proof of Pro-
position 10, that f;;, k;;, a;;, b;;€R in (46).

Proposition 15. If Fy+ K 40, we may assume that c;; in (46) is also real.

Proof. Since a;;,b;;eR, we have {Imc;}eH'(C(—F,—K)). If
{Im c;;} +0, we infer from (63) that — F,— K =0, K or F,. By hypothesis,
—F,— K #*0, and by Proposition 10, — F,— K=+ F,. Hence —F,— K=K
and therefore 2K =0. This contradicts Lemma 1. Thus we can find

c;eC such that Imc;=f;'K;c;—c;. By replacing z;+)/ —1¢; by

z;, we may assume that c;; is real, q.e.d.
The analytic continuations of w; and z; produce holomorphic functions
W and Z on S such that

g* W=y (g) W+alg),
g*Z =g () ' k(@) Z+b(g) W+c(g), for geG,
where pp (g), k(g)=p_g(g), a(g), b(g)eR and c(g)eC. Moreover, if
Fy+ K #0, then c(g)elR. We may assume, as in the previous section,
that a(go)=b(ge)=0. Let U=Re W, V=Im W, X=ReZ, Y=ImZ,
c'(g)=Rec(g), ¢”(g)=Im c(g). Then we obtain:
Subcase I1,: F,+ K=0,
g*U=xk(g) U+al(g),
g*V=x(gV,
g*X=X+b(g)U+c'(g),

g*Y=Y+b(gV+c'(g).

(63)

ijs

(64)

(65)
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Subcase II,: F+ K =0.
g*U=pp(g) U+al(g),
gV =ur@V,
g* X =pp,(8) ' k(g) X +b(g) U+c(g),
g* Y=up, @) k() Y+b(g) V.

Moreover dU AdV AdX AdY does not vanish anywhere in either cases.
We consider U, V, X,Y as multi-valued functions on S. Let ¥ be
{PeS|V(P)=0} and X, a connected component of X. We prove that X is
empty. We assume that 2 is not empty. Then X is a real differentiable
submanifold of dimension 3. First in Subcase II,, ¢”+0 in Hom (G, R).
In fact, if ¢ =0, the restriction Y|Z, of Y to X, is a single-valued function
on X,, while d(Y|Z,)#0 everywhere on X,. This contradicts the com-
pactness of X,. Hence, by (65), n=exprY-dU AndX is a differentiable
2-form on X, where r= —log x(go)/c" (g,), while

w=dn=rexprY-dYAdU ndX
is a volume form on X,. Hence

0+ [ w= [dn=0.

Zo Zo
This is a contradiction. Next in Subcase II,, (66) implies that the re-
striction Y?|Z, of Y2 to Z, is a single-valued function on Z,, while
d(Y?|Z,)*0 everywhere in {Pe Z,|Y(P)+0}. This contradicts the
compactness of X,. Thus X is empty and, therefore, we may assume
that V>0 everywhere. Hence pp (g)>0 for any geG and therefore
F,e2. Since g, (go)* 1, V gives a differentiable non-degenerate fibering
of S over T'=R*/{pug,(g0)) with connected fibre S, over re T'. The
subgroup G of G defined in § 1 is isomorphic to 7;(S,). Hence G is finitely
generated. Thus the automorphism g& of H'(G) is represented by an
integral matrix N with det N= + 1. Recalling (9), (11), we infer from (63)
that

dim H'(Gy*=0  for p=pp,(g0), k(g0) ",

(67) =
dim H!(Gyroto =1,

Thus g, (go) is an eigen-value of N. If ug (g,) is the only eigen-value,
then g, (go)=1 and, consequently, F,=0. This contradicts Property (y).
Hence, by (67),x(g,) ! is also an eigen-value of N and dim H'(G)<®° "' #0.
Therefore, by (11) and (63), the homomorphism geHom (G, T*),
defined by p(go)=k(go)™" equals to k~'. Hence Ke#, in other words,
x is trivial on G and dim H'(G)*®? ' =dim H'(C(K))=1. Thus the
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eigen-values of N are uz, (go) and «(go)". Since g, (go) is a positive real
number * 1, (5, (o) ©(g8o)')*=1 and det N= +1, the multiplicity n
of g, (go) is equal to the multiplicity of «(go) ™.

Proposition 16. The multiplicity n of pur,(go) equals1, and N is an
integral 2 x 2 matrix with det N=+1.

Proof. Assume that n=2. Then there exists a non-trivial element e
of H'(G) such that

e(goh go")=tr,(o)(e(h)+a(h) for heG.
Let m be a homomorphism of G into IR defined by m(g,)=1. We define

B(g)= [ﬂrc (&) wr,(g)-mlg)

for geG.
O ”Fg(g) ] .

For any g=g% he G where he G, we define

é(g)=eé(goh)
= g, (g0) e (h)+ g, (go) m(go) a(h).

Then we obtain easily that

oo e =[eten] +mee (o]

for g, g,eG. We consider €? as a G-module by defining g-a=B(g) -«
where ae €? and ge G. We denote by Hy(G) the first cohomology group

with respect to this G-module structure. Then (68) implies that [Z]

represents a non-trivial element of Hy(G). Let {m;;} be a base of H'(R)

and let i
ij Jijmij
s[5 "]}

Then B defines a flat vector bundle over S of rank 2. We denote by C(B)
the sheaf of germs of locally constant sections of B. Then we have the
following isomorphism

H'(S,C(B))~Hj}(G)
(see MacLane [4]).
This implies that there exists a I-cochain {e;;} composed of constants

e,’j such that
e =ey+fij ejnt Jiy Mij Ak



308 M. Inoue

where we use the g;; in (46). Thus {(eij)} gives a non-trivial element of
H'(T(B)). ij

On the other hand, we have H'(0(B))=0. In fact, this follows from
Lemma 1(iv) and the exact sequence:

H'(0(F,))— H'(0(B)— H' (0(F)),
which is derived from the following exact sequence
0— 0O (F)— 0(B)— O(F,)—0.

Thus { (Z“)} is zero in H'(0(B)), namely
ij

(9= 7))
@i 0 f; a; al’
where e; and a; are holomorphic functions. From this and (46) we obtain
that w;+a;=f;;(w;+a;). Since S contains no curves, w;+a;=0 and
therefore da;= —dw;. Thus we obtain de,=f;de;— f,;m;dw;. Let
de;=o;dw;+ B;dz;, where «;,f; are holomorphic functions. Then
Bi=fi} x;' B; by (46). This implies f;=0 by Proposition 10, hence
—myj=0;—a;. Thus da;=dx; is a holomorphic 1-form on S, hence
da;=0 by h':°(S)=0. This implies that {m,;} =0 in H'(C). This is absurd,
q.e.d.
From this proposition it follows that G/[G, G]=H @ (torsion),
where H~Z2. Let (-?=_{gc-G|g mod [G, G] is of finite order}. We take
two elements g, , g, of G which represent a set of generators of H such that

(69) 2088 =gl g modulo G, for i=1,2,

where N=(n;). Since a(go)=b(go)=0, (8) implies that the restrictions
of a and b to G give non-trivial elements of H'(G)**® and H'(G)<® ",
respectively, namely

a0 a(808 86 ') ="tir,(80) - a(g),
b(gog g ')=K(go) " -b(g), for geG.

