

Werk

Titel: Multiple tilings by cubes with no shared faces.

Autor: Szabó, Sándor

Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?356261603_0025|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Multiple tilings by cubes with no shared faces

SÁNDOR SZABÓ

I. We consider a family of translates of a unit n-dimensional closed cube and assume that any point lies in only a finite number of the cubes. If every point which is not on the boundary of any cube lies in exactly k cubes, then we say that the given family of cubes furnishes a k-fold tiling of n-dimensional space. The number k is the multiplicity of the tiling. If the translations of the cubes form a lattice, then the tiling is called a lattice tiling.

Lattice cube tilings arise in connection with a famous conjecture of Minkowski. In a 1-fold lattice cube tiling of n-dimensional space, two of the cubes must share a complete (n-1)-dimensional face. Hajós confirmed Minkowski's conjecture [3].

There were two different generalizations of Minkowski's conjecture: Furtwängler's and Keller's conjectures.

Furtwängler conjectured that in a k-fold lattice cube tiling of n-dimensional space, two of the cubes must share a complete (n-1)-dimensional face. Furtwängler proved this statement for $n \le 3$ [1], while Hajós proved that it was false for n > 3 [2].

Consider the following question: For which k does there exist a k-fold lattice cube tiling of n-dimensional space such that no two cubes have a common face?

Robinson proved the following [9]:

If n = 4, then $p^2 \mid k$, where p is an odd prime; if n = 5, then k = 3 or $k \ge 5$; if $n \ge 6$, then $k \ge 2$.

Keller conjectured that in a 1-fold cube tiling of n-dimensional space two cubes must share a complete (n-1)-dimensional face. Perron proved this statement for $n \le 6$ [7], [8].

AMS (1980) subject classification: Primary 10E30. Secondary 20K01.

Manuscript received March 17, 1982, and in final form, October 24, 1982.

Consider the following question: For which k does there exist a k-fold cube tiling of n-dimensional space in which no two cubes have a common face?

Robinson proved that this is not possible for any k for $n \le 2$ but k = 25, 49, 50, 74, 75, 81, 98, 100 and every <math>k > 313 is possible for n = 3 [9]. He wrote [9]: "But the most interesting question is whether 25 is the smallest possible multiplicity".

The main result of this paper is that every k > 1 is possible for n > 2. Thus k = 2 is the smallest possible multiplicity for n = 3, 4, 5, 6.

II. Let \mathscr{E}^n , \mathbb{R} , \mathbb{Z} be *n*-dimensional Euclidean space, the real number field, and the integer number ring, respectively. The translations of \mathscr{E}^n belong to the *n*-dimensional vector space E^n over \mathbb{R} . Let e_1, \ldots, e_n be an orthonormal basis in E^n and O a fixed point in \mathscr{E}^n . The set

$$\mathscr{C}_{O} := \{P : \overrightarrow{OP} = c_1 e_1 + \dots + c_n e_n ; 0 \le c_1 \le 1, \dots, 0 \le c_n \le 1\}$$

is called a cube with preferential vertex O. Denote the interior of \mathscr{C}_O by int \mathscr{C}_O . The linear transformation $\alpha: \mathbf{E}^n \to \mathbf{E}^n$ is defined by $(x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n)\alpha = (x_1/q_1)\mathbf{e}_1 + \cdots + (x_n/q_n)\mathbf{e}_n$; $x_1, \ldots, x_n \in \mathbb{Z}$, where q_1, \ldots, q_n are fixed positive integers. The mapping $\alpha: \mathscr{C}^n \to \mathscr{C}^n$ belongs to the linear transformation α . Let \mathbf{X} be a free abelian group with generators $\mathbf{e}_1, \ldots, \mathbf{e}_n$. If \mathbf{L} is a subgroup of $\mathbf{X}\alpha$, then we say that \mathbf{L} is a lattice. We shall use the following notation $(\mathscr{C}_O, \mathbf{L}) = \{\mathscr{C}_P : \overrightarrow{OP} \in \mathbf{L}\}$. The set $\mathscr{C}_O \alpha$ will be called a cell. Obviously $(\mathscr{C}_O, \mathbf{L})\alpha = (\mathscr{C}_O \alpha, \mathbf{L}\alpha)$.

