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Proof. The kernel of , |e;is ¢;nd=¢, N(d;+D,). But since d, e, the
kernel of m,|e, is d,+¢,nd,. But e Nd,Se ne,=d Nd,cd, by
Lemma 1.6.7. Thus d, is the kernel of m,|e,. Similarly , is the kernel of
T, |e,. But now since e=e, +e, (see (1.6.12)) one has e/db=e,/d, +e¢,/d,.
Bute,/d, = (e, +)/d=(e, +d,)/d. Similarly e,/D,=(e,+d,)/d. Thuse,/d, N
e,/D,=[(e;+D,) N (e, +Dd,)]/d. However (e;+D,)N(e,+d,)=0 by Lemma
1.6.4. Thus the sum is direct.

But now since ¢, =a and e, <a* it follows that e,/ and e,/d, are
orthogonal relative to I§g. On the other hand since (e;/D)c=0,/(0,)c D
by/(d)c it follows that e,/d, is stable under j for i=1, 2 so that e/, and
e,/b, are orthogonal with respect to S,

Chapter 11
Polarizations of Solvable Lie Groups

IL1. Algebraic Preliminaries

Henceforth, unless stated otherwise, G will be a connected, simply
connected solvable Lie group with Lie algebra g. We will use n to denote
the nil-radical of g, i.e., the maximal nilpotent ideal of g. If v is any sub-
algebra of g and R is the connected subgroup of G with Lie algebra
then it is well-known that R is a closed, simply connected subgroup of G.
We will use N to denote the subgroup corresponding to the nil-radical n.
Let geg’ and let B, denote the alternating bilinear form on g defined by g.
Similarly if fen’, n’ the dual vector space to n, B, will denote the alter-
nating bilinear form that f defines on n. Now let S=g|n. Then fen'. Itis
clear that then

Bg|n=B,.

Since 1t is an ideal in g, n is stable under Ad G. Hence the contra-
gredient representation of G induces an action of G on 1’ and so we may
consider " as a G-module. Now fen' is given by f=g|n. Thus if G ;s
the isotropy group of G at f then

(IL1.1) G,<G,.

Moreover, restricting the action of G onn’ to N is the coadjoint representa-
tion of N so that
(I1.1.2) G,NnN=N,

whgre N is the isot_ropy group of N at f. Since N is simply connected it is
easily seen that N, is connected.
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Let us return to the notation of Section 1.6 and recall that if ncgwe
define n° as the orthocomplement of n in g relative to B,.

Proposition IL.1.1. Let g, be the Lie algebra of G, and let n° be as
defined above. Then g, =n°. Explicitly
9,=1{xeg|<g, [, x1>=0 for all yen}.

Proof. Since n is the nil-radical of g, [g, g] < n and we have

& L. x>=<{fi[y,x]) x,yeq.

Thus, the above is true for xeg, yen. Thus (g, [y, x]>=0 for all yen if
and only if x - f=0; that is, if and only if xeg,.

Note that Proposition I1.1.1 implies that n° is a subalgebra of g. Now
let a=n’4+n= g, +n as in Section 1.6. Since [g, g]<n, a is an ideal in g,
let d= g’ be the space of all linear functionals that vanish on a.

Lemma I1.1.2. Let all notation be as above. If N,;=NnG,= N, then
the correspondence a— a - g induces a bijection

N,/N,—g+a.
Note that
(I1.1.3) gt+a={keg | kla=g|a}.

Proof. Let n, and n, be the Lie algebras of N, and N, respectively.
Then n;=g,nn=n°nn and n,=g,"n=g°"n. We next observe that
the correspondence x — x - g, xen - induces an exact sequence

(I1.1.4) 0—-n,—»n,—»d-0.

Using the notation of Section 1.6 one has

a®=m+n%’=n"nn°%°.