Let a;=a(g;), b;=b(g;) for i=1, 2. Then by (69) and (70) we obtain
(71) (@, a2) "N =pp,(go) - (@, a3), (by,by)-'N=rx(go)™"-(by,by)-

Note that (a;,a,) and (b, b,) are linearly independent since F,=+K.
Hence G={geG|a(g)=b(g)=0}. Let U,, X,, Y, be the restrictions of the
multi-valued functions U, X, Y to a fibre S,. Since «, g are trivial on
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G and ¢ (g) in (65) vanishes on G, we obtain

g*U,=U,+a(g).
(72) g*X, =X, +b(@) U, +c(g),
g*Y =Y, +b(gV, for geG,

where G is considered as the covering transformation group of the uni-
versal covering space S, over S,, and ¥, is a non-zero constant. Obviously
we may assume that Vy=1. Since dU, A dX, AdY, does not vanish any-
where and (ay, b,), (a,, b,) are linearly independent, it follows from (72)
that (U,, Y,) gives a differentiable non-degenerate fibering of S, over
T?>=R?/{(a,,b,), (a;,b,)> with fibre a circle T'. This implies that
G~n(T')~Z. Let g, be a generator of G~Z. Then we obtain G=
{81,82,83) and G={gg, &1, &2, g3)- It follows from (69) that

208180 =81 g% g5,

(73) o
808280 =g1"g7¢g%,

for certain integers p,g. Since [G, G] is contained in G~Z with finite
index and g; commutes with g;,g, by (72), [G,G] is generated by
gr'g:'g 8, and

(74) gr'gr'g18,=25

for certain non-zero integer r.

First we consider Subcase II,: Fy+K=0. Then pp (go)=x(go) and
therefore det N=1, i.e., NeSL(2,Z). We can assume pug (go)>1 by
writing, if necessary, g,, N for go', N~!, respectively. Let ¢,=c'(g,),
¢, =c'(gy), c3=c'(g3) and t=c(g,)- Then, by (65), (73), (74), we obtain

bya,—bya
(75) (cl,cz)=(cl,c2)-’N+(el,e2)+-l—-2r—z—l—'(p,q),

where ;=% n;; (n;;— 1) a; by +3 ni5(n;;—1) ap by +n; n, by a, for i=1,2,
and

(76) c3=(bya,—bya))/r.
Now we define automorphisms hy, hy, h,, hy of Hx C as follows:

ho: (W, z) > (ug, (80) W, z+1),
h;: w,z)—>Ww+a;,z+bw+c;) for i=1,2,

h3: (W,Z)—’(W,Z+C3)-
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Then (71), (75) and (76) imply that the automorphism group of IH x C
generated by hy, hy, hy, hy coincides with Gy) , ... defined in § 3. Since
c"(g)=Imc(g)=0 for any geG, we see by (64) that (W, Z) defines an
isomorphism of S onto S§) , ...=HxC/G{) ,....

Next we consider Subcase II,: Fy+ K =+0. Since 2F,+2K =0, we
obtain pup,(g0)= —k(go) and therefore det N=—1. We can assume
Ir,(80)>1 by writing, if necessary, go, N for g5', N™', respectively.
Since pur,(go) ™"+ k(go)=—1=%1, we may assume that c(g,)=0 in (64).
Let ¢;=c(g,), c;=c(g3), c3=c(g3). Then by (65), (73), (74) we obtain

b —b
D —(er,ca)=(c1rc2)-'N+(ey, ;) 222

'(p» CI)s
Where ei=%n“(n“_ 1) al b1+%ni2(n,~2—1)az b2+nf1 Vl,~2 bl a2 fOI‘ i=1, 2,
and

(78) c3=(byay—bya)r.

Note that ¢;,¢,,c;€R. Now we define automorphisms hy, hy, h,, h;
of H x € as follows:

hO: (W’ Z)_)(ﬂFg(gO) w, _Z)s
h;: w,z)>W+a;,z+b;w+c;) for 1=1,2,
hy: (w, z) > (W, z4c5).

Then (71), (77) and (78) imply that the automorphism group of IH x C
generated by hy, hy, h,, hy coincides with Gy) ,, defined in §4. Thus,
by (64), we see that (W, Z) defines an isomorphism of S onto Sy, , ,=
H x C/G§ )

N,p.q.r*
Thus we complete the proof of Theorem in § 5.
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General Position
in the Poincaré Duality Category

J.P.E. Hodgson (Philadelphia)

§ 0. Introduction

The object of this paper is to establish a theory of general position for
the Poincaré duality category. This is done by showing the following
key lemma.

Lemma. (General Position.) Let (X, Y) be a finite Poincaré pair of
formal dimension n and suppose given a map f: (D*, S*=')— (X, Y) where
k=n—3and2n=3k+4. Then there existsa CW-pair (K, L) of dimension k,
obtained from (DX, S*=") by adding cells of dimension <(2k—n+2,2k—n+1),
and a map g: (K, L)— (X, Y) homotopic to an embedding, such that the
Jollowing diagram commutes.

(DK s —L (X, v)

re
N

(K, L)

As we shall see the additional cells attached to (D¥ S$*~') to form
(K, L) can be thought of as the “singularity set” of the map f.

Using this lemma we obtain a number of results parallel to known
results for maps into manifolds, in particular it can be used as a tool to
prove embedding theorems, such as

Proposition. Let f: (D%, S*=')— (N™,0ON) be a map into the finite
Poincaré pair (N, ON) of formal dimension m, suppose (N, ON) is (2k —m+2)-
connected, and m—k=4,2m=3k+4, then f is homotopic to an embedding.

Applying this proposition we get a result analogous to the Stalling’s
embedding theorem, and also the induced thickening theorem in the
author’s paper [2]. Further special cases of the above proposition give
the following result.

Theorem. Every finite Poincaré complex of dimension >7 has a handle
decomposition.
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We also show how to use the structure of Poincaré pairs of low
geometric dimension to get the following theorems.

Theorem. Any map f: S"— P>"*! of the n-sphere into a finite Poincaré
complex of formal dimension 2n+ 1 is homotopic to an embedding if n=3.

Theorem. Any map f: S"— P2" of the n-sphere into a simply-connected
finite Poincaré complex of formal dimension 2n is homotopic to an embed-
ding if n=4.

