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Research Papers

Functional equations associated with triangle geometry

CLARK KIMBERLING

Summary. Triangle geometry is treated in the context of functional equations of three variables a, b, ¢
which may be regarded as the sidelengths of a variable triangle. Triangle centers (e.g., incenter,
circumcenter, centroid), and central lines (e.g., the Euler line) are defined and partitioned into classes:
0O-centers, I-centers, 2-centers and O-lines, I-lines, and 2-lines. Criteria for parallelism, perpendicularity,
and other geometric relations are proved in terms of these classes. The Euler line and central lines
parallel or perpendicular to the Euler line serve as examples.

1. Introduction

This work springs from a computer-assisted search for two perpendicular lines
in the plane of an arbitrary triangle. Thousands of cases were checked without success.
The explanation for this surprise was found to be that a certain functional equation
has no solution of the general form that was being sampled. More importantly, the
problem led to others of its kind, thereby opening up an area of application of
functional equations and a new setting in which to view triangle geometry.

Before turning to general considerations, we note that the perpendiculars being
sought were not just any lines, but rather, lines that pass through pairs of notable
points of the triangle, such as the centroid, incenter, circumcenter, orthocenter, and
Fermat’s point. The definition of center given below includes these five points and
infinitely many others. The nonperpendicularity property can be stated as follows:
if P,Q,R,S are centers for which lines PQ and RS are perpendicular for all
triangles, then the two lines are algebraically quite dissimilar (Theorem 8, part v,
and Theorem 9). This dissimilarity leads to a distinction between the centers at
opposite ends of a diameter of the circumcircle; specifically, in Theorem 12, if one
of these is a “0-center’ then the other is a “2-center.”
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128 CLARK KIMBERLING AEQ. MATH.

Actually, the real projective plane is contained as a “small” substructure of the
structure in which we shall work, namely a projective plane over a field of functions
in three variables, these being the sidelengths a, b, ¢ of a variable reference triangle
A ABC. Within this framework, a “line””, for example, is a set of equivalence classes
of functions. It is convenient and helpful to call these classes points, since, for any
numerical sidelengths a, b, ¢ the value of such a class is indeed a point in a real
projective plane.

Although the setting for this work is a projective plane, no reference is made to
theorems of projective geometry. Indeed, the methods belong entirely to elementary
algebra.

2. Definitions: point, line, parallel, perpendicular

Let T be the set of ordered triples of sidelengths of triangles in the Euclidean
plane, so that

T={(a,b,c):0<a<b+c,0<b<c+a,0<c<a+b}.

Let ﬁ = (1/4)\/(a +b+c)b+c—a)c+a—b)a+b—c), the area of the
triangle 4BC having sidelengths a, b, c. Let (R, +,) be the ring of polynomial
functions in a, b, c, \/5 over the real number field, and let (F, +, *) be the quotient
field of (R, +, ). A point, P, is an equivalence class of ordered triples ( fi: 125 13)
of functions f; in F, at least one of which is not the zero function, where two
such triples (f, /2, f3) and (g, &2, &3) are equivalent if the following two conditions
hold:

g=0 iff f=0 fori=1,2,3 and fi/g=//82=/3/8

on all of T except the zero-set of g,g,g;. Note that P has infinitely many
representatives ( f, g, k), not only in F*, but also in &’. For any such (f, g, A) in F3,
we write P with colons instead of commas, like this:

P =f(a,b,c): gla, b, c): h(a, b, c). @)

The expression on the right hand side of this equation will be called coordinates of
P. This is short for homogeneous trilinear coordinates, which in triangle geometry
means any triple «, 8, y of numbers proportional to the directed distances from P to
the sides BC, CA, AB, respectively, of the reference triangle AABC. The actual
directed distances are ka, kf3, ky, where k = 2\/5T [(ao + b + cy).
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Representation ( 1) includes coordinates expressed in terms of the angles A, B, C,
as these can always be expressed in terms of a,b,c. For example, from
cos A = (b + ¢* — a?)/2bc follows

cos A: cos B: cos C = a(b>+ c*> —a?): b(c? + a*> — b?): c(a® + b*> — c?).

The function f'(a, b, ¢) = a(h? + ¢* — a*) will appear so many times in this work that
we shall abbreviate it as a.

Now suppose Q@ = a;: B,:y, and R =a,: f,: 7, are points. The line of Q and R
is the set of all points P =a: f:y satisfying

« B v
o B 7i|=0 (2)
o B 12

for all (a, b,c) in T.
Lines lo + mp +ny =0 and "a +m’f +n"y =0 are parallel if

I m n
" m” n'|=0 (3)
a b ¢

for all (a, b, ¢) in T and perpendicular if
2abc(ll’ + mm’ +nn’) — (mn’ +m'n)a — (nl’ + n’'Db —(Im’ +1I'm)é =0 (4)

for all (a, b, ¢) in T. (Henceforth the condition “for all (@, b, ¢) in T” will be tacitly
understood for all equations.) These definitions match Articles 4618 and 4620 in
Carr [1]. Here, of course, there is quite a different meaning assigned to the
underlying symbols a, b, c. Nevertheless, equations (2), (3), (4) are appropriate for
defining “line”, “parallel”, and “perpendicular”, since for any Euclidean triangle
A ABC with fixed sidelengths a, b, ¢, equation (2) represents a line in the plane of
AABC, and so on. Figure 1 represents the Euclidean triangle with sidelengths
(a, b, ¢) = (6.02, 8.32, 11) and eight lines:

%, = Euler line
= line of bc: ca: ab (centroid) and a: b: ¢ (circumcenter)
#,=line of 1:1:1 (incenter) and 1/(1 42 cos A): 1/(1 4+ 2 cos B):
1/(14+2cos C)
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Figure 1. Line ., is parallel to £,, &;, and &,, and perpendicular to &5, &, £, and Zs.

Z,=line of 1—cos(B—C):1—cos(C—A):1—cos(4—B) (Feuerbach
point) and 1 —2cos A: 1 —2cos B: 1 —2cos C

£, =line of csc(4 — n/3): cse(B — n/3): ese(C — n/3) (2nd isogonic center)
and sin(4 — n/3): sin(B — n/3): sin(C — n/3) (2nd isodynamic center)

Zs=the line x cos 4 + f cos B+7ycos C=0

Po=the line «sin24 cos(B — C)+ B sin 2B cos(C — 4) + 7 sin 2C cos
(4A—B)=0

%, =the line a sin 34 + f sin 3B +7 sin3C =0

Pe = the line « sin(4 — n/3) + B sin(B —/3) +y sin(C —7/3) =0

3. Isogonal and associated conjugates on a line

Suppose P = a: f: y is a point such that afly # 0. The isogonal conjugate of Pis
the point defined by P! = By: ya: af, or equivalently, 1/a: 1/B: 1/y. The associated
conjugate of P is the point defined by P~'=apy: bya: caP. In contrast to these
algebraic definitions, a geometric definition of isogonal conjugate appears in many
books without mention of coordinates. For an interesting property involving
coordinates for various kinds of conjugates, see Eves and Kimberling [2].

THEOREM 1. Let & be a line given by I + mp + ny =0, where Imn # 0. There
exists one and only one point P such that & contains both the isogonal conjugate of
P and the associated conjugate of P. If P =p,: ps: p,, then an equation for & is

(b - C)pza L (C - a)pﬂﬂ +F (a - b)Py)’ = 0’
and every point on & has the form

(u +av)pgp,: (u + bo)p,p,: (u + cv)p,pg,

where u and v are in R and satisfy u(b, c, a) = u(a, b, ¢) and v(b, ¢, a) = v(a, b, c).
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Proof. Since ¥ is given by lx +mf + ny =0, another equation for & is
b—0cl'a+(c—am'fp+(a—>bny=0, where I'=(c —a)a—>b)l, m =(a—>b)
(b—-cym, n"=(b —c)c—an. Let P=1"m"n’. Clearly, the two conjugates, P~
and P!, lie on Z.