But (n°)°=g°+n. Thus a®=n°n(g°+n). Since g°<=n’, one has a®=
g%+ nnn°. Thus one has
(I1.1.5) a®=g,+n,.
Hence n, is orthogonal to a relative to B,. This implies, however, that
n,-g<d so that x- ged for all xen,. But, since x-g=0 if and only if
X€g,, to prove (IL.1.4) it suffices to show that the mapping n,—dis
surjective. We need only to show that the real dimensions of n s/m, and

a agree. Now if dim( ) denotes here the real dimension of the vector
space in the bracket, we have by (I.1.5) that

(I1.1.6) dim a®=dim g, +dim 1 /n,.
g L 1
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On the other hand, since g, Sa one has
dim a+dim a®=dim g+dim g°.
Thus by (I1.1.6) and the fact that g°=gg we have
dim g—dim a=dim ng/m,.

However, dim @=dim g—dim a so that dim n s/m,=dim a. This proves
(IL.1.4).

But now since [g, g] = n<a it follows that the elements of & vanish on
[g, g] so that the elements of & are fixed under the coadjoint representa-
tion. Hence if xen 7 one has

(I1.1.7) eXpx-g=g+x-g.

Then, since the exponential mapping in N is a bijection, the correspond-
ence a —a- x for ae N, induces an injection N,/N, - g +& However the
mapping is a surjection, since if ked there exists xen o such that x- g=k.
Hence exp x - g=g+k by (11.1.7).

Now let e=g|g 7€8;. We will now determine the isotropy group
(G /), at e for the coadjoint representation of G - Begin by observing that
N, is normal in G, since [g,, g,]gnngf=n,. Thus G,N, is a well-
defined subgroup of G r

Proposition I1.1.3. Let all notation be as above. Then
(Gpe.=G,N,.

Proof.1f ae G, then (a - g)lg;=a-e. Thus G,<(G)),. But if ae N, then
a-g—g is orthogonal to a by Lemma I1.1.2, and hence a - g —g is ortho-
gonal to g,. Thus

0=(a-g—g)lg,=a-e—e

so that G,N, =(G s)e- Conversely, let be(G ),. Then
O0=b-e—e=(b-g—g)lg;,.
However (b-g—g)|n=b-f— f=0 since beG,. Thus
(b-g—g)la=0.

But then by Lemma I1.1.2 there exists ae N, such thata-g=b-g. Hence
a~'b=ceG,. Then b=aceN,G,=G,N,.

We are now going to examine the three subalgebras n, g , and
a=n+n? of g. The subgroup corresponding to g, is the identity com-
ponent (G,), of G,. As G,=G, the subgroup M= G,(G/), is closed
because
(I1.1.8) (Gpo=McG,.
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Of course, if m is the Lie algebra of M one has

(I1.1.9) m=g,=n’.

Now let 4, be the connected (and hence closed) subgroup correspond-
ing to the ideal a. Clearly Ao=(G,)oN. But G s N is closed because the
orbit N - f =n'is closed, since N is nilpotent, and G 7N isjust the stabilizer
of N - f with respect to the action of G on 1’. But A, is the identity compo-
nent of the closed group G +N.Thus A=MN = G, A, is closed since

(GfN)OEAgG,N.
We now set g|n=f, g|m=e, and gla=k.

Proposition I1.1.4. In the above notation
M,=G,N,, A=G,N,.

Proof. By (I1.1.8) one has that M,=(G,),. But (G)).=G, N, by Pro-
position I1.1.3. But G,N,=M. Thus G,N,=M, and hence G,N,=M,
and we have our first assertion.

To prove our second assertion we begin by noting that since k|n= f,
A,=G,. But, also k|m=e and hence A,=(G),. Thus ASG,N, by
Proposition I1.1.3. However, since G < A, we have that G, S A,. Now,
by Lemma IL.1.2, N,c 4,. Thus A,=G,N;. .

We will now assume that ge g’ is integral as defined in Definition 1.5.2.
Then there exists a character fg: G, — m, said to correspond to g, such that

d .
d—tr]g(exp tx),_o=2mi{g, x> forall X€g,.

Proposition IL.1.5. Let geg’ be integral then the linear functionals e, f
and k are integral. Moreover, there exists characters neonM,,n,on N, and
M on A, corresponding to the linear Junctions e, f and k. n r is uniquely
determined by f and y, and My are uniquely determined by the condition that
they extend Ngand n .

