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PERFECT CODES IN
ANTIPODAL DISTANCE-TRANSITIVE GRAPHS

OLOF HEDEN

Let C be a perfect code in an antipodal distance-transitive graph. In
this paper it is shown that if » € C then any vertex at maximum distance
from u also belongs to C. This is a generalisation of a theorem for binary
codes of Roos [1].

1.
A graph is a pair (V(Q),E(G)) where V(Q) is a finite and nonempty
set of elements called vertices and E(Q@) is a set of unordered pairs of
distinet elements of V(@) called edges.

(v9, ¥y, - - -, ¥,) i8 & path from v, to v, if v;,©=0,1,...,n are vertices and
{v;,v;,1} are distinct edges. A graph is called connected if given any pair
of vertices v,w, there is a path from » to w. In this paper we only consider
connected graphs.

The number of edges in a path is the length of the path. Let d(u,v),
the distance between the vertices % and v, denote the length of the short-
est path from » to v. The function d(u,v) defines a metric on the set of
vertices.

An automorphism ¢ of a graph is a permutation of V(@) such that for
any given pair of vertices » and v it is true that d(e(u),p(v))=d(u,v).

A graph is called distance-transitive if for any given two pairs ot ver-
tices u,v and w,z satisfying d(u,v)=d(w,z) there is an automorphism ¢
for which @(u)=w and @(v)=z2. All graphs in this paper are distance-
transitive.

Let w € V(@) and
Tyu) = {ve V(@) | du,v)=1}.

Let d be the maximum possible distance between any two vertices. d is
called the diameter of G. A graph is called antipodal if for all vertices
v,w € I'y(u)UT'z(u) either v=w or d(v,w)=d.
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ExampLE. Let Z, be the integers modulo n. Let Z," be the set of
r-tuples of elements of Z,. Define the distance between r-tuples
§=(8y,...,8,) and i=(t,...,t,) to be

d3,t) = |{t | s;+t}| .

Z," is a distance-transitive graph where the r-tuples are vertices and
d(3,1) is the distance-function on the vertices. Z," is an antipodal distance-
transitive graph.

A subset C of V(@) is called a perfect e-error correcting code if for every
vertex v it is true that

[{ue V(@) | dv,u)<e}nC| = 1.
Let u be a vertex. Define
'y.i= lri(u)ﬂO| i=l,2,... .
Call the d + 1-tuple (y4,71,- . .,vq) the weight-enumerator of C. The weight
enumerator is not independent of the choice of . But we shall see in
section 2 that it only depends on d(u, (), the minimum possible distance

between » and any vertex of C. d(u,C) is called the minimum weight of C.
Let u and v be two vertices such that d(u,v)=j. The numbers

ky = |Iy(w)| i=0,1,...,d
a; = |[I'y(v) n Ly(u)]

b; = |I'y(v) n I';,;(u)] (defined for j<d—1)
¢; = |I'y(v) N Ij_y(w)| (defined for j= 1)

are independent of the choices of » and ». They satisfy the following
relations

(1) aj+b,+6] =k1, j=0,1,...,d,
kibi = ki+1c‘i+1’ 7:=0,1,...,d—1,
(2) by =byg>by 2 ... 2b; 121, l=¢;Scp<...Z¢5.

For a proof of this see [4]. Let

0¢c O 0
by ay Ca,
0 b, ay
I'Q) = by
..Cd_l 0
Qi1 Cg
0 bg—y g
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I'(@) is called the intersection matriz of Q. If [1,v,(A),. . .,v4(A)]t is an right
eigenvector of I'(G) belonging to the eigenvalue A, then it must satisfy
the relations

(3) vl(l) =2,
Ci41V441(4) + (@ — Avy(A) +b; 10, 1(4) = 0 (vy(4)=1)
1=1,2,...,d-1.
(4) ba-1va-1(2) + (ag—A)vg(d) = 0.

The functions »,(4), i=1,...,d, are polynomials in 4 of degree 3.
Biggs has shown [2] and [3] that the d+ 1 eigenvalues of I'(G) are
distinct and that they are zeros of the polynomial

(A=k)(1+vyA)+ ... +v4(4)) .