The methods used to prove the general position lemma are an
extension of the original method of Levitt [3] and an extensive use of a
trick akin to Zeeman’s piping, which the author introduced in [1].

The arrangement of the paper is as follows. § 1 gives the necessary
definitions and notations, § 2 outlines the proof of the general position
lemma. §§ 3-5 contain the proof of the general position lemma. In §6
we give the handle decomposition theorem and §§ 7-8 give the applica-
tions to embeddings.

§ 1. Definitions and Notations

We recall first some definitions. Since our orientation is geometric
we will use Levitt’s definition of a Poincaré complex which is as follows.

Definition 1. A Poincaré complex of formal dimension n, is a finite
connected CW-complex X such that if N is a regular neighbourhood of
X in some embedding j: X — §"*9 g large, then the map N SN is
homotopy equivalent to a spherical fibration with fibre §* =%,

A Poincaré pair, of formal dimension n, is a finite CW-pair (X, Y)
with X connected, such that if (N, M) is a regular neighbourhood of an
embedding j: (X, Y)cD"*4, §"*~! g large, then the map N —M —N
is homotopy equivalent to a spherical fibration with fibre §1-1.

That spaces of the above type satisfy Poincaré duality follows from
the Gysin Sequence for the spherical fibration.

Definition 2. Given a Poincaré pair (P, Q) of formal dimension n, and
a CW-pair (K, L), with (K, L) finite CW-complexes; a map f(K,L)—(PQ)
is said to be homotopic to an embedding if there exists a splitting of P
mod boundary, that is
P=(N,,ON;) Uy, (N,,AN,)
with Q split as N, — Int N, uy, 0N, —Int N, and a homotopy equivalence

k: (K, L)— (N,, 8N, —Int N,)
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such that the following diagram commutes up to homotopy.

(K, L) = > (R Q)

3

(N, ON; —Int Ny) —=— (N, U N,, dN, UéN,)

We shall use the following notational conventiones

1. If (K, L) is a CW-pair and dim K=k, dim L=1 we shall say (K, L)
is of dimension (k, ).

2. Suppose we have a map g: (K,L)— (P, Q) and a spherical fibre
space ¢ over (B Q) then we shall write (K (&), L(¢)) for the total space of
the fibre space induced by g over (K, L), and (K (c &), L(c &)) for the map-
ping cylinder pair of the map 7: (K (), L(£)) — (K, L), where r is the projec-
tion for the fibration induced by g.

§ 2. The General Position Lemma

This section is devoted to an outline of the proof of the following
lemma.

Lemma 2.1. (The General Position Lemma.) Let (X, Y) be a finite
Poincaré pair of formal dimension n, and suppose given a map f: (D*, S*=') —
(X, Y)where k<n—3,and 2n=3k+4. Then there exists a CW-pair (K, L)
of dimension k, obtained from (D*,S*~') by adding cells of dimension
2k—n+2, 2k—n+1) and a map g: (K,L)— (X, Y) homotopic to an
embedding such that the following diagram commutes up to homotopy

(D, $F-H)—L (X, Y)

o

(K, L)

Remark. The metastability condition 2n>3k+4 is perhaps unfor-
tunate and can probably be removed by a somewhat lengthy extension
of the proof. Fortunately in our applications the condition will always be
satisfied.

Construction of the Stable Model
Let i: (X, Y)—(P"*J,Q"*/~!) be a codimension j PL-thickening of
the pair (X, Y). Denote 8P —Int Q by R so that R=4aQ. Then for suf-
ficiently large j, we have the following:

(@) R=P— X is a spherical fibration & of dimension j. (That is with
fibre §7-1))
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(b) By general position we may suppose that the composition
iof: (D S*~')— (P, Q) is an embedding.

In the notation of § 1 we can therefore define (essentially by restricting
¢ to (D%, 8%~ 1)) a map

Fy (&, D): (D*(cd), 871 (c&); DX, §*1(€) —» (R.Q; R, OR).

Now let (M(D), N(S)) be a regular neighborhood of (D, $*~") in (P, Q)
and let (# (£, D), A (&, S)) be the mapping cylinder of the composition

p(D): (D*(&), S*7'(&) — (DX, §*~)=(M(D), N(S))
then F, (&, D) extends to
F(¢ D): (#(E D), A (£ 8)— (P Q)

with F(&, D)|(M(D), N(S)) the inclusion.
This completes the construction of the stable model. See Figs. 1 and 2.

P‘\
/VM(D)

F(£,0)m (C,D)~ﬁ_\\<kx

Fig. 1
P
1= |
° |
X |
T
|
Y,/
D |
|
Se— | “~ |
__________________ 1
~
~
~
\\
\\
Fig.2

Fig. 1 should be thought of as an end-on view of Fig. 2, but with more
detail.
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i
Y \»\ X 15\ o0

Fig. 3. The splitting of (P, Q) induced by the embedding of D* x DJ, retracts to give one
of (X, Y)

Remark on Notation

We shall use the notations (M (K), N(L)), 4 (&, K) etc., will be used for
the constructions obtained when (K, L) replace (DX, $*=') in (M (D), N(S))
etc.

Outline of the Remainder of the Proof

We recapitulate briefly the strategy of Levitt’s proof. In essence the
idea was to “compress” the given embedding of (D, $*~) into (X, Y) by
constructing an embedding of (D*x D/, S*"'xD’~') in (P, Q). Fig.3
indicates why this is an embedding of (D*, $*~") in (X, Y).

The required embedding was achieved in 3 steps.

Step 1. The “homotopy” F(¢, D)](Jl(f, D)—M(, D), /' (£,8)—N(,9))
was shifted off the core of (M (D), N($*~1)), so that we could suppose that
the homotopy took place in (P —Int, Q —Int N).

M(D)

F(£D)(m)

Fig. 4. Position after Step 1, end view
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Step 2. The map
p(D): (D¥x §'=', §¥='x §/=1) - (M —Int N, dN)

corresponding to the initial map in the homotopy of Step 1, was made an
embedding.

F(ED) (M) .

Fig. 5. Position after Step 2, end view

Step 3. The embedded image of
(D*¥x §I—1, Sk1x §-1

in (6M—Int N, 0N), provided by Step2 was engulfed in a collar on
(R, 0R). The construction of the required splitting is then straightforward.

Collard_

Fig. 6. Position after Step 3, end view

The general position lemma will be proved by trying to perform each
of these steps, and seeing what can be salvaged under our conditions.
As a guide to the proof we outline the steps below.

Step1. We construct a CW-complex (K,, L, by adding cells of
dimension <(2k—n, 2k—n—1) to (D* $*°'), and an embedding f,:
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(K,,L,)— (B Q) such that the diagram
(DY, 8 " (R.Q)
(K, Ly)

commutes up to homotopy. Further there is a map

F K): (A& K,), /(& L)~ (RQ)
such that F(&, K))|[M(K,), N(L,)] is the inclusion and

F& K)(#(E K)—M(K,), /(& L)—N(L) N f,(K,, L)
is empty. So that we can suppose that
FE& K)(#(E K)—M(K,), ¥ (& L)-N(L,)

is disjoint from the interior of (M (K,), N(L,)).