Let $\mathfrak A$ be a finite abelian group, which is written multiplicatively. We shall use the group ring $\mathbb Z[\mathfrak A]$ with integer coefficients over $\mathbb Z$. The sum in the group ring of the elements of $\mathfrak A$ is denoted by $\Sigma[\mathfrak A]$. If A is an element of $\mathfrak A$ and q is a positive integer, then $S = 1 + A + A^2 + \cdots + A^{q-1}$ is called a series.

III. THEOREM 1 ([2], [4]). If there is a finite abelian group $\mathfrak A$ and series S_1, \ldots, S_n such that

$$S_1 \cdots S_n = k\Sigma[\mathfrak{A}], \tag{1}$$

then there exists a k-fold lattice tiling $(\mathscr{C}_O, \mathbf{L})$ of n-dimensional space. The lattice \mathbf{L} is the kernel of the homomorphism $\psi : \mathbf{X} \boldsymbol{\alpha} \to \mathfrak{A}$, which is defined as

$$\left(\frac{x_1}{q_1}e_1+\cdots+\frac{x_n}{q_n}e_n\right)\psi=A_1^{x_1}\cdots A_n^{x_n}; \qquad x_1,\ldots,x_n\in\mathbb{Z}.$$

Robinson [9] gave some solutions of (1) and we shall use two of them.

The first example of a solution of equation (1) is the following [9, p. 253]: If $\mathfrak A$ is defined by $U^6=V^4=1$ and $A_1=U$, $A_2=V$, $A_3=UV^2$, $A_4=U^3V$, $A_5=U^2V^2$; $q_1=3$, $q_2=2$, $q_3=3$, $q_4=2$, $q_5=2$, then the series $S_1=1+U+U^2$, $S_2=1+V$, $S_3=1+UV^2+(UV^2)^2$, $S_4=1+U^3V$, $S_5=1+U^2V^2$ and $S_1S_2S_3S_4S_5=3\Sigma[\mathfrak A]$. According to Theorem 1, there is a 3-fold lattice tiling ($\mathscr C_O$, L) of 5-dimensional space. For later use, construct the lattice L by exhibiting a basis for it.

The linear transformation $\alpha: E^5 \to E^5$ and the homomorphism $\psi: X\alpha \to \mathfrak{A}$ are defined by $e_1\alpha = \frac{1}{3}e_1$, $e_2\alpha = \frac{1}{2}e_2$, $e_3\alpha = \frac{1}{3}e_3$, $e_4\alpha = \frac{1}{2}e_4$, $e_5\alpha = \frac{1}{2}e_5$; $\frac{1}{3}e_1\psi = U$, $\frac{1}{2}e_2\psi = V$, $\frac{1}{3}e_3\psi = UV^2$, $\frac{1}{2}e_4\psi = U^3V$, $\frac{1}{2}e_5\psi = U^2V^2$. The vectors $l_1 = 2e_1$, $l_2 = 2e_2$, $l_3 = \frac{1}{3}e_1 + e_2 - \frac{1}{3}e_3$, $l_4 = e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_4$, $l_5 = \frac{2}{3}e_1 + e_2 - \frac{1}{2}e_5$ span the lattice $L = \text{Ker } \psi$. Indeed, $l_1\psi = 2e_1\psi = 6\frac{1}{3}e_1\psi = U^6 = 1$, $l_2\psi = 2e_2\psi = 4\frac{1}{2}e_2\psi = V^4 = 1$, $l_3\psi = (\frac{1}{3}e_1 + e_2 - \frac{1}{3}e_3)\psi = UV^2(UV^2)^{-1} = 1$, $l_4\psi = (e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_4)\psi = U^3V(U^3V)^{-1} = 1$, $l_5\psi = (\frac{2}{3}e_1 + e_2 - \frac{1}{2}e_5)\psi = U^2V^2(U^2V^2)^{-1} = 1$ and $\det(l_1, \ldots, l_5) = -\frac{1}{3}$.