2.

In [3] Biggs shows that if a perfect e-error correcting code exists in
the distance-transitive graph G then the polynomial 1+v,(1)+ ... +v,(2)
divides the polynomial 1+ v,(4)+ ...+v4(4). It is natural to ask which
polynomial f(4) satisfy

(T+v,A) + ... +v,A))f(A) = T+v,(A)+ ... +v4(4) .

We shall prove a lemma saying that if (y4,91,...,74) 18 the weight-
enumerator of the code then 1+wv,(1)+ ... +v4(4) divides

(40, + . .. +0,4) (Vo +r101M)ly + . . . +y94A)[kg) -

Consequently at least d —e eigenvalues of the intersection matrix must be
zeros of the polynomial y,+y,v,(A)[ky+ . . . +y4v4(4)[kz. The solution of
a system of n such linear equations will only depend on v4,%4,. . .,%4-n
as we shall see in lemma 2. Knowing this it will be easy to prove the
theorem of Biggs and to prove that the weight-enumerator of the code
only depends on the minimum weight for the code.

Lemma 1. If C is a perfect code that corrects e errors and (yo,¥1,. - -»¥4)
18 the weight enumerator of C then the polynomial 1+wvy(A)+ ... +v4(A)
divides the polynomial

(L4201 + . . . +0(D))(vo + v101(A)[key + - . . +yqva(A)[kq) -
Proor. Let u be an eigenvalue of the intersection matrix, and u a

vertex of G. To every vertex v of G associate the following number

Vatw, () Kaw,» = flp,v) .
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Using induction over 7 and the relations (1), (3) and (4) it is straight-
forward to prove that

(1) f(1,0) = Dy, aw,w=if(,w) for i=0,1,....,d.

Consequently if C is a perfect e-error correcting code

(Zvecf(/"v))(l +v1(/")+ §i +’ve(.u')) = ZveV(G)f(:u”U) ’
that is,

(Yot riva(@)[ky+ . . . +yava(p)/lg)(1+vy(1e) + . . . +v,(n))
= Loyt +ogla)

Since the zeros of 1+v,(A)+...+v4(4) are eigenvalues of the intersec-
tion-matrix, it is necessary that the zeros of 1+wv;(4)+...+v4(4) are
zeros of

(ot y101(A) ks + - . . +7o0a(A)ka)(1+v1(A) + . . . +0,(4)) .

Consequently the lemma 1 is true.

Lemma 2. If Ay,. . .,A; are distinct eigenvalues of the intersection matriz
of G then
Vg-j+1(4) va(Ay)
kajer  ka
det : : + 0
Vg-j+1(4y) vg(4;)
ko — ka

Proor. Suppose u is an eigenvalue of I'(G) and v4(u)=0. Then we get
by recursion using (3) and (4) that vy(x)=0. This is impossible since
vo(u)=1. We conclude that vs(u)+0. So by dividing by the nonzero
number v,;(u) we get an eigenvector

(1va(p)s - - s vg1()[va(p), va(u)[va(w))

= (Vo(i),- - -, ga(ps), 1)

of I'(@) belonging to the eigenvalue u. Now v’;(u), ©=0,1,...,d—1 must
satisfy the relations
ba-1V'a2(p) = p—aq,

Cira¥'sra(p) + (@ —p)0'(B) + b, 10" 4(p) = 0 i=12,...,d-1.

Using recursion we see that v’;(u) is a polynomial in x of degree d —i.
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So by elementary determinant calculus

Vg-j+1(41) vg(4,)
kd—j-f-l e kd ' o : ’v'd._,ﬂ(}.l) PERERY l
det : sl = —-—H.."'slvd(l‘) det :
' | TEaikain , )
Va—y+1(4;) va(4;) Va-jraldy) .. 1
kd—j+1 ch
At AL
=rdet| : :| for some r#0.
A=t A 1
Since the A;'s, ¢=1,2,...,j are distinct the last determinant is nonzero

and the lemma is proved.