Step 2. We construct a CW-complex (K, L,) by adding cells of
dimension =<(2k—n+2, 2k—n+1) to (K,,L,) and an embedding
Jp: (Kg, Lg)— (P, Q) satisfying the conclusion of Step 1, and such that
the map

P(Kp): (Kp(&), Lg(&) —(0M (K p)—Int N(Ljy), ON(Lj))

of which (#(K, &), /'(L;, &) is the mapping cylinder, is homotopic to
an embedding.

Step3. We construct a CW-complex (K,,L,) by adding cells of
dimension =<(2k—n+2,2k—n+1) to (K; Ly and an embedding
f,+ (K, L) — (P, Q) satisfying the conclusion of Step 2 and such that in
(P-M(K,,Q—N(L,) we can engulf the (K,(¢),L,(¢) embedded in
(6M(K7)— Int N(L,), 6N(Ly)) in a collar on (R, dR). Exactly as in Levitt’s
original proof we can now produce an embedding of (K., L) in (X, Y)
and this is the embedding whose existence is asserted by the lemma.

A Note on the Technique of the Proof

The technique of the proof is to put things in general position and
then add cells to (K;, L)) so as to “pierce” the top dimensional cells of
the double point set as in the author’s paper [1]. For example in the case
of the embedding of ' in D3 — two lines illustrated.

We cannot deform the homotopy of the induced S° bundle into the
boundary without crossing the embedded circle. If however we shift the
image of the circle so that it becomes a figure 8, and thus (up to homotopy)
an embedding of a §=S"uUa 1-cell then it becomes possible to do the

22 Inventiones math., Vol. 24
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v

Fig. 7

required homotopy. (The author found this example most enlightening
in thinking about the proof of the lemma, and recommends it to the
reader’s attention.) The 1-cell which we have added serves to identify
the two points in S', whose image is the cross over in the figure 8.

Significance of the Condition 2n>3k+4

The function of this condition in the proof is to ensure that each time
a new cell is added it is possible to define the map F(¢, K) on this new
cell so as not to introduce singularities of dimension equal to or greater
than that of the one we are disposing of.

§ 3. Proof of the General Position Lemma Step 1
In this step we seek to deform the image of

(# (&, DY), A7 (£, S 1) —(M(Dy), N(S*H)

off the interior of (M (D¥), N(S*~")). For brevity we will refer to this portion
of the mapping cylinder as (.# —M, & —N). [The D* §*~! are to be
understood; this notation will be used in the more general situation
where (D*, S*~') is replaced by a CW-pair (K, L), where .# —M will
mean (¢, K)— M (K) as is appropriate in the context.]

We note first that we can homotop the image of

p(D): (D*(8), S*~1(£) — (M(D), N(8))

into (OM(D)—Int N(S), dN(S)) since (M (D), N(S)) is a product with the
unit interval for large j. We view F(&, D)|.# —M, /" —N as a homotopy
of this map into (R, dR) and we seek to shift this homotopy off (D, S*~).

If we take a simplicial approximation and put the map in general
position in (P, Q) [keeping the image of p(D) in (OM —Int N, N)], we
may assume that the intersection F(¢, D)(4 —M, /" —N)n (D¥, Sk 1) is
a pair of dimension (k+j+k—(n+j),(k+j—1)+(k—1)+(@m+j—1))=
(2k—n,2k—n+1). Denote this pair by (Z,2’), it has a cell-complex
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structure because we can suppose (P, Q), PL-embedded in some large
dimensional Euclidian space.

We note that the condition 2n>=3k+4 ensures that the double
points of the homotopy are disjoint from (D*, $*~1).

Elimination of (2, 2")

Consider the subcomplex of F(&, D)(# —M, A —N) consisting of
points such that if they are pushed along the homotopy (towards dP)
they meet (Z, Z’). (This is the track of (Z, 2) under the homotopy run
backwards and hence is (£, Z’) x I since 3k+4<2n.) The required com-
plex (K,, L,) will be obtained as (D%, $*~")u,(Z, ) x I where g|(Z, Z') x 1
is the inclusion (2, Z')=(D*, $*~ ') and g|(Z, 2’) x 0 is obtained by pushing
(Z, ") back along the homotopy in (¢M —Int N, dN) and then project-
ing. This also describes the extension of f: (D¥ §*~')— (P Q) to f,:
(K,, L,)— (P,Q). By a small shift we can assume f, is an embedding and
we take a regular neighbourhood of f, (K, L,) which is formed by glueing
to (M, N) a relative regular neighbourhood of ((Z, 2") x I,(Z, £') x §°) in
(P—1Int M, Q—Int N).

We now describe how to construct (K, (¢), L,(%)).

Let (M(Z x I), N(Z' x I)) be the relative regular neighbourhood that
we have added to (M, N); corresponding to the I factor in (X x I, 2" x I)
we can perform an ambient isotopy of (P, Q) that shrinks down the
I-factor. In particular this shows that (£ x 1)(¢) and (2 x 0)(¢) are homo-
topic, and therefore the ambient isotopy can be used to glue (X x 1)(¢)

Fig. 8. Attaching £ x I to D in the case 2 a 1-simplex
22%
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to (X x 0)(¢). (The example of an S*-bundle over S!, and an identification
of two of the fibres should be born in mind as an illustration.) This gives
us (K, (&), L,(¢)) and a map

P(K,): (K, (&), L,(&)— (OM(K,))—Int N(L,),dN(L,).
It remains to see that the associated intersection
F(E K)AM—M, /—N)nf,(K,, L,

is empty. It is clear that (X, 2’) has disappeared, further our assumption
3k+4<2n implies that F(, K)(# —M, A"—N) does not meet
(2 x 1, 2" x I) by general position. Thus (K,, L,) is our required complex
and Step 1 is complete.

§ 4. Proof of the General Position Lemma Step 2
In Step 1, we constructed a pair (K, L,) and a map

F( K,) L(A(K,, &), /' (L,, &)~ (R Q)

with F(&, K )(# —M, /" —N)c=(P—Int M(K,), 0 —Int N(L,)).
In this section we consider the problem of deforming the map

P(K,): (K, (&), Ly(8) — (GM(K,)—Int N(L,), 6N(L,))

into an embedding. We recall that p(K,) can be thought of as the initial
map of the homotopy F (¢, K, )|(# —M). In Levitt’s paper [3], this was
achieved by using a relative version of Stalling’s Theorem on embedding
homotopy types (Theorem 5.2 in [3]). Unfortunately the map p(K,) is
not sufficiently connected for us to be able to use the theorem as it
stands, however we recall that the method of Stalling’s proof [5] is such
that if the dimension of the singular set is sufficiently low then the iterative
procedure he describes yields an embedding. [In fact Stallings himself
remarks this in [5].]