To prove uniqueness, let %, be the line of P~' and P~' and suppose Q is a
point such that both Q ! and Q' lic on Z,. Let £%, be the line of P~ and
Q~!, and let Z%} be the line of P~ and Q ~'. Obviously, L% = £%,. Write Q
as q,:qg: 9,. Then an equation for £}, is

L]

1 1 1 1 | 1
- o+ - ﬁ -+ - 7= 0,
ﬁqy pyqﬁ qua paqy pmqﬁ pﬁqa

and for £33,

1 1 1 1 1 1 1 1 1
= = a4+ = B+- = y=0.
a \Ppq, Py4p b\p,q. pP.4, ¢\l Ppda

'Sinqe ¥ = Lo, We have
1<1 1)_1<p1 1>.1<1_1>
a\psq, Pas) b \Pyax Pad,) € \Pu9p Pyt
S e o)
09, Pyds) \Pydx  Pudy) \P:4s  Ppdx)’
which implies Q = P.
Now suppose. R is a point on £. By (2), there exist # and ¥ in F such that
(b, ¢, a) = i(a, b, ¢) and 4(b, ¢, a) = i(a, b, ), and R has first coordinate (& + av)p,.

Write & =u, /u,, § = v,/v,, where u,, u,,v,, 0, are in R. Then with u = u,v, and
v = u,v,, we have R expressed as in the final sentence of the theorem. a

4. Centers and standard forms

A point f(a, b, c): g(a, b, ¢): h(a, b, c) is a center if there exists a function
f(a, b, ¢) in R such that the following conditions hold:
(F1) f(a, b, ¢): §(a, b, ©): h(a, b, ¢) =f(a, b, c): (b, ¢, a): f(c, a, b);

(F2) f(a,c,b) =f(a, b, 0);
(F3) f(a, b, c) is homogeneous in a, b, c; that is, f(ax, bx, cx) = x"f(a, b, c) for
some nonnegative integer A.
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Note, in (F1), that the arguments of f, namely a, b, ¢, followed by b,c, a,
followed by c, a, b, are the cyclic permutations of «, b, c. In particular, c, a, b is
obtained from b, ¢, a exactly as b, c, a is obtained from a, b, c. These permutations
match Euclidean constructions in which one first constructs an object (e.g., a
median) relative to vertices 4, B, C, then constructs in the same way the same kind
of object relative to vertices B, C, A, and then repeats the construction relative to
vertices C, 4, B.

Property (F2), the symmetry of f(a, b, c) in b and ¢, also matches a property
of constructions of many notable triangle points: an object constructed relative
to vertices 4, B, C remains invariant if the construction is carried out relative
to vertices 4, C, B. For example, the median from A to the point halfway
from B to C is the same as the median from A to the point halfway from
C to B.

Let f(a, b, c) be an element of R for which (F2) and (F3) hold and for which
f(a, b, c), f(b, c,a), and f(c, a, b) have no common divisor of degree >1 in 4, b, or
¢. (Here and in the sequel, all references to division will be understood to mean
division in R.) Then f(a, b, ¢) has a factorization

f(a, b,c) =(b—c)(c —a)(a —b)*s(a, b, c) (5)
for some nonnegative integers p and ¢, such that the following conditions hold:

(S1) s(a, b, ¢) is not divisible by b — ¢, ¢ — a, or a — b;

(S2) s(a, b, c), s(b, c, a), s(c, a, b) have no common divisor of degree >1 in a, b,
or c.

Let X denote the center f(a, b, ¢): /' (b, ¢, a): f(c, a, b). If in (5) p and g are even then
X is a O-center; if p is odd then X is a I-center; if q is odd then X is a 2-center. If
X is a O-center or a 2-center, we call X an even center. Representation (5) and
conditions (S1) and (S2) imply the existence of a function g(a, b, ¢) in R, unique
except for multiplication by real numbers, where

g(a, b, c) if X is a 0-center
f(a,b,c) =<(b—c)gla,b,c) if X is a 1-center (6)
(¢ —a)(a — b)g(a, b, ¢) if X is a 2-center,

and the following conditions hold:

(SF0) if X is a O-center, then g(a, b, ¢) has one of the forms (b — c)*"s(a, b, ¢)
or (¢ —a)*(a — b)¥"s(a, b, ¢);



Vol. 45, 1993 Functional equations associated with triangle geometry 133

(SF1) if X is a l-center, then g(a, b, ¢) has the form (b — ¢)*"s(a, b, ¢);
(SF2) if X is a 2-center, then g(a, b, ¢) has the form (¢ — a)*"(a — b)*"s(a, b, ¢);

in all three cases, m is a nonnegative integer, and s(a, b, c) satisfies (S1) and (S2).

We call (6) a standard form for X and introduce the notation C{f(a, b, c)} to
represent the center with coordinates f'(a, b, ¢): (b, c, a): f (¢, a, b). This notation is
sometimes extended to Cgp{f(a, b, ¢)}, where the added subscript SF means that
the indicated coordinates are in standard form; that is, f(a, b, ¢) is of one of the
forms g(a, b, ¢), (b —c)gla, b, ¢), or (c —a)(a — b)gla, b, ¢) in (6). Whenever this
latter notation occurs, it will be tacitly understood that g(a, b, ¢) has the properties
associated with (6).

For example, the l-center

1 1 1
(c—a)a—b) (@=b)b—c) (b—c)c—a)

can be written as C{(b —c)*(c —a)(a—b)} or as Cgze{h —c}. Other examples
follow:

1. The incenter, centroid, circumcenter, and orthocenter are Cg. {1}, Cs{bc},
Csr{a}, and Cg{bé}, respectively.

2. The first isodynamic point, sin(4 + n/3):sin(B + n/3): sin(C + n/3), or
CSF{aﬁ +(\/§/4)a(b2 +c¢2—a?)}, is a O-center. Other O-centers
Csr{t(a, b, ¢)} for which t(a, b, ¢) invovles \/.5 are the isogonic centers, the
Napolean points, the isoperimetric point, and the point of equal detour.
(These and many others are listed in Kimberling [3] with coordinates and
references.)

3. The Steiner point, C{1/[a(b?> — c¢?)]}, given by Csr{(c —a)(a — b)bc(a + b) x
(a +¢)}, is a 2-center.

Suppose X is a center. Then the isogonal conjugate of X is a 0-, 1-, or 2-center
according as X is a 0-, 2-, or l-center, respectively. Similarly, the associated
conjugate of X is a 0-, 1-, or 2-center according as X is a 0-, 2-, or l-center,
respectively.

THEOREM 2. Suppose t(a, b, ¢) is a nonzero element of R satisfying the homo-
geneity property (F3). There exist polynomials h,(b, c) such that

t(a, b, C) = i (ﬂ)l io eilaihil(bv 0), (7)
=0 i=
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where for each i, 1, the coefficient e, equals 0 or 1, and if e, =1 then h;(b, c) is
homogeneous of degree n—i—2l in b and c. If t(a,c, b)=1t(ab,c), then
h,(c, b) = h,(b, ¢) for all i, 1.

If t(a, c,b) = —t(a, b, c), then hy(c,b) = —hy(b,c), and h,(b,c) is divisible by
b — c for all i, . Consequently, t(a, b, ¢) has the form (b — c)g(a, b, ¢) where g(a, b, ¢)
lies in R and satisfies g(a, ¢, b) =g(a, b, ¢).