The second example of a solution of (1) is the following [9, p. 255]: Let \mathfrak{A}^* be defined by $U^6 = V^6 = W^3 = 1$ and $A_1 = U$, $A_2 = V$, $A_3 = U^2V^3$, $A_4 = U^3V^2$, $A_5 = UV^3W$, $A_6 = U^4V^3W$; $q_1 = 3$, $q_2 = 3$, $q_3 = 2$, $q_4 = 2$, $q_5 = 3$, $q_6 = 2$. Then the series $S_1 = 1 + U + U^2$, $S_2 = 1 + V + V^2$, $S_3 = 1 + U^2V^3$, $S_4 = 1 + U^3V^2$, $S_5 = 1 + UV^3W + (UV^3W)^2$, $S_6 = 1 + U^4V^3W$ satisfy $S_1 \cdots S_6 = 2\Sigma[\mathfrak{A}^*]$. According to Theorem 1 there is a 2-fold tiling (\mathscr{C}_O, L^*) of 6-dimensional space. We shall construct the lattice L^* .

The linear transformation $\alpha^*: E^6 \to E^6$ and the homomorphism $\psi^*: X\alpha^* \to \mathfrak{A}^*$ are defined by $e_1\alpha^* = \frac{1}{3}e_1$, $e_2\alpha^* = \frac{1}{3}e_2$, $e_3\alpha^* = \frac{1}{2}e_3$, $e_4\alpha^* = \frac{1}{2}e_4$, $e_5\alpha^* = \frac{1}{3}e_5$, $e_6\alpha^* = \frac{1}{2}e_6$; $\frac{1}{3}e_1\psi^* = U$, $\frac{1}{3}e_2\psi^* = V$, $\frac{1}{2}e_3\psi^* = U^2V^3$, $\frac{1}{2}e_4\psi^* = U^3V^2$, $\frac{1}{3}e_5\psi^* = UV^3W$, $\frac{1}{2}e_6\psi^* = U^4V^3W$. The vectors $I_1^* = 2e_1$, $I_2^* = 2e_2$, $I_3^* = \frac{2}{3}e_1 + e_2 - \frac{1}{2}e_3$, $I_4^* = e_1 + \frac{2}{3}e_2 - \frac{1}{2}e_4$, $I_5^* = e_1 + 3e_2 - e_5$, $I_6^* = e_1 + \frac{1}{3}e_5 - \frac{1}{2}e_6$ span the lattice $L = \text{Ker } \psi^*$. Indeed, $I_1^*\psi^* = 2e_1\psi^* = 6\frac{1}{3}e_2\psi^* = U^6 = 1$, $I_2^*\psi^* = 2e_2\psi^* = 6\frac{1}{3}e_2\psi^* = V^6 = 1$, $I_3^*\psi^* = (\frac{2}{3}e_1 + e_2 - \frac{1}{2}e_3)\psi^* = U^2V^3(U^2V^3)^{-1} = 1$, $I_4^*\psi^* = (e_1 + \frac{2}{3}e_2 - \frac{1}{2}e_4)\psi^* = U^3V^2(U^3V^2)^{-1} = 1$, $I_5^*\psi^* = (e_1 + 3e_2 - e_5)\psi^* = U^3V^9(UV^3W)^{-3} = 1$, $I_6\psi^* = (e_1 + \frac{1}{3}e_5 - \frac{1}{2}e_6)\psi^* = U^3UV^3W(U^4V^3W)^{-1} = 1$ and $\det(I_1^*, \dots, I_6^*) = \frac{1}{2}$.

IV. THEOREM 2. If $n, k \in \mathbb{Z}$; n > 2, k > 1, then there exists a k-fold cube tiling of n-dimensional space in which no two cubes have a common face.

Proof. First we prove a lemma that will enable us to construct a 3-fold tiling of \mathscr{E}^3 and a 2-fold tiling of \mathscr{E}^3 in which no cubes share a common face. This will be accomplished by taking a 3-dimensional cross section of tilings of higher dimensional spaces, in particular, the tilings of Robinson discussed in Section III.