Now if we put p(K,) in general position the singular set (X,,2))
(i.e. the self intersection of p(K,)(K,(£))) has dimension

k+j—1)—(n+j—1),2(k+j—2)—(n+j—2))
=((j—2)+2k—n+1,(j—2)+2k—n).
Also the map p(K,) is (j — 1)-connected. Thus the singular setis 2k —n+1)
dimensions too large for application of the Stallings Theorem, our
procedure therefore will be to modify (K,, L,) by adding cells, so as to

get a pair (K, Ly) for which the associated singular set has dimension
j—2.
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Description of the Inductive Hypothesis
Jor Reduction of the Dimension of (2,, X))

We begin by remarking that by general position we can assume that
the portion of (K,(¢), L,(&)) contributed by the (n—k— 1)-skeleton of
(K, L) does not give rise to cells of (X, Z) of dimension >;j—2, so that
in what follows (K, L,) remains unchanged on a neighbourhood of this
skeleton.

We order the cells of Z,.2,) in decreasing order of dimension (as
before by supposing we are working in an ambient Euclidean space we
can endow (X, Z,) with a cell structure). We shall show that there exists a
sequence of pairs (K,, L,) with (K, L,)=(K,, L,)and (K,—K,_;, L,—L,_,)
of dimension r. Further for each r, we construct a map f,: (K,, L,)— (P, Q)
such that for the associated map

F(K,,&): (#(K,, &), ¥ (L,,&))— (R Q)
we have

F(K,,&)[M—M, /¥ —N]=(P—Int M(K,),Q—Int N(L,))
and the singular set of the map
p(K,): (K, (&), L,(€)— (@M (K,)—Int N(L,), ON(L,))

is the s-skeleton of (£,, X)) U cells of dimension <s, where s=(j—2)+
Rk—n+1)—r.
The method of Stallings will then apply to embed

(KZk—tH-Z(ﬁ)a le—n+2(€))s

so that our required (K, L) will be (K, _,, 55 Log_py2)-

Suppose therefore we have constructed (K,, L,). We will show how to
construct an intermediate complex (K, L,) so that there is one less s-cell
in the singular set of p(K}) than the singular set of p(K,).

Before giving the construction for general r, it will clarify the argument
if we describe the case r=1 first. Let us suppose therefore that p is a cell
of highest dimension in (£,, £/). Then we can find 4,, B, in (K (), L (£))
such that p(K,)(4,) np(K,)(B,)=p. Let 4, (resp. 4)) be the barycentres
of g(4,) (resp. q(B,)) where q is the “projection”

q: (Ko(’:)9 Lo (f)) —’(Koa L0)~

Then 4,0 4/, can be thought of as the image of an S° and hence
gives an attaching map for a 1-cell. Now we suppose p is contained in a
disc Dj*i=' = M (K ,)—Int N(L,). (If in fact p meets dN (L) the argument

requires some modifications which we shall omit.) Furthermore dpc
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B

Fig. 9

oDy~ Also p lies in the images of the cells 4,,, B,,“lyingover” 4, and
4, respectively. See Fig. 9, where we have written A 5385 for the images.

Now we can find an embedding I <Int Dj*/~" such that InA,=
1n B, < p, and the composition

S°clceDyti-'coM(Ky)=M(K,)
is homotopic to
5% 4,04,<K,.

The idea now is to “lift” the interior of I out of M(K,) by adding a
1-handle, and then modify K (¢) inside this 1-handle to get K,u I(%).
We proceed as follows. Let Di*/~! be an (n+j—1)-disc containing
Int 4, and Int B, in its interior and with 0l =D} *+/~'. Shrink D, slightly
so as to give D; as in the picture below.

Dy

Bp

Fig. 10
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Choose a piecewise-linear function ¢: D; — [0, &] with the following
properties

1) ¢ =0 on a collar on a regular neighbourhood of I ndD;.
2) @ >0 elsewhere.

We now push D) out of M(K) in the normal direction by an amount
given by ¢. (This is possible because there is a collar on dM(K) in
P—Int M(k,), which is PL-homeomorphic to dM(Kg)x [0,2¢].) Thus
taking a small regular neighbourhood of the pushed D} adds a 1-handle
to M(K,). This has the effect of adding a 1-cell to K, call this new com-
plex K'. We must now show how to choose a complex of the homotopy
type of (K'(&), L(¢)) and describe how to map it into (M (K"), N(K' )) with
one less top dimensional cell in the self-intersection; as in Step 1 this
will be done by embedding an S/='x I so as to be able to isotop the
Si=1’s over 4, and 4, to a single S/=1. Our dimensional conditions are
such that we ‘an find an embedding of S/~ I in the boundary of the
attached handle, so that §'~! x 0 is homotopic to S/~ '~ 4 (¢) and §/~' x 1
is homotopic to $/~' ~ 4/ (€), and we can shift the images of S$i='x0and
Si=1x 1 so that they meet in a single point at the barycentre of p. Now if
we use this isotopy to “lift” $~! x 0 and S/~ x 1 into the handle we have
our required K'(¢) mapped into M(K'). (Up to homotopy type the bary-
centre of p has been extended to a self-intersection along an §'~ ! justified
by the 1-cell added to K.)

We now describe briefly the general case, we have found (K,, L,) and
we seek to construct (K., L,) with one less s-cell in the singular set of

p(K!) than in that of p(K,). Let p be the first s-cell in the singular set of
P(K,)(K, (), L ,(&)) for the chosen ordering. Then we can find (r — 1)-cells
4, and 4, in the dual decomposition of (K,, L,) and a subcomplex I,
lsomorphlc to 04,x1 with 4,0T,u 4, homeomorphic to §’ and the
cells of I, in (K, KO, L,—L,) (so that m the case r=2, I, is the union of
1-cells added at the first mductlve level) so that we have a map

I: D"+ =8">(K,,L,)

which will be the attaching map for an (r + 1)-cell. These cells are related to
p in the fo]lowmg manner. 4,, 4, are chosen so that p lies in the inter-
section of the images under p(K ) of N(4,,84,)(¢) and N(4,, oa’ )(é)
where N(4,,04,) is a relative simplicial neighbourhood of (4,,04 )
the first derlved of K,,and N(4,,04,)(&) is the part of K, (&) © lying over”

N(4,,04,). I, is the union of cells added along 04, and 04/, at earlier
stages in the 1nduct10n

As in the case r=0, p is contained in a disc Dj*/~', and we can find

cells A, B, (of maximum dimensional (locally) in K (5)) with A,n B,=p,
A eImage N(4,,04,)(¢) and B,elmage N(4;,,04,)(). (See F1g 9)
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This time we can find an embedding k: D"*' <Int D3*~! which has
the following properties.