Finally, if t(b, ¢, a) = t(a, b, c) = —1(a, c, b), then there exists i(a, b, ¢) in R such
that

t(a, b, ¢) = (b — ¢)(c — a)(a — b)i(a, b, ¢).
and 1(a, b, ) is symmetric in a, b, c.

Proof. A function t(a, b,c) as described in the first sentence has the form
Y d, j, k, l)a’b’c"(ﬂ)', the sum extending over all (i, j,k,!) for which
i +j+k+2/=n, where n is the degree of homogeneity of #(a, b, ¢). It follows,
since 2 is a polynomial in a, b, ¢, and \/5 is homogeneous of degree 2, that
t(a, b, ¢) has the form

1a, b, ¢) =¥ e(i, ], k, Dalb/b*(\/P).

the sum extending over all (i, j, k, /) for which i+j+k +2/=n and /€ {0, 1}.
Then

1 n
Ha,b,0) =Y (JP) Y a'Y eli,j, k, Db'c .
=0 i=0 -k
For each i, 1, if e(i,j, k,1) =0 for all j, k satisfying j+k =n —i — 2/, then put
e; = 0; otherwise put e; =1, and put

hy(b, ¢) =Y, e(i, j, k, b/c*.

ik

Equation (7) is now established, and h,(b, c) is clearly homogeneous as asserted.
Suppose (a, ¢, b) = t(a, b, ¢). Then

0= t(aa ¢, b) - t(a’ b’ C) = i (\/5)1 i ei[ai(hil(c» b) - hil(ba C))
=0 i=0

If hy(c, b) # hy(b, c) for some i,/ then the sum on the right is a nonzero linear
combination of linearly independent functions, but this is impossible, since the sum
is identically zero. Therefore, h;(c, b) = hy(b, ) for all i, L
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Now suppose t(a, ¢, b) = —1t(a, b, ¢). Then e(i, k, j, I) = —e(i, j, k, [) for all J, k,
so that

hy(b, ) =Y e, k, j, D)(B/c* — b*e!),

.k

the sum extending over all j, k for which j < k. Each difference b/c* — b*¢’ factors
as (b —o)r(b, c), where ry(c, b) =ry (b, c). Thus,

hi[(b9 (') = (b - C) Z e(i’ k’j* l)r;k(b’ C)w
1k

which implies by (7) that t(a, b, ¢) has the asserted form.

Finally, suppose (b, c, a) = t(a, b,c) = —t(a, ¢, b). Then, as already shown,
b — ¢ divides (a, b, ¢). Consequently, ¢ —a divides (b, c,a) and a — b divides
t(c,a, b), so that t(a,b,c) is divisible by all three; that is, #(a, b,c) =
(b — o)(c — a)(a — b)t(a, b, ¢) for some i(a, b, ¢) in R. We have #(a, ¢, b) = t(a, b, ¢)
and 1(b, ¢, a) = i(a, b, ¢), so that 1(a, b, ¢) is symmetric in a, b, c. O

5. Central lines — a first look

A central line is a line joining two centers. As an example, the line joining the
centroid and the circumcenter is a central line. The name of this particular line in
triangle geometry is the Euler line, and as in triangle geometry, it contains the
orthocenter, the center of the nine-point circle, and other centers which over the
years have acquired names. Another central line of special interest is the line at
infinity, & *, with equation ax + bf + ¢y =0. See, for example, Carr [1, Article
4612].

It is of interest to compare various centers on the Euler line, along with
symmetric polynomials u(a, b, ¢) and v(a, b, c) which, in the sense of Theorem I,
define them. In the notation of Theorem 1, we may take P to be the center having
first coordinate (b + c)a, so that P~ ' and P! have first coordinates (sec 4)/(b + ¢)
and (a sec A)/(b + c), respectively.

Not every point on a central line is a center. To see this, note that a point a: f: y
is on the line of two centers a,: f,: 7, and a,: f,: y, if and only if (2) holds, which
is equivalent to the existence of functions x = x(a, b, ¢) and y = y(a, b, ¢) such that
(@, B, ) =(2;, B1, ¥1)x + (23, B, y2)y. Clearly, there are many choices of x and y for
which (F1) fails. Note, however, that if x and y are each symmetric in a,b,¢,
chosen so that a: f: y satisfies (F3), then a: B:y is a center.



136 CLARK KIMBERLING AEQ. MATH.

Table 1. Centers on the Euler line

center u(a, b, ¢) v(a, b, )

sec A
¢ {b + c} : 0
c tan A 0 1

b+c
C{sec A} (orthocenter) a+b+c -1
C{csc A} (centroid) (3) +(21) + 2(1%) (See note below.)  —(2) —2(1?)
C{cos A} (circumcenter)  (1)[—(14) + 2(2%) +4(13)(1)] (13)(4) —2(321) —2(3%) — 4(2%)
C{sin 4 tan 4} abe —bc —ca —ab

Symmetric polynomials are abbreviated as follows: (3) =a’+5°+ ¢34 (23 =b%? + c2a* + a?b?
(21) = ab + ab* + b% + bc? + c?a + a’c; and so on.

DEFINITIONS. A central line % with equation f(a, b, c)a +f (b, c, a)B +
f(c,a,b)y =0 is a O-line, I-line, or 2-line according as the associated center
X =f(a,b,c):f(b,c,a):f(c,a, b) is a O-center, 1-center, or 2-center, respectively.
An even line is a line that is a O-line or a 2-line. We abbreviate ¥ as L{f(a, b, ¢)}
and say that & is in standard form if X = Cg.{f(a, b, ¢)}. To indicate that & is in
standard form, we write Lg:{f(a, b, ¢)}.

The Euler line is an example of a 1-line, whereas & is a 0-line having the
distinctive property, easily proved using equations (3) and (4), that every line is
both parallel to £ and also perpendicular to £ *.

A zero-sum function is an element t(a, b, ¢) of R such that

t(a, b, c) + t(b, c,a) + t(c,a, b) =0. (8)
A zero-sum center is a center Cgp{t(a, b, c)} for*which #(a, b, c) is a zero-sum
function. For any O-center Cg.{k(a, b, ¢)}, for example, C{2k(a, b, ¢) — k(b, c, a) —

k(c, a, b)} is a zero-sum center.

THEOREM 3. A line is a central line if and only if it has an equation
Lo+ MB + Ny =0 where L: M: N is a center.

Proof. First suppose % is a central line. This means that there are dis-
tinct centers C{f,(a, b,c)} and C{fs(a, b, )} such that & = L{l(a, b, c)}, where,
by (2),

l(a, b, ¢) = f,(b, c, a)f>(c, a, b) — fi(c, a, b)f5(b, ¢, a).
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Now

la,c, b) =fi(c, b, a)f~(b, a, c) — f,(b, a, ¢)f5(c, b, a)
=fl (C’ a, b)fZ(bv c, a) _fl (ba ¢, a)fz(Cv a, b) = —1(0, b9 C)'

Define m(a, b, ¢) = I(b, c,a) and n(a, b, ¢) = l(c, a, b), and let L = |/mn, M = 1/nl,
N =1/lm. Clearly, L: M: N is a center, and & is given by the equation
Lo+ MB + Ny =0.

For the converse, suppose L: M: N is a center. Let f,(a, b, ¢) = (2a —b — c)MN
and fy(a, b, ¢) = (2a* —b> — c)MN. The centers C{f,(a, b, )} and C{f5(a,b, )}
both lie on the central line Lo + Mf + Ny =0. d

THEOREM 4A. Suppose ¥ = Lgz{(b — c)g(a, b, ¢)} is a 1-line. Then every center
on ¥ is an even center of the form C{(u+ av)w(a,b,c)}, where
w(a, b, ¢) = g(b, c, a)g(c, a, b), and u and v are elements of R that are symmetric in
a, b, c.