Once that is done, Theorem 2 follows almost immediately. First of all, any integer $k \ge 2$ can be expressed as a sum of 2's and 3's. So, by superposing 2-fold tilings and 3-fold tilings of \mathscr{E}^3 , none of which have cubes sharing a common face, we can build a k-fold tiling of \mathscr{E}^3 with the same property. Then, to construct a k-fold tiling of \mathscr{E}^4 , take the product of a k-fold tiling of \mathscr{E}^3 with the unit interval. This produces a tiling of layer of \mathscr{E}^4 without cubes sharing a common face. By taking copies of this tiling, translated to avoid cubes with common faces, we produce a tiling of \mathscr{E}^4 . By induction on n, there is a k-fold tiling of \mathscr{E}^n , $k \ge 2$, $n \ge 3$, where no cubes share a common face.

Let I be a subset of $\{1, ..., n\}$, $r \in E^n$ and

$$\mathscr{P}_{I}^{(r)} := \{ P : \overrightarrow{OP} = r + \sum \lambda_{i} e_{i}, \lambda_{i} \in \mathbb{R}, i \in I \}.$$

This is an |I|-dimensional plane in \mathscr{E}^n . We consider the *n*-dimensional cubes \mathscr{C}_P , \mathscr{C}_Q , where $\overrightarrow{PQ} = x_1 e_1 + \cdots + x_n e_n$, $\mathscr{C}_P \cap \mathscr{P}_I^{(r)} = \mathscr{C}_{P'}$, $\mathscr{C}_Q \cap \mathscr{P}_I^{(r)} = \mathscr{C}_{Q'}$. Assume that

$$(\operatorname{int} \mathscr{C}_{P}) \cap \mathscr{P}_{I}^{(r)} \neq \emptyset \quad \text{and} \quad (\operatorname{int} \mathscr{C}_{Q}) \cap \mathscr{P}_{I}^{(r)} \neq \emptyset. \tag{2}$$

LEMMA 1. If the |I|-dimensional cubes $\mathscr{C}'_{P'}$, $\mathscr{C}'_{Q'}$ have a common (|I|-1)-dimensional face (i.e., there is a $t \in I$ such that $P'Q' = \pm e_t$), then there exists a $t \in I$ such that $|x_t| = 1$ and $|x_j| < 1$ for $j \in \{1, \ldots, n\} \setminus I$ and $|x_i| = 0$ for $i \in I \setminus \{t\}$.

Proof. Indeed, $\overrightarrow{PQ} = \overrightarrow{PP'} + \overrightarrow{P'Q'} + \overrightarrow{Q'Q}$ and $\overrightarrow{PP'} = \Sigma \mu_i e_i$, $\overrightarrow{QQ'} = \Sigma \nu_i e_i$, $j \in \{1, ..., n\} \setminus I$. Thus $\overrightarrow{PQ} = \pm e_i + \Sigma (\mu_i - \nu_i) e_i$ so $|x_i| = 1$ and $|x_i| = 0$ for $i \in I \setminus \{t\}$. By virtue of (2), $|x_i| < 1$ for $j \in \{1, ..., n\} \setminus I$.

LEMMA 2. For k = 2 and 3 there is a k-fold tiling of \mathscr{C}^3 in which no two cubes share a common face.

Proof. Case k = 3. Let $I = \{1, 2, 3\}$ and $\mathbf{r} = \frac{1}{4}\mathbf{e}_4 + \frac{1}{4}\mathbf{e}_5$, whereby (int \mathscr{C}) $\cap \mathscr{P}_I^{(r)} \neq \emptyset$ for $\mathscr{C} \in (\mathscr{C}_O, \mathbf{L})$, where $(\mathscr{C}_O, \mathbf{L})$ is the first example considered in Section III. Consider the system

$$(\mathscr{C}_O, L) \cap \mathscr{P}_I^{(r)} := \{\mathscr{C}_P \cap \mathscr{P}_I^{(r)} : \mathscr{C}_P \in (\mathscr{C}_O, L)\}.$$

Obviously this system is a 3-fold cube tiling of \mathscr{E}^3 . We prove that there are no two cubes with a common face in this system. Assume that \mathscr{C}_P , $\mathscr{C}_Q \in (\mathscr{C}_Q, L)$; $\mathscr{C}_P \cap \mathscr{P}_P^{(r)} = \mathscr{C}_{P'}$, $\mathscr{C}_Q \cap \mathscr{P}_P^{(r)} = \mathscr{C}_{Q'}$ and $\mathscr{C}_{P'}$, $\mathscr{C}_{Q'}$ have a common 2-dimensional face.