THEOREM 1 (Biggs). If there exists a perfect e-error correcting code C in
the distance-transitive graph G then the polynomial 1+v,(A)+ ... +v,(4)
divides the polynomial 1+v,(A)+ ... +v4(4).

Proor. For every perfect code C with minimum weight less than e
there exists an automorphism ¢ of @ suchthat p(C)=C" is a perfect code
with minimum weight equal to e. Suppose that the " polynomial
14+ v,(4)+ ... +v,(4) has less than e zeros among the eigenvalues of I'(@).
If yo=...=9,,=0 there exists a perfect code with such a weight-
enumerator, as we saw above. Then by lemma 2 the solutions of the linear
system of equations

Yo+ Y1)k + . . . +yava(A)[kg = 0, 4, eigenvalue of I'(G) and
1=1,2,...,d—e+1
should be y;=0, j=e,e+1,...,d. This is impossible.

THEOREM 2. The weight-enumerator of a perfect code in a distance-
transitive graph only depends on the minimum-weight of the code.

Proor. Let (yg,7y,--.,74) be the weight enumerator of the perfect
e-error correcting code C. From lemma 1 we know that there exist d —e
eigenvalues 4,, s=1,2,...,d —e of I'(G) such that

'}’o+ylvl(la)/kl+ i +ydvd(l,)/kd =0. -
Suppose that the minimum weight of C is equal to ¢, that is, yp=... =
Yic1=V¢1=- .. =7%.=0, y,=1. We then get that
(*) ye+lve+1(1,)/k¢+1+ o +ydvd(ﬂ.,)/kd = v‘(la)/ki 8= 1,2, “ee ,d-‘
Math, Scand. 85 — 3
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Since .
ke+1 o kd
det : *+0
Ves1(Aa—e) Va(Aa—.)
kesn 0 ka

we get that the solutions of the system of linear equations (*) are unique.

3.

The following relations are easy but useful consequences of the defini-
tion of antipodal distance-transitive graph of diameter d.

(8) If d(u,v) <d then I'j(u)nIz(v)=9.

(6) If d(u,v)=d and d(v,w)=1<d/2 then d(u,w)=d—1.
(7) Ifd(u,v)=d=2n+1 then I',(v)c T, (%)

(8) If d(u,v)=d=2n then I',_;(v)s T, (%)

(9) If d=2n+1 then I'y,;(u)=U, 1 n(®).

(10) If d=2n then I',,;(u)=U, r oy na(®).

We need two lemmas for the proof of theorem 3.

LemMma 3. If G is an antipodal distance-transitive graph with diameter d
then 1SkySky<...Skj>ksy> ... >ky for some

n+l ¢f d=2n+1
n if d=2n.

Proor. Suppose that k;>k;,,. Then from relation (1) we get that
¢;+1>b;. So by using relation (2) we see that ¢,,;>b, if s>j and con-
sequently k,>k,,, if 8>j. By (7) and (8) is k,<k,,, whend=2n+1 and
k,_1=k,,, when d=2n. It follows that j=2n+1if d=2n+1 and j=n if
d=2n.

Lemma 4. If G is an antipodal distance-transitive graph with diameter d
then :
bpfensy f d=2n+1

ka=1blc.  if d=2n
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.. PrOOF, First assume that d=2n+1. Let z € I',(u), that is, d(u,2) =n.
By (9) we have

[Tp1(#) N I3(2)] = 3pergu| Tal®) N 1y(2)],

that is, b,=k;c,,,, since d(v,2)=n+1. When d=2n=d(u,v) choose 2z
such that d(u,z)=d(v,2), and use (10) similarly.

THEOREM 3. If C is a perfect code in an antipodal distance-transitive
graph with diameter d then for any vertex w it is that either I'y(u)UI'y(u)<C
or (Fo(w)uTz(u))nC=0.

Proor. Suppose that » € C and that there exists a vertex v € I';(u) \ C.
Since C is perfect and corrects e errors there must be a vertex »’ for
which d(v,v’')=1=Ze.