Proof. Since N; is connected and simply connected, 1, exists and is
unique. But now G, normalizes N, and since f is invariant under G, =G,
one has n (aba~")=#(b) for all beN,, and aeG,. Thus (n>m,) defines
a character on the semi-direct product G,x N,. Now N;=G,nN;, is
connected. Since fIn,=g|n, where n,=g,nn, we have that nelN,=
Mgl N,. Thus (n,, 1) is trivial on the kernel of the surjection

70 Gyx N, — G, N,
defined by
t(a,b)=ab.
Thus (1., n ;) is uniquely of the form 1o t, where # is a character on G,N;.
The result then follows from Proposition I1.1.3.
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Let us consider further the structure of M.

Proposition I1.1.6. Assume geg' and g+0. Then M, and Ker n, are
normal subgroups of M, so that m, and p = Ker e|m, are idealsin m. (Here,
of course, m,=g,+n, is the algebra of M,.) Moreover M/Ker n, is a
connected Lie group with Lie algebra m/p. Furthermore m/p is a Heisen-
berg Lie algebra with m,/p as the 1-dimensional center.

Proof. Now since G, N =N, and since N, is connected, one has
(Gp)on N=N,. Thus
MnN=N,.

On the other hand, if a prime denotes the commutator subgroup, one has
G'< N since [g, g] =n. Thus

M’ng

since M'SM N N=N,. Thus if aeM, and beM one has bab~'a~'=
ceN,SM,. Hence bab™'=caeM, so that M, is normal. Now if q=
Ker f|n, then since g;Nn=n, is stable under Ad G, and f is fixed by
G, it follows that q is stable under Ad G rand hence under Ad M. Thus q
is an ideal in m and hence Q< N,, the corresponding connected Lie
group, is normal in M. Hence if M, is the identity component of M, then
M,/Q is a Lie group with Lie algebra m/q. Now let aeM, and let xem.
Since Ad ainduces theidentity operator on g/nonehasa-x — xen~ni= n.
But{fa-x—x)=<e,a-x—x)={e,a-x)— e, x). However (e, a-xy=
{a~'.e,xy={e, x) since aeM,. Thus a-x—xeq. Hence Ad a induces
the identity operator on m/q. But then conjugation by a induces the
identity operator on M,/Q so that for any be M, one has

bab~'a"'eQ.

However, Q =Ker 7, so that n,(bab~')=y,(a). But clearly this also holds
if be G, since G,= M,. Since M =G, M, one therefore has

n.(bab™")=n,(a)
for all ae M, be M. Hence Ker 1, 1s normal in M.

Next note that e|m,=0. Indeed if not, then eln,=f|n,=0. However
this implies f=0 since n is nilpotent. (One knows that if 0 hen’ then
h|n, %0 (see [7]).) But if f=0 then g|[g, g]=0 so that G,=G and hence
m,=g. Consequently e|m,=g. But g+0 which is a contradiction. Thus
e|m,=0. But since e|m, %0 the character , maps the identity component
(M,), of M, onto the unit circle T. Thus given any aeG, there exists
be(M,)o=M,suchthatb~' aeKer n,. Thusaeb Ker 5, or G,=M, Kern,.
But then M=G,M,=M,Keryn, so that M, maps onto M/Ker e
proving that M/Ker #, is connected.
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Now since [m, m]csnnm= n.=m,, it follows that
m/m, = (m/p)/(m,/p)
is abelian. Now m,/p is I1-dimensional since e|m,+0. But by definition
of m, one has [m,m,J<Kere. Thus [m,mJsm,nKere= p and
hence m,/p is central in m/p. To prove the proposition therefore we
have only to show that m,/p is exactly the center of m/p. However this

follows immediately from the general fact that the alternating form B, is
non-singular on m/m,. QED.

I1.2. Admissible Polarizations

Recall that a polarization b at g is, amongst other things, a maximal
isotropic subspace (m.i.s.) of g relative to B,.

Definition I1.2.1. Let geg’ and let Ne=n+incge. A polarization b
at g is said to be admissible if f A N is a m.i.s. of n relative to the alter-
nating bilinear form B, induces on ng.