The 2-centers on ¥ are of the form C{(c —a)(a — b)w(a, b, c)t(a, b, ¢)} where
C{t(a, b, c)} is a zero-sum center. Every center of this form lies on &.

Proof. Let ¥ =L {(b ——c)g(a b,c)} be a l-line, and let X =C{g(a, b, c)}.
Then X '=C{w(a, b, c)} and X '=C{#(a, b, c)}, where W(a, b, c) = aw(a, b, c).
Both X ' and X! lic on %, and by Theorem 1, so does every point

(u + av)w(a, b, c): (u + bo)w(b, ¢, a): (u + cv)w(c, a, b) 9

for which u(b, ¢, a) = u(a, b, ), v(b, ¢, a) = v(a, b, ¢), and u and v are in R. In fact,
by Theorem 1, every center on % has the form (9) with the attendant conditions on
u and v.

We show next that if Y is a center of the form (9), then « and v may be assumed
to be symmetric in a, b, c. If Y is a center, then one of the following conditions holds:

(i) u(a, c, b) = u(a, b, ¢) and v(a, ¢, b) = v(a, b, ¢);

(ii) w(a, ¢, b) = —u(a, b, ¢) and v(a, ¢, b) = —v(a, b, c).
In the second case, u and v can, by Theorem 2, be replaced in (9) by symmetric
functions # and #. This proves that there is no loss in assuming that u and v satisfy
(i) and are therefore symmetric.

To see that Y must be an even center, suppose to the contrary that Y is a
l-center. Since # and v are symmetric, u +av cannot have standard form
(b — ¢)h(a, b, ¢) and so must be of the form

(b —c)?(¢c —a)‘(a — b)?h(a, b, c),
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where p — ¢ is an odd positive integer and A(a, b, ¢) is not divisible by any of & —c,
¢ —a,and a — b. Thus Y = Cg{(b — ¢)” “h(a, b, ¢)}, and since Y is on £, we have

(b —0)0(a, b, ¢) + (c —a)*Q(b, ¢, a) + (a — b)°Q(c, a, b) =0,

where e is even and Q(a, b, ¢) = h(a, b, c)g(a, b, ¢). Put ¢ =a to get Q(a, a, b) =0.
Now by the division algorithm, Q(a, b, ¢) = (a — b)q(a, b, ¢) + r(b, c) for some g and
r in R, so that Q(a, a, ¢) = r(a, ¢). The condition Q(a, a,b) =0 (for all a and b)
implies r(a, ¢) = 0, so that a — b divides Q(a, b, c). However, as a — b divides neither
h(a, b, ¢) nor g(a, b, c), we have reached a contradiction. Therefore, Y is an even
center.

Clearly, a 2-center lies on . if and only if (8) applies as asserted. O

It is helpful to examine examples in connection with Theorem 4A. In addition
to those in Table 1, we mention one other. The point of intersection of a 1-line
L{(b — c)g(a, b, ¢)} with £ = is C{b(a — b)g(c, a, b) + c(a — c)g(b, c, a)}, for which,
in (9),

a’ b? c?
Wb d = st e 36 s b
and
v(a, b, c) = a " ;

—g(a, b, c) a gb, c, a) - g(c,a,b)’

THEOREM 4B. Suppose ¥ = 1L{g(a, b, )} is an even line.

Case 1. & a O-line. In this case every center X on ¥ has the form
C{(b — c)(u + av)w(a, b, c)}, where w(a, b, c) =g(b, c, a)g(c, a, b), and u and v are
elements of R that satisfy

u(b, c,a) = u(a, b,c) and v(b,c,a)=uv(a,b,c). (10)

X is a I-center if and only if u and v are symmetric, i.e., they satisfy not only (10),
but also

u(a, ¢, b) =u(a, b,c) and v(a,c, b)=1(a,b,c).

An even center Cgp{e(a, b, ¢)} lies on & if and only if C{e(a, b, c)g(a, b, c)} is a
zerc-sum center.

Case 2. ¥ a 2-line, Lg{(c —a)(a — b)h(a, b, c)}. Here, every center on £ has
the form C{(b — c)t(a, b, )h(b, ¢, a)h(c, a, b)} for some zero-sum function (a, b, c).
Every center of this form is on £ .
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Proof. Suppose X is a center on an even line Lg.{g(a, b, c)}. For case 1, we
apply Theorem 4A to Lg.{(b —c)g(a, b, ¢)} to obtain

X = (b — o)u + av)w(a, b, ¢): (¢ — a)(u + bv)w(b, ¢, a): (a — b)(u + cv)w(c, a, b),
(1)
which is clearly a 1-center if and only if » and v are symmetric.
The remaining assertions of the theorem obviously hold. O

Theorems 4A and 4B translate into dual theorems, in which the roles of central
lines and centers are reversed. For example, if X =Cg:{(b —c)g(a,b,c)} is a
l-center, then every central line containing X is an even line of the form
L{(u + av)w(a, b, c)a}, where w(a, b, c) =g(b, ¢, a)g(c, a, b), and u and v are ele-
ments of R that are symmetric in q, b, c.

Equation (8) plays a prominent role in Theorems 4A and 4B. We solve this
functional equation in the next theorem.

THEOREM 4C. Suppose

1 n
Ha,b,0) =Y (VP Y a'Y e(ij k, Db'c
/=0 1=0 ).k

is an element of R; as in Theorem 2, the inner summation is over the set S of all j, k
satisfying j >0, k 20, i+j+k +2[=n.
Case 1. t(a, c, b) = t(a, b, ¢). Here, t(a, b, ¢) is a zero-sum function if and only if

ei,j, k, 1) +e(j, k, i, 1) +e(k,i,j, 1) =0
for every j,k in &, for i=0,1,...,n, for =0, 1.

Case 2. t(a, c, b) = —t(a, b, ¢). Here, t(a, b, ¢) is a zero-sum function if and only
if there exist constants d; such that

1 [n/2] . ) .
ta,b,c) =Y (VP Y deaibie” > ' —cb"= >0
=0 i=0

Proof. Case 1. As a symmetric function of a, b, ¢, the sum in (8) is a sum of
symmetric functions of the form

(eCi, o k, 1) + (s b iy 1) + ek, i, 1) T able (/2.

Since the functions Y, a"bfc“(ﬁ)’ are linearly independent, (8) holds if and only
if the coefficients are all zero, as was to be proved.
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Case 2. By Theorem 2, t(a,b,c) is a sum of functions of the form
pla, b, ¢) =da’(\/§)’(b/c" — ¢/b¥), so that the sum in (8) is a sum of functions
S(a, b, ¢) of the form

S(a, b, ¢) = p(a, b, ¢) + p(b, ¢, a) + p(c, a, b).

Suppose (8) holds. Then for any choice of (i, j, k, [), we have S(a, b,c) =0. If i #j
and i#k, then j=k, so that p(a,b,c)=0. If i=j and k=j, then again
pla,b,c) =0.1f i =jand k #j, or if i # j and i = k, then p(a, b, ¢) # 0, so that each
p(a, b, ¢) appearing in 1(a, b, ¢) has the form da‘(ﬁ) (b'ck — ¢'b*). Moreover, each
such p(a, b, ¢) does in fact clearly imply S(a, b, c) = 0. Therefore, the general linear
combination given in the statement of the theorem is the solution of (8) in Case 2.

a

Among the simplest zero-sum functions 1(a, b, ¢) satisfying the conditions of
Theorem 4C are the following.