(1) If éD™*' is written as DyuS"~'x1uD}*' then k(Df), k(D))
correspond to 4,, 4, and S"='x I corresponds to I, in the sense that
there is a homotopy F,: dD"*' — M(K,) with Fy =k, F, =1.

Q) D*'nA,=D"*'nB*=D"cp.

Exactly as before let Dj*/~! = D{*/~! be an (n+ j— 1)-disc containing
Int 4, and Int B, in its interior with dD"*' =0D,, shrink D, slightly to
D} (see Fig 10). Choose a PL function ¢, ,: D"*' — [0, £] with the follow-
ing properties.

(1) ¢,,,=0on a collar on a regular neighbourhood of k(D"*')n D,
in ¢D,.

(2) @,,>0 elsewhere.

(3) ¢,,, =0, on a neighbourhood of §"~' x I in 0D.

Now push D] out of M(K,) in the normal direction by an amount
given by ¢, ,. As before taking a small regular neighbourhood of the
pushed D) in P—Int M(K,) adds an (r+1)-handle to (M(K,), N(L,),
since condition (3) ensures that ¢, , ; and ¢, push the cores of the r-handles
to the same places. This has the effect of adding an (r+ 1)-cell to K, along
lset K.=K,u,e*".

We now show how to choose a complex of the homotopy type of
(K, (&), L,(¢)), and describe how to map it into (M (K}), N(L,)) with one less
singular s-cell. As before our model for (K (&), L,(£)) is obtained by
adding §'~' x D" x I to (K, (£), L,(¢)) and squeezing down the I-factor to
identify S/~'xD"x0 and S$/~!'xD"x 1. Our dimensional conditions
(including 3k 44 <2n) allow us to embed the S/~'x D" x I in dM (K}) so
that S/='x D" x 0 is homotopic to 4,(£) and §/~'x D" x 1 is homotopic
to 4/, (£), and so as to extend the given embedding of §/~ x STixI. As
before we shift these images so that they meet along D"cp, and then
“lift” the S~ x D" x {0, 1} into the added handle. This gives the required
map

B(K): (K,(©), L,(8)— (IM(K})—Int N(L,), ON))

with one less s-cell in the singular set. Further the associated homotopy
of (K, (&), L,(¢)) to (R, R) will not introduce any singularities of the type
removed in Step 1, since the assumption 3k+4=<2n, implies that the
D'+!x $i—1 that we added (in homotopy!) cannot introduce any such
singularities. Repeating the argument constructs (K, , , K, ;) and hence
(Kg, Lp).

In conclusion we apply the arguments of Stallings in [5] to embed
(K, Ly) up to homotopy type in (0M (K ) —Int N(Lg), ON(Lg))-
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§ 5. The Proof of the General Position Lemma. Step 3 and Conclusion

By the arguments of Steps 1 and 2 we have achieved the following: we
have a pair (K, L,) obtained from (D*, $*~') by adding cells of dimension
£(@2k—n+2,2k—n+1) and an embedding of (K4, Lg) in (P.Q) with
(K;(&), Ly(&)) embedded up to homotopy type in

(OM(Ky)—Int N(Lj), ON(Lj)).
Furthermore we have a map
F(Ky,&): (#(E Kpy), N/ (E, Ly)— (P Q)

extending this embedding and with the image of (.# —M, 4" —N) con-
tained in (P —Int M(Ky), Q—Int N(Ly)). In Step 3 we propose to try and
engulf F(K;,&)[.#4—~M, A/ —N] in a collar on (R,dR). This map can
be thought of as a homotopy of (K,,(é), L,,(é)) from

(OM(K ) —Int N(Ly), ON(Ly))

into (R, dR), and we begin by putting this homotopy in general position,
keeping (K,(£), L, (£)) embedded in (9M (K ;) —Int N(Ly), N (Ly)).
The singular set of this homotopy is of dimension

[2(k+j)—n+j,2(k+j—1)—(n+j—1)]=Qk—n+j,2k—n—1+}j).
Thus the homotopy collapses to a subcomplex of dimension
Rk—n+j+1,2k—n+j).

Unfortunately the inclusions )R<Q—Int N(Lj) and Rc P—Int M(Kp)
are only (j—1)-connected so that we cannot engulf unless we can first
reduce the dimension of the singular set to j—2, thus we must eliminate
“2k—n+2-dimensions” of singularities. Since the method is essentially
a repeat of that of Steps 1 and 2 we content ourselves with a brief sketch.
As before we produce inductively a sequence of complexes (K,, L,) so
that the singularity set of F(K,, &)[# — M, # — NJis the Qk —n+j—r)-
skeleton of the singularity set of F(Kg,&)[#—M, A —N] [union
(possibly) cells of dimension less than 2k—n+ j—r] with dimension
(K,—K,_,L,—L,_j)=r and (K,, L,)=(K,, L) and each (K, L,) satis-
fying the conclusions of Step 2. The complex (K, L,) of Step 3 is then
(K2n—n+2’ L2k—n+2)'

Suppose we have constructed (K,, L,), an intermediate complex is
constructed as follows. Let p be a (2k—n+ j—r)-cell of the singularity set
of F(K,, &), then we can find cells 6, and o, of (K, (¢), L,(¢)), whose tracks
under the homotopy give rise to p, and lying over r-cells 4, 4, in the dual
decomposition of (K,, L,). Furthermore the boundaries 94,04, cor-
respond to cells of (K,—K,_,,L,—L,_,). Now we can attach an (r+ 1)-
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(r+1) -cell
attached b kp

(r+1)-handle

Fig. 11

handle to (M(K,), N(K,)) so as to pierce p. This (r+ 1)-handle can be
thought of as a neighbourhood of the tracks of 6, and ¢, up to p. (Cf. the
construction in [1], and Fig. 11.)

As in Steps1 and 2, a D"*!'x $/=! is embedded in the boundary of
this handle, then by collapsing the I-factor in D" x I x §~! we perform
an isotopy that identifies D" x 0x /=" and D"x 1 x $/=" in (K, (&), L,(¢))
to get (K(¢), L,(¢)) embedded in oM (K). The homotopy of the “added”
D+1x §9=1 to the boundary (R, dR) introduces no new singularities of
a dimension equal to or greater than that of the one we are getting rid of,
since we have imposed 3k+4<2n. The relevant inclusion of Rc P—
Int M(K) remains (j— 1)-connected and so the induction can proceed to
the stage where engulfing is possible using Lemma 5.3 of [3].

The proof is now completed exactly as in Levitt’s original paper. If
the collar engulfing (# — M, A/ —N) is called (C, C') then we have a
splitting of (X, Y) mod boundary given by

(X, Y)~(X,, Yo)uy, (X, )

where
Y, =Closure[(P— C—-M(K )]nM(K,)

X,=M(K,) Y,=Y,UN(L)
X,=Closure[([P-C)-M(K,))] Y,=Y,uClosure[Q—C"—N(L)].