Theorem IL.2.1. If |y is an admissible polarization at g then
1) by=bnngis a polarization at ffor N;
2) b,=bnmgis a polarization at e for M and

b=b,+h,=a;
3) b is a polarization at k for A.
Further, b is positive if and onl y if b, and b, are positive.

Proof.Since B,=B,|n, b, isam.i.s. of ne relative to B,.. Thus n,ch,.
Also b, is a subalgebra of nc. Hence, since N, is connected, b, is stable
under Ad N;. But, also by Corollary 1.6.8, if we let e=(+bh)ng we
obtain e;=(h, +bh,)nn=en. Hence e, is a subalgebra of n and hence
b, is a polarization at f,

We again have that B, = B,|m and that
Me=(8/)c= )= ne.
Thus b, =hn mgis a subalgebra. Now by Proposition 1.6.5, ), =h ngis
a m.i.s. of ng. Further, since b is a polarization at g, b is stable under
Ad G,. Thus b, is stable under Ad G,. Now, since nnn®= n, by Lemma
1.6.7 we have that
(I1.2.1) (bynbh)ng=n,.

Thusn,<b, and hence b, is also stable under Ad N,.We may now apply
Proposition I1.1.3 to conclude that b, is stable under Ad M,. Finally,
by Corollary 1.6.8 (with m=n0) e,=(b,+h)nmis a subalgebra, since
e,=enm. Hence b, is a polarization at e.
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We will now apply Proposition 1.6.10 with d= bng, d,=h,ng=
b, b,=h,ng=h, nm to conclude that

e/D=¢e,/d, De,/d,.

But B, and S, are just the restrictions of B, and S, to e,/d,. Similarly B,
and S, are just the restrictions of B, and §, to e,/d,. We again apply
Proposition 1.6.10 to conclude that  is positive if and only if b, and b,
are positive.

Finally, since h=b,+b,, one has by Proposition 1.6.5 that bcac=
nc+ng. Further, b is a m.i.s. of a since it is a m.i.s. of gc- To prove
assertion (3) of our theorem it remains only to show that b is stable
under Ad A4,. Now, because b is a polarization at g, b is stable under
Ad G,. Further, b is stable under Ad N,, since n,ch. Thus Proposi-
tion IL.1.3 implies that b is stable under Ad 4,.

Remark 11.2.2. It is a consequence of Theorem I1.2.1 that an admissible
polarization b at g defines a polarization for the four groups G, N, M and
A=MN. We will henceforth speak of the four polarizations defined by
an admissible polarization at g.

First recall that the relationships between the corresponding four
isotropy groups G,, N;, M, and A4, is given by Proposition I1.1.4. Let
(Ey)o and (E,), be the connected subgroups of G corresponding to e, and
e,.Sincee=e,+e,and[e,, e,]<e, (because[g, g] =n;see Corollary1.6.8)
one clearly has E,=(E,),(E,), returning to the notation of § 1.4. But now
the “E” groups corresponding to the four polarizations mentioned
above, in the order mentioned above, are E, E 1»E,, and E where E=
G.Eo,E;=Ny(E))gand E, =M (E,),.Of course E, = (E,), since N,<(E)),.
(For the case of kea’ one notes that 4, E,, is the “ E” group. But A,=G,N,
and N, < E, so that 4, E,= E.) But now E, normalizes E, since A=M,=
G, N, normalizes e ( is a polarization at k) and hence M, normalizes
enn=e,;. Now one clearly has

E=E,E,.

We wish to show all four polarizations satisfy the Pukansky condition.
For that we need the following general proposition about closed orbits.
If m is a representation of a nilpotent Lie algebra n on a finite dimensional
vector space V then a vector veV is called a zero weight vector for n
if for any xen, n(x)* v=0 for some k.

Proposition 11.2.3. Let G be a connected solvable Lie group and let
g be its Lie algebra. Assume V is a real finite dimensional G (and hence g)
module. Let ve V and assume g can be written g=g, +g, (not necessarily
direct) where g,, g, are nilpotent subalgebras of g and g, is an ideal in g,
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in such a way that v is a zero weight vector for both g, and q,. Then the
orbit G- v<=V is closed.