Zero-sum polynomials of degree 2 of homogeneity:

do(—2a%*+ b+ c?) +d,(—2bc + ab + ac) if t(a, c, b) = t(a, b, ¢)

‘@b, 0 = {do(bz — D +dyab—¢) if ta, ¢, b) = —1(a, b, c).

Zero-sum polynomials of degree 3 of homogeneity:

do(—2a® + b3+ ¢?) + d,(b%c + bc* — a’b — a’c)
t(a,b,c) = +d,(ab*+ ac* — a*b — a’c) if t(a, ¢, b) =1t(a, b, c)
do(b? —c?) +da(b? — ¢?) + dya* (b —¢) if (a, ¢, b) = —1(a, b, ©).

Zero-sum polynomials of degree 4 of homogeneity:

do( —2a* + b* + %) + d,(—2b%c? + a*b* + a’c?)

+ d,abe(—2a + b + ¢) + dsa*(b + ¢)

+da(b® + c3) + (—ds — dy)be(b* + c?) if t(a,c, b) =t(a, b, c)
dy(b* — ¢*) + dyabe(b — ¢) + dya*(b* —¢?) if t(a, ¢, b) = —1(a, b, ©).

t(a, b, c) =

THEOREM 5. The point X of intersection of two central lines ¥, and £, is a
center. If &, or &, is a 1-line, then X is an even center.
If ¥, =g{gla b,c)} and L, = Lg:{h(a,b,c)} are even lines satisfying

g(b, a, a)h(a, a, b) # g(a, a, b)h(b, a, a), (12)

then X is a I-center.
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Proof. Suppose ¥, and ¥, are given by le + mB +ny =0 and La + MB +
Ny =0, respectively. It is easy to check using (2) that the point a: :y = mN —
nM:nL — IN:IM — mL lies on both lines. We have

a(a, ¢, b) = m(a, ¢, b)N(a, ¢, b) — n(a, ¢, b)M(a, ¢, b)
=m(a, b, c)N(a, b, ¢c) — n(a, b, c)M(a, b, ¢)
=ua, b, ¢).

Clearly f(a, b, ¢) = a(b, ¢, a) and y(a, b, ¢) = a(c, a, b), and homogeneity of « follows
easily from that of / and L. Thus requirements (F1)—(F3) are satisfied, so that
a: B:vy is a center.

If &, or &, is a l-line, then by Theorem 4A, X is an even center (but not
necessarily a O-center; to see that X can be a 2-center, note that Cg{(c —a)(a — b)}
lies on both of the I-lines Lgz{(b —c)(2a? —b*—c?)} and Lg{(b — c)(2bc —
ca — ab)}.

If &, and &, are both even as described, then X has first coordinate #(a, b, ¢)
given by

t(a, b, ¢c) = g(b, c, a)h(c, a, b) — g(c, a, b)h(b, c, a).

By Theorem 2, t(a, b, c) has the form (b — ¢)?*"* 'z(a, b, c) for some z in R satisfying
z(a, ¢, b) = z(a, b, ¢). If (10) holds, then ¢ — a does not divide #(a, b, ¢), so that X
must be a l-center. O

6. Central lines: parallels, perpendiculars, and regular lines

DEFINITION. An even line & = Lg:{t(a, b, c)} is a regular line if the center
C{t(c, a, b)b — t(b, c, a)c} is a l-center; otherwise, £ is an irregular line.

THEOREM 6. Suppose & and £* are parallel central lines. .Write ¥ as

Lss{f(a, b, c)}. Then there exist g, u, v in R such that the following conditions hold:
() £*=1{gla, b,0)}

(ii) g(a, b, ¢) = u(a, b, ¢)f (a, b, ¢) + v(a, b, c)a

(iii) w(b, c, a) =u(a, b, ¢)

(iv) v(b, ¢, a) =v(a, b, ¢)
Suppose & #+ L ™.

Case 1. % a I-line. In this case, there are iwo possibilities: If
gla,c,b)y = —gla, b, c), then ¥* is a I-line, and wul(a,c,b) =u(a, b,c) and
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v(a, ¢, b) = —v(a, b, ¢). On the other hand, if gla, c,b) =g(a, b, c), then L* is an
irregular line, and w(a, c, b)) = —u(a, b, ¢) and 1(a, ¢, b) = v(a, b, ¢).

In the remaining two cases, u(a, b, c) and v(a, b, ¢) are symmetric functions in
a, b, c.

Case 2. % a regular line. In this case, L* is a regular line.

Case 3. & an irvegular line. In this case, £* is a I-line or an irregular line.

Proof. By (3), there exist g, &, ¢ in F such that § = fil + ab, £* = 1{g(a, b, ¢)},
and # and ¢ satisfy (iii) and (iv). Write #(a, b, ¢) =u,(a, b, ¢)/u,(a, b, ¢) and
(a, b, ¢) =v,(a, b, c)[vs(a, b, ¢) to obtain Gu,v,=fu,v,+ av,u,. Put g =gu,v,,
u =1u,v,, and v = v, u,. It is easy to see that (i)—(iv) hold. Since g(a, b, c) is a center,
either g(a, ¢, b) = —g(a, b, ¢) or else g(a, ¢, b) = gla, b, c).

Case 1. & a I-line. Here, f(a,c,b) = —f(a, b, ¢). First, suppose g(a, c, b) =
—gla, b, ¢), so that £* is a l-line. Then (ii) gives

g(a, c, b) =f{(a, c, b)u(a, ¢, b) + v(a, c, b)a,
so that

—g(a, b, c) = —f(a, b, A)u(a, c, b) + v(a, ¢, ba.

Adding this to equation (ii) gives

7 (a, b, c)u(a, b, ¢) — u(a, ¢, b)) + (v(a, b, ) + v(a, ¢, b))a = 0. (13)
If w(a,c, b)#u(a,b,c), then (13) together with (iii) and (iv) imply that
f(a, b,c): f(b,c,a)=a: b, contrary to & # £ . Therefore, u(a, c, b) = u(a, b, ¢),
and by (13), u(a, ¢, b) = —v(a, b, ).

Next, suppose g(a, ¢, b) = g(a, b, ¢). Then

f(a, ¢, byu(a, c, b) + v(a, ¢, b)a = f(a, b, cyu(a, b, c) + v(a, b, c)a,
so that

fla, b, c)ua, c, b) +ua, b, ¢)) = (v(a, ¢, b) —v(a, b, c))a.

Similarly,

f(b, ¢, a)u(b, a, c) + u(b, ¢, a)) = (v(b, a, c) —v(b, ¢, @))b.
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Unless u(a, c, b) = —u(a, b, c), these equations, by (iii)) and (iv), imply
f(a, b,c)b =f(b, c,a)a, contrary to the assumption that &£ # ¥ . Therefore,
u(a, ¢, b) = u(a, b, ¢), from which follows v(a, ¢, b) = —v(a, b, ¢).

Applying Theorem 2 to u(a, b, ¢), we now have

gla, b,c) =(b —)"(c —a)™(a — b)™i(a, b, ¢)f (a, b, ¢) + v(a, b, ¢)a,
where m is an odd positive integer and & € R, so that, by Theorem 2,

gla,b,c) =(b—0c)"*(c —a)™(a — b)™i(a, b, o)f(a, b, ¢) + v(a, b, ¢)a,
where 7in R is not divisible by ¢ — a. This equation yields

glc, a, b)b — g(b, ¢, a)c = b(a — b)" (b — ¢)"(c — a)™i(a, b, c)f(c, a, b)
—c(c —a)™* (a — b)™(b — ¢)"i(a, b, ¢)f (b, c, a)

so that the center C{g(c, a, b)b — g(b, c, a)c} can be written as C{w(a, b, c)} where
w(a, b, ¢) = c(a — ¢)i(a, b, o)f (b, a, ¢) — b(b — a)il(a, b, of(c, b, a).