Since $\overrightarrow{PQ} = t_1 l_1 + \cdots + t_5 l_5$; $t_1, \dots, t_5 \in \mathbb{Z}$; $(t_1, \dots, t_5) \neq (0, \dots, 0)$, one of the following systems has a solution which differs from $(0, \dots, 0)$:

$$|6t_{1} + t_{3} + 3t_{4} + 2t_{5}| = 3,$$

$$|4t_{2} + 2t_{3} + t_{4} + 2t_{5}| = 0,$$

$$|t_{3}| = 0,$$

$$|t_{4}| < 2,$$

$$|t_{5}| < 2;$$

$$(3)$$

$$|6t_{1} + t_{3} + 3t_{4} + 2t_{5}| = 0,$$

$$|4t_{2} + 2t_{3} + t_{4} + 2t_{5}| = 2,$$

$$|t_{3}| = 0,$$

$$|t_{4}| < 2,$$

$$|t_{5}| < 2;$$

$$(4)$$

$$\begin{vmatrix} 6t_1 & + & t_3 + 3t_4 + 2t_5 | = 0, \\ |4t_2 + 2t_3 + & t_4 + 2t_5 | = 0, \\ |t_3| & = 3, \\ |t_4| & < 2, \\ |t_5| < 2. \end{vmatrix}$$
(5)

System (3) is not possible: $4t_2 + t_4 + 2t_5 = 0$ and $|6t_1 + 3t_4 + 2t_5| = 3$ so $|6t_1 + 3(-4t_2 - 2t_5) + 2t_5| = 3$, so the left-hand side is even and the right-hand side is odd.

System (4) is not possible either: $6t_1 + 3t_4 + 2t_5 = 0$, so $3 \mid t_5$. But $\mid t_5 \mid < 2$; thus $t_5 = 0$ and $6t_1 = -3t_4$, that is, $-2t_1 = t_4$. Since $\mid t_4 \mid < 2$, we have $\mid 2t_1 \mid < 2$, that is, $\mid t_1 \mid < 1$, hence $t_1 = 0$. Thus $(t_1, \ldots, t_5) = (0, \ldots, 0)$.

Finally, system (5) is not possible: $6t_1 \pm 3 + 3t_4 + 2t_5 = 0$, so $3 \mid t_5$ and $4t_2 \pm 6 + t_4 + 2t_5 = 0$, so $2 \mid t_4$. From $3 \mid t_5$ and $|t_5| < 2$, it follows that $t_5 = 0$. From $2 \mid t_4$ and $|t_4| < 2$, it follows that $t_4 = 0$, and $6t_1 = \pm 3$. However, ± 3 is not a multiple of 6.

Case k = 2. Let $I = \{1, 2, 5\}$, $\mathbf{r} = \frac{1}{4}\mathbf{e}_3 + \frac{1}{4}\mathbf{e}_4 + \frac{1}{4}\mathbf{e}_6$, whereby (int $\mathscr{C} \cap \mathscr{P}_1^{(r)} \neq \emptyset$ for $\mathscr{C} \in (\mathscr{C}_O, \mathbf{L}^*)$, where $(\mathscr{C}_O, \mathbf{L}^*)$ is the second example considered in Section III. Consider the system

$$(\mathscr{C}_O, L^*) \cap \mathscr{P}_I^{(r)} := \{\mathscr{C}_P \cap \mathscr{P}_I^{(r)} : \mathscr{C}_P \in (\mathscr{C}_O, L^*)\}.$$