Proof. Let V; be the space of all zero weight vectors for g, in V. Since
g, is an ideal in g it is clear that V} is stable under G and hence G - v V.
Thus we may assume Vi=V or that every element of g; operates as a
nilpotent operator.

Let n denote the representation of G (and also g) on V defining the
module structure. Let H< Aut V denote the algebraic closure of n(G,)
where G, are the subgroups of G corresponding to g, i=1, 2. Let | be the
Lie algebra of H so that one can write b as a semi-direct sum h=s+n
where n, an ideal in b, is the set of all nilpotent operators in i and s is an
abelian Lie algebra all of whose elements are semi-simple operators.

Of course n(g,) <} and for any xeg, let n(x), and =(x), be the compo-
nents of n(x) in s and n respectively. Next observe that

(11.2.2) n={n(x),|xeg,}.

Indeed if n, is the subspace of n given by the right side above then we
assert n, is a Lie algebra. Indeed if x, y€g, then

[ (), (1)) = [7(x)— 7 (x),, m(y) — 7 (p),]
= TL'[X, y] - [n(x), n(y)s] - [R(X)s, n(y)] 0

But n[x, y]=n[x, y], since the elements in n[g,,8,] are nilpotent.
However since n(g,) is a Lie algebra it is stable under ad n(g,). But then
since H is the algebra closure of n(G,) it follows that n(g,) is stable under
adh=ads. Thus [z(x), n(y);]=n(z) for some zeg,. But n(z)en. That is,
n(z)=m(z),since [n(x),, n( y)s]=0since s is abelian. Thus [r(x), n(y),])en,.
Similarly [z (x),, n(y)]en,. Thus n, is a Lie algebra and the argument
above proves that n, is stable under ad s so that s+n, is an algebraic
Lie algebra. But clearly n(g,)= s + n,. Hence s+ n,=s+mnso that n= n,
proving (I1.2.2). Now since n(g,) normalizes n(g,) it follows that b and
in particular n normalizes n(g,) and hence if m=n(g,)+n then m is a
Lie subalgebra of End V. But if M is the corresponding connected Lie
group then observe M is unipotent. Indeed first of all mis clearly solvable.
But since all the operators in 7(g,) and in n are nilpotent it follows from
Lie’s theorem that all elements in m are nilpotent. Hence M is unipotent.
But then M - v is closed. It suffices therefore to show that M -v=G - 0.
But now clearly M = n(G,) N where N is the subgroup of G corresponding
to n. On the other hand 7(G)= n(G,) n(G,). Hence it suffices to show that
G,-v=N-v. For this let V,=V be zero weight space for g, so that
veV,. But since V, is stable under m(g,) it is stable under h. However s
vanishes on ¥, since 7(G,) is clearly unipotent on ¥,. But then the
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restriction n(g,)| ¥, equals n|V, by (I1.2.2). But then n(Gy)|V,=N|V,.
Hence G,-V=N-v. QED.

For our applications it is convenient to know that we may slightly
weaken the hypothesis in Proposition 11.2.3.

Corollary I1.2.4. Let the assumptions be as in Proposition 11.2.3 except
that instead of assuming g, is nilpotent we assume that for any xeg, one has
n(x)*v=0 for some k. Then the orbit G - v is closed.

Proof. Let g}, be a Cartan subalgebra of g,. Then g5 is nilpotent and
clearly v is a zero weight vector for g}, . But one has 8,=65+[g,,9,]. Put
81=9:+1[8,, 8]

But since all the elements in ad[g,, g,] are nilpotent on g it follows
that g; is a nilpotent ideal in g and v is a zero weight vector for g;. How-
ever g=g; + g5 so that by Proposition I1.2.3 one has G - visclosed. QED.

The machinery we have discussed now applies in the case at hand
because of

Proposition 11.2.5. If b is an admissible polarization at g then the four
polarizations it defines satisfy the Pukansky condition. That is E- g is
closeding,E,-f is closed inw, E, - e is closed in m’ and E - k is closed in a'.