Clearly, w(a, ¢, b) = w(a, b, c). Before we can conclude that C{w(a, b, c)} is not a
1-center, we must, and do, recognize that ¢ — a does not divide w(a, b, c); otherwise,
conceivably, w(a, b, ¢) could be of the form (b — ¢)*(c — a)(a — b)j(a, b, ) where
j(a, ¢, b) = j(a, b, ), so that C{w(a, b, )} would be a l-center, after all. Thus,
C{w(a, b, ¢)} is not a 1-center. That is, £* is an irregular line.

To verify the symmetry of u(a, b, c) and uv(a, b, c) for the remaining cases,
observe that the equation g(a, ¢, b) = g(a, b, ¢) for these cases implies g(a, c, b) =
u(a, c, b)f(a, b, ¢) + 1(a, ¢, b)a. This and (ii) give (w(a, ¢, b) — u(a, b, ¢))f(a, b, c) +
((a, ¢, b) — v(a, b, ¢))a =0, so that if wu(a, c, b) #u(a, b, c) then & = %%, a con-
tradiction. Therefore, u(a, ¢, b) = u(a, b, ¢), so that also v(a, ¢, b) = v(a, b, c). These
equations and (iii) and (iv) imply that u(a, b, ¢) and v(a, b, c) are symmetric.

Case 2. % a regular line. If Z* is not also regular then it is a l-line or an
irregular line. If #* is a l-line, then by Case 1, £, as an even line parallel to £*,
is irregular. This contradiction shows that %* is even. Now suppose £* is
irregular. Since L{f(a, b, ¢)} is a 1-line, every even line parallel to it, including &,
is, by Case 1, irregular. This contradiction shows that #* is a regular line.

Case 3. % an irregular line. If £* is regular, then by Case 2, so is #. This
contradiction shows that & is irregular. O
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Concerning case 2 of Theorem 6, it is possible for £ * to be a 2-line even though
% is a O-line. For example, put f(a,b,c) =2a*+bc, u(a,b,c)=1, and
v(a,b,c)=—a—b —c.

THEOREM 7. If lines &, and &, are both perpendicular to a line other than &>,
then &, and ¥, are parallel.

Proof. Suppose &, and &, are both perpendicular to &, where & # £ *. Let
l'a+m'f+ny=0, U'e +m"B +n"y=0, and lo+mp+ny=0,
be equations for &,, &¥,, ¥ respectively. By (4)

I(2abcl’ — n'b — m'é) + m(2abem’ — 1'¢ —n'@) = —n(2aben’ —m'a — 1'b)
I(2abel” — n"b —m"¢) + m(2abem” — I"¢ — n"d) = —n(2abcn” — m"a — 1"h).
The determinant of the coefficient matrix of this system is
(I'm" — m'I"Y(4a*b*c? — &%) + (n'l" — n"l")(2abca + bé)
+ (m'n" —n’m")(2abch + éa)
=c(2T, — T)[(m’n" —n'm")a + (n’l" —n"1)b + (I'm" —m'l")c],

where
T,=b%*+c?a®>+a*h* and T,=a*+b*+ "

If this determinant is zero for all a, b, ¢ then (3) holds, so that ¥, and %, are
parallel. Indeed, this case must prevail, else Cramer’s rule yields //n = a/c so that
I: m:n=a: b: ¢, which is to say that & = ¥, contrary to the hypothesis. O

THEOREM 8. Suppose ¥ =L{t(a,b,c)} is an even line. Then the following
statements are equivalent:
(i) & is a regular line.
(i) ¢ — a does not divide t(c, a, b)b — t(b, c, a)c.
@@i) t(a, a, b)b # t(b, a, a)a.
(iv) Every central line parallel to & is a regular line.
(v) No central line perpendicular to ¥ is a regular line.

Proof. Define w(a, b, ¢) = t(c, a, b)b — (b, ¢, a)c. Then & is regular if and only
if the point X =C{w(a, b,c)} is a 1-center. Since (a, c, b) = t(a, b, c), we have
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w(a, ¢, b) = —w(a, b, ¢), so that w(a, b, ¢) = (b — c)w,(a, b, ¢) for some w, in R, by
Theorem 2.

Part 1. (i) = (ii). Suppose (i) holds and (ii) fails. Then w(a,b,c) =
(c —a)ws(a, b, ¢) for some w, in R, so that w(b, ¢, a) = (a — b)w,(b, ¢, a). Thus ¢ —a
and a — b both divide w(a, b, ¢), since w(a, b, ¢) = w(b, c, a). It follows that

w(a, b, ¢) =[(b — ¢)(c — a)(a — b)]* + "V(a, b, ¢) (14)

for some w in R and p > 0, where (b — ¢)(c — a)(a — b) does not divide W(a, b, c).
Thus X =C{W(a, b,c)}, and W(a,c, b) =Ww(a, b,c). If b—c does not divide
w(a, b, ¢), then X is an even center, contrary to (i). Therefore, b —c divides
W(a, b, ¢). But, since W(a, c, b) = W(a, b, ¢), we have W(a, b, ¢) = (b — c)*"W,(a, b, ¢)
for some w, in R and m > 1, where ¢ —a does not divide W,(a, b, ¢) (for if it did,
then a — b would also divide W, (a, b, ¢), contrary to the maximality of p in (14)).
Therefore X is an even center, contrary to (i). We conclude that (i) = (ii).

Part 2. (ii) = (i). The identity w(a, b, ¢) = (b — c)w,(a, b, ¢), already proved,
shows that, if ¢ —a does not divide w(a, b, ¢), then X is a 1-center.

Part 3. (ii) <> (iii). By the division algorithm in R, there exist g(a, b, c¢) and
(b, ¢) in R such that w(a, b, ¢) = (¢ — a)g(a, b, ¢) + r(b, ¢). If ¢ — a divides w(a, b, ¢)
then r(b, c) =0, so that w(a, b, a) =0. Therefore (iii) = (ii). For the converse,
suppose (ii) holds, so that r(b, ¢) # 0. The equation w(a, b, a) = r(b, a) then implies
(iii).

Part 4. (i) < (iv). If (iv) holds, then (i) holds since & is parallel to Z. Suppose
now that (i) holds, and let #* be a line parallel to #. Now X is the point of
intersection of & with # =, so it is also the point of intersection of £ * with Z™.
That is, if £* = Lg.{t(a,b,c)}, then C{i(c, a, b)b — (b, ¢, a)c} = X, which is a
I-center.

Part 5. (i) <> (v). Let £+ =L{aa(t(b, ¢, a)b — 1(b, ¢, a)c)}. By (4), £+ is per-
pendicular to #. Obviously, #* is a l-line. By Theorem 6, every central line
parallel to #* is a 1-line or an irregular line. By Theorem 7, therefore, every
central line % * perpendicular to . is a 1-line or an irregular line. For the converse,
assume that every central line perpendicular to £ is a I-line. One of these is £+,
so that C{aa(t(c, a, b)b — 1(b, ¢, a)c)} is a 1-center, and (i) follows. O

THEOREM 9. If & and £* are perpendicular central lines and & is a 1-line, then
L* is an even line.