Thus we have a Poincaré embedding of (K,, L,) in (X, Y) such that
the diagram below commutes up to homotopy

(D% 8 —L—(X,Y)
Q s Poincaré embedding
(K,,L,)

so that (K, L,) is the complex whose existence is asserted by the lemma.
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§ 6. Applications to Handle Decompositions
In this paragraph we prove the following result.

Theorem 6.1. Every finite Poincaré complex P of dimension =7 has a
handle decomposition.

Remark. The author understands that Jones [9] can obtain the above
result for dimension > 5.

The proof follows from the two propositions below, which are of
independent interest.

Proposition 6.2. Let {: (D", S"~') — (P?"*+', P) be a map into a Poincaré
pair (B, 8P) 1-connected then f is homotopic to an embedding if n=3.

Proposition 6.3. Let f: (D", S"~ ') — (P2", 8P) be a map into a Poincaré
pair with (P, 0P) 2-connected then f is homotopic to an embedding if n=4.

Proof of Proposition 6.2. According to Lemma 2.1, there is a CW-pair

(K, S"~!) where K is obtained by adding 1-cells to D" and a Poincaré
embedding g: (K, S"~!)— (P, éP) such that the composition

(D", S" ') —(K,S"')— (R, éP)
is homotopic to f. So we have a splitting of (P, 6P) mod boundary
(P, 0P)=(N;, ON}) Uy, (N;, AN,)

where dPis split by (AN, — No) U, (0N, — No) and (N, &N, — No) ~ (K, §").
(See Fig. 12))

The 1-cells attached to D" give generators of n,(K,S""') and hence
elements of n, (P, @P). Thus since 2n+12=7, we can suppose by Levitt’s
Theorem [3], that the generators are represented by arcs (D', S°)
embedded in (N,, ON,). Since =, (P, P) is zero there is a homotopy of

Ny

Fig. 12



328 J.P.E. Hodgson

Fig. 13. Adding a (2n+ 1)-cell to N,

each of these arcs into 0P, and we can suppose that the homotopies lie
in N,. So that we have for each generator of =, (K, S""!) a map

f: (D%, D', D' ,5%—(N,, Ny, N, — N,, ON,).

Levitt’s theorem allows us to replace these maps by disjoint
embeddings. We can then use these embedded discs to add (2n+ 1)-cells
C to N, along D' x D*"~! and subtract them from N, . See Fig. 13.

Since N, =D?"*'U I-handles, the above arguments show that we
can suppose N, is embedded in (P, dP) in the following way. If we write

N, =D"xD"+'US" "' x I x D"*' U 1-handles,

where the 1-handles are disjoint from D" x D"*! as in Fig. 14.

So we can write N;=D"x D"*'UQ and Q=5"""xI x D"+*' U 1-handles
is a product Q, x I. Then the existence of the cells C allow us to suppose

an Dn.1

Q | - handles

_— L

Fig. 14
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Fig. 15

that N, is embedded in (P, P) so that Q is embedded as a collar on
Q,< 0P, (See Fig. 15.)
Then we can delete Q from (P, dP) by a simple homotopy equivalence
and we will have (D", S"~')<= (PR, P) where D" is the D"x 0 in N;.
Proposition 6.3 is proved in a similar way. n=4 is needed to enable
us to embed the 3-cells required to push 2-handles to the boundary.

Construction of Handle Decompositons

We shall prove Theorem 6.1 by showing that we can split P as the
union of two Poincaré complexes each having a handle decomposition.
The method is essentially the same as that used in Levitt’s paper, except
that our stronger embedding theorems enable us to get the full result.
Consider the following situation, suppose P is split as

P~(N,,0N)U,y(N,,éN),

with N, homotopy equivalent to a finite CW-complex of dimension k,
and i: N; - P k-connected, then (N;, ON) is (n—k —1)-connected, where
n is the formal dimension of P, provided n —k=3. Now if N denotes the
universal cover, we have

H,(N,, oN)=H,(P, N;)

by excision, so that (N,, dN) is k-connected, hence by duality the homol-
ogy of N, vanishes in dimensions =n—k, the fact that N, is of the
homotopy type of a finite CW-complex will follow from the construc-
tion of N, and N, (in fact our definition of embedding requires this) and
thus we have N, homotopy equivalent to a CW-complex of dimension
Sn—k-1.
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We have the following proposition

Proposition 6.4. Let (N,0N) be a Poincaré pair of formal dimension
n=7, with N homotopy equivalent to a CW-complex K, of dimension k,
2k=<n and i n,(ON)— n,(N) an isomorphism then N has a handle
decomposition, with handles of index <k.

Proof. Let L be the (k— 1)-skeleton of K, then (N, N) has a splitting as
N=(P,.0P)U,(Q,PUON)

with P homotopy equivalent to L. Now the homotopy equivalence
f: K— N gives via the characteristic maps for the top cells, homotopy
classes [a;]em, (N, P) i in some index set. By the Blakers-Massey Theorem
{see for example [6]} each such class can be represented by an element
[o]em, (Q, OP). Now by using Proposition 6.2 or 6.3 as is appropriate to
the parity of n, we can get disjoint embeddings, so that we have an
embedding of K in N, since N is homotopy equivalent to K this is exactly
a handle decomposition for N.
To complete the proof of Theorem 6.1 we proceed as follows.

n=2k+ 1. Using Proposition 6.2 we can split N as (N;, IN,)U(N,,ON,)
where N, is homotopy equivalent to a CW-complex K of dimension <k,
hence N, is also homotopy equivalent to a CW-complex of dimension <k
by the argument before Proposition 6.4. The handle decomposition now
follows from Proposition 6.4.

n=2k. Using Proposition 6.3 we can split N as (N;, ON,)U(N,, oN,)
where N, is homotopy equivalent to a CW-complex of dimension <k,

as before N, is also homotopy equivalent to a CW-complex of dimension
<k so that Proposition 6.4 again gives us the result.

§ 7. Embeddings in the Metastable Range

The object of this paragraph is to obtain results analogous to the
Stalling’s Theorem [5] and Wall’s Induced Thickening Theorem [10],
the principal result is the following

Theorem 7.1. Let f: K*— P™ be a (2k—m+ 2)-connected map from
the finite connected CW-complex K of dimension k, to the finite Poincaré
Complex P of formal dimension m. Then f is homotopic to an embedding if
m—k=24and2m=3k+4.

Remark. A similar result for K Poincaré is shown by Quinn in [8].