Proof. We recall e=e, +e, where ¢,=e¢nn is clearly an ideal in e.
Since e; Sn it follows that e, is a nilpotent ideal in e and g (resp. f) is a
zero weight vector for ¢;. Now observe that for xee, one has x - x - g=0
(respectively x-x-e=0, x-x-k=0). Indeed if yeg one has (x-x-g, y>=
<g, [x, [x, y11> = {f [x. [x, ¥1] since [x, [x, yl]en. But {f, [x, [x,y1]>
=<{x-f,[x,y]) since also [x, yJen. However since x€e, =g, one has
x-f=0. Thus x - x - g=0. Similarly for e and k replacing g. Thus Corol-
lary I1.2.4 applies. Note that the possible disconnectedness of the groups
E, E, play no role by Remark 1.5.1. QED.

I1.3. Existence of Admissible Polarizations

This section will be devoted to showing that admissible polarizations
exist. We begin with the following lemma.

Lemma IL3.1. Let N be a simply connected nilpotent Lie group and
let n be its Lie algebra. Let Autn be the group of all Lie algebra auto-
morphisms of n so that Ad N is a subgroup of Autn. Regard Autn as
operating by contragredience on the dual . Let fen'. Assume F is a group
and a homomorphism F — Aut n is given (so that F operates on v and 1’ )
such that, (1) the commutator subgroup F’ maps into Ad N and, Q) F-f=f.
Then there exists a positive polarization ¥, at f which is stable under F.

Proof. We assume inductively that the result is true for all simply
connected nilpotent Lie groups of dimension smaller than dim n.
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Let f=Ker f|center n when this space has positive dimension. Clearly
fis an ideal in n which is stable under F. Thus F operates on n/f inducing
amap F — Aut n/f where F’ — Ad N/K if K is the subgroup correspond-
ing to . Moreover if f,e(n/f) is induced by f then f, is fixed by F. Now
by induction there exists bo S(m/f)¢, a positive polarization at S, stable
under F. But then n7'h, =} is clearly a positive polarization at f stable
under F, where n:n — n/fis the quotientmap (indeed e =7~ ! e D=n"1D,
and e/d=e,/d,). Thus we are done in this case so that we may assume
dim £=0 and hence center n is one-dimensional, spanned by an element
z where { f,z)=1. Since f is fixed by F clearly z is also fixed under the
action of F. Let (z) denote linear span of z.

Now consider f=center n/(z) so that f= f,/(z) where f, =n is an ideal.
Clearly Aut n operates on n/(z) and ¥ is clearly stable under the action
of this group. However Ad N operates trivially on f since [n,f,]<Rz.
Thus the abelian group F/F’ operates on f. Let p<f be an irreducible
subspace under the action of F/F' so that dim p is either 1 or 2. Now
since {f,z)=1 we may write [,=f,®Rz where f,= Ker f|f,. Since f
is fixed under F and {, is stable under F it follows that f, is stable under F
and that if 7: n — n/(z) is the quotient map then n induces an F-isomor-
phism f, - f. Let p,<t, be the F-irreducible subspace corresponding
to p<f. Note then that F’ must operate trivially on f,.

Case 1. Assume dim p,=1 so that p,=Rw. In this case we proceed
along the lines used by Kirillov [7]. Thatis, let gen’bethe linear functional
defined by the relation [y, w]={(g, y> z. One has g+ 0 since otherwise w
would be central in n contradicting the fact that center n—R z. Thus
there exists xeg such that [x, w] =z and hence

n=Rx®n,

where ny=Ker g. But then n,, is the centralizer of w and hence n, is a
subalgebra stable under F. However, since n, has codimension 1 in n
and n is nilpotent, n, is an ideal in n. In particular, N= X N, where X
and N, are the subgroups corresponding to R x and n,.

Now the action of F on n, induces an epimorphism F — F < Aut n,,
where F’'— F}. However F’' —Ad, N=Ad, X Ad, N,. But Ad, N, oper-
ates trivially on Rw since clearly wecenter ny. On the other hand, F’
operates trivially on wep, as observed above. But since [x,w]=2z no
non-trivial element of Ad, X operates trivially on w so we must have
F’'— Ad, N, which implies F; < Ad, N,.