Obviously this system is a 2-fold cube tiling of \mathscr{E}^3 . We prove that there are no two cubes with a common face in this system. Assume that \mathscr{C}_P , $\mathscr{C}_Q \in (\mathscr{C}_Q, L^*)$; $\mathscr{C}_P \cap \mathscr{P}_I^{(r)} = \mathscr{C}_{P'}$, $\mathscr{C}_Q \cap \mathscr{P}_I^{(r)} = \mathscr{C}_{Q'}$ and $\mathscr{C}_{P'}$, $\mathscr{C}_{Q'}$ have a common 2-dimensional face. Since $PQ = t_1 l_1^* + \cdots + t_6 l_6^*$; $t_1, \ldots, t_6 \in \mathbb{Z}$; $(t_1, \ldots, t_6) \neq (0, \ldots, 0)$, one of the following systems has a solution which differs from $(0, \ldots, 0)$:

$$|6t_{1} + 2t_{3} + 3t_{4} + 3t_{5} + 3t_{6}| = 3,$$

$$|6t_{2} + 3t_{3} + 2t_{4} + 9t_{5}| = 0,$$

$$|t_{3}| < 2,$$

$$|t_{4}| < 2,$$

$$|-3t_{5} + t_{6}| = 0,$$

$$|t_{6}| < 2;$$

$$(6)$$

$$|6t_{1} + 2t_{3} + 3t_{4} + 3t_{5} + 3t_{6}| = 0,$$

$$|6t_{2} + 3t_{3} + 2t_{4} + 9t_{5}| = 3,$$

$$|t_{3}| < 2,$$

$$|t_{4}| < 2,$$

$$|-3t_{5} + t_{6}| = 0,$$

$$|t_{6}| < 2;$$

$$(7)$$

$$|6t_{1} + 2t_{3} + 3t_{4} + 3t_{5} + 3t_{6}| = 0,$$

$$|6t_{2} + 3t_{3} + 2t_{4} + 9t_{5}| = 0,$$

$$|t_{3}| < 2,$$

$$|t_{4}| < 2,$$

$$|-3t_{5} + t_{6}| = 3,$$

$$|t_{6}| < 2.$$

$$(8)$$

Obviously $3 \mid t_3$, $3 \mid t_4$, $3 \mid t_6$, $\mid t_3 \mid < 2$, $\mid t_4 \mid < 2$, $\mid t_6 \mid < 2$, so $t_3 = t_4 = t_6 = 0$.

System (6) is not possible: $-3t_5 + t_6 = 0$ and $t_6 = 0$ imply that $t_5 = 0$, so $|6t_1| = 3$, a contradiction.

System (7) is not possible because $-3t_5 + t_6 = 0$ and $t_6 = 0$ imply $t_5 = 0$, so $|6t_2| = 3$, a contradiction.

System (8) is not possible as $6t_2 + 9t_5 = 0$, so $2 | t_5 \text{ and } | -3t_5 | = 3$. The left-hand side is even and the right-hand side is odd.

This completes the proof of Theorem 2.

The author would like to thank the referee for his valuable suggestions.

REFERENCES

- [1] FURTWÄNGLER, Ph., Über Gitter konstanter Dichte. Monatsh. Math. Phys. 43 (1936), 281-288.
- [2] HAJÓS, GY., Többméretű terek befedése kockaráccsal. Mat. Fiz. Lapok 45 (1938), 171-190.
- [3] HAJÓS, GY., Többméretű terek egyszeres befedése kockaráccsal. Mat. Fiz. Lapok 48 (1941), 37-62.
- [4] HAJOS, GY., Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter. Mat. Z. 47 (1942), 427-467.
- [5] KELLER, O.-H., Über die lückenlose Erfüllung des Raumes mit Würfeln. J. Reine Angew. Math. 163 (1930), 231-248.
- [6] MINKOWSKI, H., Geometrie der Zahlen. Erste Lieferung. Teubner, Leipzig, 1896.
- [7] PERRON, O., Uber lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel. Math. Z. 46 (1940), 1-26. II. 46 (1940), 161-180.
- [8] PERRON, O., Modulartige lückenlose Ausfüllung des R_n mit kongruenten Würfeln. Math. Ann. 117 (1940), 415–447. II. 117 (1941), 609–658.
- [9] ROBINSON, R. M., Multiple tilings of n-dimensional space by unit cubes. Math. Z. 166 (1979), 225-264.
- [10] STEIN, S. K., Algebraic tiling. Amer. Math. Monthly 81 (1974), 445-462.

Department of Mathematics in Civil Engineering, Technical University Budapest, H-1111 Budapest, Stoczek u. 2, Hungary.