We have the following corollary of Theorem 7.1 which is a general
position theorem for maps of CW-complexes into Poincaré complexes.
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Corollary 7.2. Let f: K*— P™ be a map of the finite CW-complex K
of dimension k, to the finite Poincaré complex P of formal dimension m,
then for m—k=4 and 2m=3k+4 there is a CW-complex I* obtained by
adding cells of dimension <(2k—m+2) to K, and an embedding g: L < P™
such that the composition of the inclusion i: K — L and the embedding
g: L— P is homotopic to f.

This corollary follows immediately from Theorem 7.1 by observing
that one can add cells of dimension <(2k—m+2) to K so as to make f
(2k —m+ 2)-connected.

The proof of Theorem 7.1 is by induction. Suppose that K=K,u é*
and that we have shown that f|K, is homotopic to an embedding, so
that we have a splitting

P=(N,,ON)U(N,, 2N,)

with a homotopy equivalence q: K, — N, such that the diagram below

commutes.
KO Nl

T

P

Then the map f: K — P defines an element [«] e, (P, N), and this element
is in the image of m,(N,,dN;,) — (P, N) since (N;,dN,) is (m—k—1)-
connected and (N,, 0N,) is (2k—m+ 2)-connected (at least if k> 2, other-
wise Theorem 7.2 follows from Levitt’s theorem), so that by Toda’s
extension of the Blakers-Massey Theorem [6], (P; N,, N,) is k-connected
and [«] comes from 7, (N,,dN,). Thus Theorem 7.1 will follow if we
show: —

Proposition 7.3. Let f: (D*, $*~') — (N™, ON) be a map into the finite
Poincaré pair (N, ON) of formal dimension m, with (N,0N) (2k—m+2)-
connected, then f is homotopic to an embedding provided also m—k =4.

Proof. The proof uses an elaboration of the technique of Proposi-
tion 6.2. By Lemma 2.1, we can find an embedding g: (K, L) (N, éN)
of the CW-pair (K, L) obtained from (D*, $*~!) by adding cells of dimen-
sion £2k—m+2, 2k—m+1) to (D* §*~'). We now want to push the
cells attached to D* into the boundary as we did in Proposition 6.2. Let
the splitting of (N, dN) mod boundary be given by

(N,ON)=(M,,dM,) Uy, (M,,3M,)  (see Fig. 16)

so that M, is homotopy equivalent to K and M, — M, is homotopy
equivalent to L. We want to attach cells to K so that K/L is homotopy
equivalent to S*. We proceed by induction. Suppose =, (K, L) is the first
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My

Fig. 16

non-vanishing relative homotopy group of (K, L). Then if r > (2k —m+2),
r=k and there is nothing to prove, so suppose r<(2k—m+2), let

a: (D, S )—(K,L)

be a generator of 7,(K, L). Then by composing with the embedding of
(K, L)=(N, ON) we have a map «: (D", S"~') — (N, N) which is homotopic
to a map D" — éN as a map of pairs by the connectedness condition on

(850N, Let H: (D'*'; D7, D’)—(N; N, ON)

be the homotopy, then by the version of the Blakers-Massey theorem
used earlier H is homotopic to a map

H: (D'+',D’,, D" )—(M,; My,éN —(0M, A éN)).

See Fig. 17.
MZ
H(D™") M,
\
\
\
\
\
\
\
\
\
\
\\
aN \
Iy, AN

Fig. 17
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If we can make H an embedding then the argument of Proposition 6.2
will apply to give an embedding

f: (D*, S*=Y— (N, ON)

serving to complete the induction step.

But since m—k=4, r<2k—m+2, so r+1=k and hence since
(M,, dM,) is r—1=(2r—m+ 2)-connected by excision and duality. So
we can apply the inductive hypothesis on dimension to deform H to an
embedding, proving the result.

§ 8. Embeddings on the Edge of the Stable Range

By analogy with the manifold case we call the range in which Levitt’s
embedding theorem holds the stable range, thus if we are trying to embed
a k-dimensional complex, the stable range for the dimension of the target
space is n>2k +2. In this paragraph we consider the cases n=2k+ 1, and
n=2k for simply-connected targets.

Theorem 8.1. Let f: S"— P2"*! be a map into a finite Poincaré complex
of formal dimension 2n+ 1, then for n=3, f is homotopic to an embedding.

Proof. By choosing maps «;: S' — Bi=1, ..., r, representing generators
of m,(P), we can use Levitt’s theorem to embed \/ S! and split P as

i=1
(0, OR) U (R, dR) with R of the homotopy type of a wedge of circles, so
that (Q, 0Q) is 1-connected. Now the homotopy class [f]en,(P?"*") can
be represented by a map f,: D", S"~' —(Q, 0R) by shifting the image of
S" off the core of R. So by Lemma 2.1 there is a CW-pair (K, S"~1) where
K is obtained from D" by adding cells of dimension 1 and an embedding
g: (K, S""') —(Q, dR) such that the diagram below commutes

(o, s* Y —L>(Q,4R)

o A
(K, 8"

but now we can apply Proposition 6.2 to show that f, is homotopic to
an embedding. To complete the proof we will show that fo|S"~' —dR
extends to an embedding f; : (D", S"~')— (R, OR). In fact (R, OR) is homo-
topy equivalent to a manifold since R is of the homotopy type of a wedge
of circles, furthermore the inclusion $"~! = @R is null-homotopic in R so
that £, extends to an embedding in R by general position (in the manifold
category). The union f, Uf;: S"— P is our required embedding.

We now consider the case of embedding an n-sphere into a Poincaré
complex of dimension 2n. In this case one has the following result.

23 Inventiones math., Vol. 24
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Theorem 8.2. Let f: S"— P?" be a map of the n-sphere into the finite
simply-connected Poincaré complex P. Then f is homotopic to an embedding
if n=4.

Proof. Choose a map g: K — P?", where K is a wedge of 2-spheres
and such that g is 2-connected. Since 2n= 8, g is homotopic to an embed-
ding so that we have a splitting of P as

P=(R, Q) U,(Q, 0Q)

with R homotopy equivalent to K so that (Q, dQ) is 2-connected and the
class [ f]em,(P) can be represented by an element of (0, 00). Let this
element be represented by a map f,: (D", S""')—(Q, Q). then by
Proposition 6.3 f, is homotopic to an embedding. As in Theorem 8.1 we
wish to extend f,|S"~! —dQ to an embedding f;: (D", $"~')— (R, éQ),
certainly we can find a map f;: (D", S"~') — (R, Q) such that the union
Jou fi:8"— P is homotopic to f, so it suffices to show that we can make
this f; an embedding. Now R is homotopy equivalent to K which is a
wedge of 2-spheres so that (R, dQ) has the homotopy type of a smooth
manifold with boundary since it consists of 2-handles attached to a disk.
Thus we can apply the Whitney Theorem to make f, an embedding.

Remark. One can use these theorems to develop surgery for Poincaré
complexes. Details of a slightly different approach will appear elsewhere
[11].
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