Now clearly f,=f|n, is invariant under F,. Furthermore we assert
that

(I1.3.1) (o), =n,@Rw.
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Indeed we(n,),, since w,ecenter n,. To see that n,<(n,),, we have only
to observe that n =n,. But this is clear since otherwise there exists
yen, such that [y, w] =z. But then

I={fnwDD=—Cy-fiw)

contradicting the fact that y.f=0. Also one has n sNRw=0 since
w-f,x)={f, [x,w])=<{f, z)=1. Finally if Yeo),, let c=(y-fix)=
{AIx ¥, But {ew-f,x>)={f,cz)=c. Thus {(y—cw)-f,x>=0. But
(y—cw)-fIng=(y—cw)-f,=0 since we(n,), . But then y—cw=yen,
so that yen,+ Rw. This establishes (I1.3.1).

Now by induction there exists a positive polarization by =(np)c at
Jo which is stable under F,. Clearly then one has

(MP)eS((Mo)1,)e EHo S (Mp)c S .

But since b, is “half-way” between ((“o)fo)c and (n,) it is also “half-way”
between (1) and n¢ because n, has codimensional 1 in (1), and ny has
codimension 1 in n. Thusif=§, it follows that b is a positive polarization
at f which is stable under the action of F.

Now if dim p,=2 we may write p,=Rw, ® Rw,. If we define g;en,
j=1,2 by the relation [y,w;]=<g;, >z then g, and g, are linearly
independent since otherwise p, N center n=0. But of course po, Ncenter
n=0 since center n=Rz.

But then we may find elements x,, x, en such that

(IL.3.2) [xi,w;1=0,;z.
Clearly then
(I1.3.3) n=Rx ®Rx,®n,

where n,=Ker g, nKer g, is the centralizer of the subspace p,. Since p,,
is stable under F it follows that n, is a subalgebra stable under F. In
fact since [, n] annihilates f, 2f,2p,, it follows that

(I1.3.4) [m,nlcn,

and hence n, is an ideal in n. The action of F on n, induces an epimor-
phism F — F, < Aut n,, where F’ maps onto F;. But the map X, x X, x
Ny, — N is bijective where (a,,a,,b)—a,a, b and where N,= N is the
subgroup corresponding to n, and X ; 1s the subgroup corresponding to
Rx;,j=1,2. But now N, operates trivially on p,<f,. But since no
non-trivial element of X, X, operates trivially on p, by the relations
(IL3.2) it follows that F' —Ad, N, and hence F,< Ad, N,.

Now let f, = f|n,. By induction there exists a positive polarization
b, at f, which is stable under the action of F.
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As in the case where dim p,=1 one has [n,,po]=0 so that n.Sn,
and hence

(I1.3.5) n, S (1), -
Next observe that

(11.3.6) (no)fngnf+p0=nf®p0.

Indeed if ye(ny),, and ¢;, j=1,2 are defined by ¢;=<y-f,x;> then
g=(y—c,w,—c,w,)-f is orthogonal to Rx;+Rx, by the relations
(I1.3.2). However clearly g is orthogonal to 1, so that g=0 which implies
Y= wy—cywyen, and hence yen,+p,. Now n,Np,=0 since by the
relations (I1.3.2) any non-zero element we Po is such that zeIm ad w. But
since < f, z) #0 this implies wén,. Hence (11.3.6) is established.

Case 2. Assume [w,,w,]=0. Then p,<=n, and hence po Scenter n,
which implies Po S(1p),. Thus by (I1.3.5) and (I1.3.6) one has (no)p=
1, @p, so that n, has codimension 2 in (1), - Since 1, has codimension 2
in n this implies that b, is “half-way” between (n,)c and n¢ and hence
b=Dh, defines a positive polarization at S which is stable under F.

Case 3. Assume [w,,w,]+0. Now since F’' operates trivially on p,,
it follows that F operates, irreducibly, as an abelian group on the 2-
dimensional space. The commuting ring in End p,, is therefore isomorphic
to C and hence w, and w, may be chosen in P, so that Cu, Ci < (p,)c are
stable under the action of F where u=w, +iw,.