Proof. ¥ = Lg:{(b — ¢)i(a, b, ¢)}, and suppose, contrary to the proposed con-
clusion, that #* = Ly {(b — c)l'(a, b, ¢)} is a 1-line that is perpendicular to &. In
the notation of equation (4), we have here | = (b —o)l(a, b, c),m =(c —ayi(a, b, c),
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n = (a — b)i(a, b, ¢), and similarly for /", m’, n’. Substitute these into (4) and put
¢ = b to obtain

0 = 2ab2[(a — b)2(hrit’ + AR")] — (a — b)*a(AA’ + 'R
= (a — b)*[2ab?(rhni’ + AR’) — a(b? + ¢* — a*)(hA’ + W)

= a(a — b)2[2b2(h — R)oR' — A') + a(hA’ + i'A)]. (15)

Here, of course, 7 means ri(a, b, b), which is I(b, b, @), and 7 means #(a, b, b), which
is I(b, a, b). Since I(b,a,b) = I(b, b, a), we have A = . Similarly, i’ = m’. Equation
(15) therefore implies that 2a*rui” = 0, so that mi(a, b, b) =0 or m’(a, b, b) =0. The
first of these is equivalent to r(a, b, ¢) being divisible by b — ¢, hence to b, c, a)
being divisible by b — ¢, hence to I(a, b, c) being divisible by a — b. However, this
contradicts the assumption (SF1) made about Ka, b, ¢) in connection with standard
form (6) for the 1-line #. The equation ri1’(a, b, b) = 0 leads to the same contradic-
tion relative to the 1-line #*. Therefore £ * must be an even line. O

Examples corresponding to Theorem 9 include the following twelve regular

0-lines #(a, b, c)a + t(b, ¢, a)B + t(c, a, b)y = 0 which are perpendicular to the Euler
line. It is sufficient to give a choice of t(a, b, ¢) for each line:

a, a3, a(b* + c?), a(a + b)(a + ¢), cos A, sin 34, sin(4 + n/6), sin(4 — n/6),

a cos® 4, cos 24 cos(B — C), sin 24 cos(B — C), cos A(2 tan A —tan B — tan C).

7. Irregular lines

Irregular lines appear in Theorems 6 and 7 and are of some interest on their
own. In this section, we consider these lines more specifically. Recall that, by
Theorem 8, an even line & is irregular if there exists a I-line parallel to £. We

show first how to construct infinitely many irregular lines parallel to any given
1-line & =L, {(b — c)g(a, b, ¢)}. To begin, note that an equation for £ is

f(a’ b’ C)(Z +f(b’ c, a)ﬁ +f(C, a, b)? = 0,
where

f(a, b, c) =(b —c)*(c —a)a— b)g(a, b, c).
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Expand this last product and assemble the terms irto the form ¢(a, b, ¢) + 6(a, b, ¢)a.
Then express 0(a, b, ¢) as u(a, b, ¢) + r(a, b, ¢), where u(a, b, c) is symmetric, so that

f(a,b,c) =¢(a, b, c) +r(a, b, c)a + u(a, b, ¢)a.

This can be done in infinitely many ways in which the function #(a, b, c) =
&(a, b, ¢) + r(a, b, c)a is not divisible by b —¢, so that the line £* given by
t(a, b, c)a + t(b, ¢, @)B + t(c, a, byy =0 is an even line, hence an irregular line. One
of the simplest examples obtained in the manner just described is

t(a, b, c) = —bc(b —c)* + a*(b*+c?) +a’(b +¢) — a*
and
u(a, b, c) = (3) +2(1°) — (21).

Here, the O-line Lg,{f(a, b, ¢)} is parallel to the 1-line Lg,-{b — c}.
We turn now to the problem of describing irregular lines Lg,{t(a, b, ¢)} in terms
of the coefficients of #(a, b, c).

THEOREM 10. Let ¥ =g {t(a,b,c)} be an even line, where t(a,b,c) =
Y d(i, j, kya'b’c* is a polynomial in a, b, c. Then £ is an irregular line if and only if

n+1—1 n—

l
S dn+1—=1—jjl=1)=3 dljn—1-)) for I=0,1,...,n+1,
=0 j=0

(16)

where d(i, j, k) =0 if i, j, or k is negative.
Proof. Let w(a, b, ¢) = t(c, a, b)b — t(b, ¢, a)c. Then
w(a, b, c) =Y, d(i, ], k)a’b**'c' — ; d(i, j, k)a*bic’ +',
7
where the set . consists of all (i, j, k) satisfying i 20, >0,k >0, i +j+k =n, the
degree of homogeneity of t(a, b, ¢). Then
w(a, b, a) =Y d(i, ], kya'*pk+ — Z/: d(i, j, k)a’ **+'b
7z E

n+1 /n+1—1 n—1 . X i I
=Z< dn+1—=1—j,j,l—1) =Y d(ljn—1-j))a" b,

/=0 =0 j=0
(17)

j=
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Now ¢ —a (and hence also a — b) divides w(a, b, ¢) if and only if w(a, b, a) =0,
which occurs if and only if all the coefficients in (17) are 0, as asserted in
(16). a

Theorem 10 generalizes to all #(a, b, ¢) in R as follows: if ¢ is expressed (in
accord with Theorem 2) as t(q, b, ¢) =ty(a, b, ¢) + ﬁt.(a, b, ¢), where t,,(a, b, c)
=Y d,(i,J, k)a'b/c* for m =0, 1, then Lg.{t(a, b, ¢)} is an irregular line if and only
if

Ny +1—1 ny — 1

d,n+1—1—j,jl—1)= Z d,(l,jjn—1—j)for!=0,1,...,n, +1
=0 j=0

]

for m =0, 1. Here n, is the degree of homogeneity of #(a, b, ¢) and n, = n, — 2.

We shall restrict our attention to polynomials in a, b, ¢, however, as character-
ized by (16). Let n be the degree of homogeneity of the polynomial (a, b, ¢). If
n < 3, one finds from (16) that there are no such irregular lines. For n = 4, with the
coefficients d(i, j, k), written more compactly as d,,, the polynomial w(a, b, a) in the
proof of Theorem 10 is

(_d004 - dOlJ - d022 - d03l - dO40)a5
+ (d400 + d310 + d220 o d130 + d040 - d103 - dllZ - dl21 - dl}O)a4b
*+ (d30I + dzll + dlZl + d031 - d202 - d2|l - ‘1220)03[)2

+ (ror + dy 1y + doyy — dyoy — d310)ah> + (dyg3 + dois — dago)ab* + doosb°.

The system of equations obtained by putting the six coefficients equal to 0 is easily
solved, with a general solution

t(a, b,c) =a*—a*b +c)+ be(b — c)* + a[d(21) + e(1%)], (18)

where d and e are arbitrary real numbers and (21) and (1%) are symmetric
polynomials as in Table 1. Equation (18) represents a family of irregular lines. It is
notable that they are all parallel to the line Lgs{a*—a® + ¢) + be(b — ¢)?}. By
Theorem 8, there exists a line & * perpendicular to the lines given by (17), such that
Z* is an irregular line. It is easy to check that L{ad(t(b, ¢, a)b — t(b, c, a)c) }, which
is Lgr{aa(b®+ c* —a(b + ¢))}, is such a line.
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For t(a, b, ¢) a polynomial with n = 5, the general irregular line Ly, {#(a, b, ¢)} is
given by

t(a, b, ¢) =da’® +ea*(h + ¢) + (d + 3e — 3 )a’(b*>+ ¢*) + (3f — 3e — 2d)a’bc
+ fa¥(b* + ¢*) +(d + 2e — f)a(b’c + ¢*b) +d(b*c + ¢*b)

—d(b3c*+ ¢*b?) + a[g(2%) + h(4) +i(217)],

where d, e, f, g, h, i are arbitrary real numbers.