Furthermore it is clear that since they are necessarily independent we
may choose w,, w, so that [w,, w,]=z. But then we may choose x, and
X, so that x; =w,, x, = —w, and hence (11.3.3) becomes

Rwlc-Bsz@n():n.

But then p,nn,=0 so that, since nS(ng), =n,+p, by (11.3.5) and
(IL.3.6) one has n,=(n,), . But then since n, has codimension 2 in n, it
follows that b, fails by one dimension of being a maximum isotropic
subspace (m.i.s.) of n¢ relative to B,. That is, in the notation of Section 1.6
one has dim b, =i(ny)— 1.
Now put
b=b,+Cu.

Since b, =(ny)c and ue(p,)c it follows that [4,b,]1=0 so that not only b
is a m.i.s. of n¢ but b is a subalgebra stable under the action of F. Also
since n, < it follows that § is stable under Ad N;. But now h+h=
bo+bho+Cu+Cu= (ho+bo)+ (Po)c- However b,+ bo is a subalgebra
since by, is a polarization at Jo- But by + b, =(n,)c and since [pg, 1,]=0
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it follows that h+ b is a subalgebra since [(p,)c, (Po)c]=Cz and zen =
(Mo), b. Thus b is a polarization at /- We have only to show that [ is
positive.

But now since p,nn,=0 one has d=hnn=h,nn=h,nn,=b,.
But if e=(h+b)nn and eo=(ho+by) N n=(b,+b,) " n, then one has

e/d= eo/Do D (D, @ Po)/,-

But this is an orthogonal direct sum relative to both Bf and S,. Indeed
this is clear since ¢, and d, are orthogonal relative to B, and hence rela-
tive to B,. But also [p,, ¢,] =0. Furthermore (b, + p,)/d, is stable under j
since (Po)c=(Po)c N b+ (Po)e N =Cu® Cii. But by assumption S is posi-
tive definite on e,/d,. However it is positive definite on (Do +Pp,)/d, since
if [w]=w;+d,, i=1,2 one has Jjwil=[w,] and j[w,]= —[w,]. Thus
{[w,], [w,]} =0 and

{Iwd, w1} =(j [w,], [w D) =([w,], [w])=<f [wy, w,D={fiz)=1.
Similarly {[w,], [w,]} =1. Hence S, is positive definite. QED.

We now return to the notation of Sections II.1 and I1.2. It is clear
that if b is an admissible polarization at g,then b, =bh N n, is stable under
G,. We will say that an admissible polarization | is strongly admissible
in case b, is stable under the action of G,2G,.

A polarization b is called real if h=§, that is, if e =b.

Theorem 11.3.2. Let G be a simply connected solvable Lie group with
Lie algebra g. Let ge g’ be arbitrary. Let n be the maximal nilpotent ideal
ingand let f=g|n. Then there exists a positive strongly admissible positive
polarization b at g (and hence in particular a positive admissible polari-
zation at f).

Proof. Now let F=Ad,G s so that F<Autn. Furthermore f is
obviously fixed by F. Moreover, since [a,g]1<=n one has for the com-
mutator subgroups G,=G =N (using the notation of Lemma I1.3.1).
Thus F'= Ad N and hence the conditions of Lemma I1.3.1 are satisfied.
Thus there exists a positive polarization b, =n¢at f which is stable under
Ad G;,.

Now if g=0 there is nothing to prove so that we may assume g+0
and use the notation of Proposition I1.1.6. Now by Proposition I1.1.6,
m/p is a Heisenberg Lie algebra and since eem’ vanishes on p it defines
an element ée(m/p) which is non-zero on the center m,/p of m/p. But
then clearly there exists a positive polarization f)zg(m/p)C at ¢ for the
connected group M/Ker #,. In fact since m/p is nilpotent, we may choose
a real polarization by Kirillov’s results. If 7: (M) — (m/p) is the quotient
map, let I)2=7z“(f)2)§mc so that b, is a positive polarization at e for
M=G,M,.
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