8. Centers on the circumcircle

We begin with several definitions. The circumcircle, T, is the set of isogonal
conjugates of points on #*. Since £*=L{a}, an equation for T s
afy + byx + caff =0.

Suppose X =a,: f,:7, is a point on I'. Following [1, Article 4729], the line
tangent to T at X is given by (by, + ¢f,)a + (co, + ay,)B + (aB, + ba,)y =0.

Suppose X = a,: B,: 7, and U = a,: f,: y, are points. The reflection of X about U
is the point «;: f5: y; with coordinates given by

a3 = ax, o, + b(20, 8, — o, B,) + (20,7, — 0472)
By = a(2B,0, — B%2) + 6B, B2+ (2B, — B172)

P3=a(2y,0 — y1%,) + B(2y2 8, — 71 82) +eniva-

Note that if X and U are centers, then the reflection of X about U is also a center.
Two centers X and Y on I are antipodal centers if one is the reflection of the other
about the circumcenter.

THEOREM 11. Suppose X and W are points on the circumcircle, I'. Let & be the
line of X and W if W # X; let & be the line tangent to T at X if W = X. Let £*
be the line through W perpendicular to ¥. Then the reflection of X about the
circumcenter lies on L*. (See Fig. 2.)

Proof. Write X = a,: B,:y, and W =0,: B,:y,. If W # X, then an equation for
Lislo+mp +ny =0, where [ = B,7, — By, m =7,0p — 7204, n = &, f; — a,B,; on
the other hand, if W =X, then & is given by 1=B,C—7,B, m=y,4 —o,C,
n=a,B — B, A, where 4 abbreviates (b2 + ¢2— a?)/(2bc), and similarly for B and
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Figure 2. Antipodal centers X and Y.

C. In both cases, the line & * has equation La + MpB + Ny = 0, where

L=8,(n —lé—mﬁ)—yz(m—n/i—lf')
M =y,(l —mC —nB) —a,(n — IB — mA)

N =o,(m —nd —IC) — p,(I — mC — nB)

in accord with [1, Article 4625].
The circumcenter is 4: B: C, so that the reflection of X about the circumcenter

is the point a5: f5: y, given by
oty = (ad —bB — cC)a, + 2bAB, + 2cAy,
Bs = 2aBa, + (b8 — ¢C — ad)p, + 2cBy,

a3 = 2aCo, + 2bCP, + (¢cC — ad — bB)y,.

It can be readily established by a computer algebra system that this point of
reflection lies on #*. O

THEOREM 12. Every center on the circumcircle T" is an even center. If X is a
O-center on T, then its antipode is a 2-center.

Proof. Suppose X is a center on I'. To see that X must be even, assume to the
contrary that X is a 1-center. Then its isogonal conjugate is a 2-center, for which we
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write X ! = Cgr{(c —a)(a — b)g(a, b, ¢)}. Since X' lies on ¥, we have

(¢ —a)(a — b)g(a, b, c)ao. + (a — b)(b — c)g(b, c, a)bp
+ (b — ¢)(c — a)g(c, a, b)cy =0, O

which, for b =¢, implies g(a, b, b)) =0. However, this means that b — ¢ divides
g(a, b, ¢), a contradiction. Therefore, X is an even center.

Now suppose X = Lg-{g(a, b, c)} is a O-center. Let £, be the line of X and
X~'. Then

Zx = L{g(a, b, c)(g(b, ¢, a) —g(c, a, b))(g(b, ¢, a) +g(c, a, b)) }.

By Theorem 2, b — ¢ divides g(b, ¢, a) — g(c, a, b). So, to show that &, is a 1-line,
we must show that ¢ —a divides neither g(b, ¢, a) — g(c, a, b) nor g(b, ¢, a) +
g(c, a, b). Suppose ¢ — a divides g(b, ¢, a) — g(c, a, b). Then there exists k in R such
that g(b, c, a) — g(c, a, b) = (¢ — a)k(a, b, c¢). Put ¢ =a to get

g(b, a, a) =g(a, a, b). (19)

Since X is on I', we also have ag(b, c, a)g(c, a, b) + bg(c, a, b)g(a, b, ¢) + cg(a, b, c)g
(b,c,a) =0. Put ¢ =a here to get ag(b, a, a)g(a, a, b) + bg(a, a, b)g(a, b, a) + ag
(a, b, a)g(b, a,a) =0, or equivalently, g(a, a, b)(2ag(b, a, a) + bg(a, a, b)) =0. To-
gether with (19), this implies (2a + b)g*(a,a,b) =0. But this means that
g(a, a, b) =0, so that a — b divides g(a, b, ¢), a contradiction. In the other case, i.e.,
if ¢ —a divides g(b, ¢, a) + g(c, a, b), then in place of (19) we get g(b,a,a) =
—g(a, a, b), which leads to (2a — b)g*(a, a, b) =0, so that we reach the same
contradiction. Therefore &, is a 1-line.

Now, if £, meets I in only one point W, let W = X; otherwise, let W be the
point other than X at which &, meets I. Let % % be the line through W perpendicular
to £y, so that £% meets I at Y, the antipode of X, by Theorem 11. Since £ is
a l-line, #* is an even line, by Theorem 9. Write #% as L{t(a, b, ¢)}. Then
Y~ '=C{w(a, b, ¢)}, where w(a, b, c¢) = bt(c, a, b) — ct(b, c, a). By Theorem 2, b — ¢
divides w. If ¢ — a divides w then, by Theorem 8, .# % is an irregular line, so that &,
being perpendicular to an irregular line, is an even line. This contradiction shows that
¢ — a does not divide w. Therefore Y ! is a 1-center, so that Y is a 2-center. [

Theorem 12 is exemplified by the Tarry point,

be
C{b" +c*—a%*— azcz}

and the Steiner point, C{bc(c* — a*)(a*> — b?)}.
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Other examples can be constructed in a manner suggested by the proof of
Theorem 12. First, choose any 1-line; for purposes of illustration, we choose the
Euler line. Determine its point of intersection with % *; for the Euler line, this point
is X '=Cgr{cos A —2cos B cos C}. Then create a line & * perpendicular to that
line; e.g., Lg{a’} is perpendicular to the Euler line. Find its point of intersection,
Y~!, with £~ (for the Euler case, Cgr{bc? — cb*}, so that Y is determined. To
summarize the case at hand, the point having C{(cos 4 —2cos Bcos C) "'} is a
O-center on I', and its antipode, C{a/(b* —c?)}, is a 2-center.

9. Conclusion

In Sections 2-8, each (q, b, ¢) corresponds to an ordinary triangle. Here we wish
to enlarge T to include triples that are not sidelengths of ordinary triangles. There
is a price to be paid, namely the removal from R of all nonzero polynomial multiples
of ﬁ In the new setting, centers whose coordinates necessarily depend on ﬁ are
now left undefined. Specifically, let

(€, +, ) = field of complex numbers; T=¢3
(R, +, *) =ring of polynomials over T.

The definitions, methods and results in Sections 2—8 readily extend to the new
setting. For example, points are equivalence classes f(a, b, ¢): f(b, ¢, a): f(c, a, b),
where f(a, b, ¢) € R'. It is noteworthy that the many theorems about collinearity of
points, concurrence of lines, parallelisms, and so on may now be viewed as theorems
in functional equations. The familiar geometric facts are only special cases.

In particular, we note that Theorem 1, 7, 9, and 10 could have been proved by
simply referring to well-known theorems in geometry, since these theorems hold for
all triangles. However, the methods of proof used here show that these theorems and
their consequences hold in the much more general setting in which a, b, ¢ are
arbitrary nonzero complex numbers.
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