Let w € I'y(u) and d(w,v") =d. It is easy to see that such a vertex must
exist. Let ¢ be an automorphism that satisfy p(w)=u and @(u)=w.
If (9,71, - -»¥q) 18 the weight enumerator of ¢(C) then y;=1 and y;2> 1.

But we get from lemma 3 that |I'j(u)|2k, (in the nontrivial cases
e <d[2) and from lemma 4, since b, < k,, that k;<k,.Let V=U, . ) yw).
Then we find, since C is an e-error correcting code,

[CnV| s |Fa(u)| = kg < ky S |Ty(u)],

that is, |Cn V| < |I'y(u)|. Observe that I'y(w)< V when w € I'y(u), i Se <d/2.
Hence

IO n Uwen(u) Fd(w)l s IC n Vl < |Fi(u)| .
Since I'y(w,)nIs(w,) =, when w, +w, € I'j(u), we get

Zusl‘g(u) |C n Lgw)| < |Tyu)l,

and CnIy(w')=0 for some w' € I'y(u).
Let ¢’ be an automorphism that satisfy ¢'(w')=u and ¢'(u)=w'. If
(vo's71’s- - -»74) i8 the weight enumerator of ¢'(C) then y,/=1 and y;'=0.
The perfect codes ¢(C) and ¢'(C) have the same minimum weight, but
their weight enumerators are not equal. Using theorem 2 we see that
this is impossible. Consequently I'y(w)\ C =@ if u € C and the theorem is
proved.

In the antipodal distance-transitive graph 2.0, (see [5]) it is easy to
find a perfect code. 2.0, can not be represented as Z," for any r. So
theorem 3 is in fact a generalisation of the theorem of Roos.
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In [4] Smith gives an example of an antipodal distance- transxtlve
graph G with intersection-matrix

01 0
301
201
201
e = 202
202
102

103

0 10
If vo(4),v,(4),. . .,v4(A) are defined as in section 1 and vy(A)=1 it is easy

to see that 1+v,(4)+v,(4) divides 1+2,(A)+ ... +v4(A) where-d=8. This
observation was made by Lindstrém [6]. - _

If there exists a perfect 2-error correcting code C in @G then |C|=
But, using theorem 3 we see that if u € C then I'(u)uly(u)<cC. The
distance between any vertex of G and I'g(u)Ulg(u) is less or equal to 4
and there can impossibly be any more code vertices of G. Consequently
no perfect 2-error correcting code exists in G.

In [4] Smith defines the derived graph G’ of the antipodal distance-
transitive graph G. The vertices of G’ are the sets I'y(u)Ul (u), u € V(G),
and there is an edge between the vertices I'y(u)UI';(u) and I'y(w')uT;(w')
of @ iff there are vertices v € I'y(u)UI'y(u) and v’ € I'y(w')Ul,(u') such
that d(v,v’) = 1. Smith then shows that if d > 2 for the antipodal distance-
transitive graph @, then the derived graph @' is distance-transitive with
diameter [4d].

We show the following corollary of theorem 3.

CoOROLLARY. If there exists a perfect e-error correcting code in the anti-
podal distance-transitive graph G then there exists a perfect e-error correcting
code in the derived graph Q.

Proor. Let C be a perfect e-error correcting code of G. Let C’ be the
vertices of the derived graph G’ that satisfy

Louw)u Fyu)eC' iff Tyu)ulyu) s C
If :
¢y = Tole)) UT4(c,) €07, e = Ty(cq) U Ty(cq) € C
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and d(c,’,cy’)<2e+1 then it is easy to see that there exist vertices
¢, € I'y(cq)UT4(cy), ¢3'" € I'y(cy) UT4(ey) such that d(c,”,c,”’) < 2¢+ 1. Since
C is perfect this is impossible. Using theorem 3 we find that |C'|=
|C|[kog+ ky. Now since |V(G')|=|V(G)|[k,+k,; and

Hve V(@) | d(u,v)se}| = |{ve V(F)]| d(u',v)<e}|
for u € V(G) and u’ € V(G'), C' must be a perfect code.

It is ‘well-known that there exists a perfect 3-error correcting code in
the antipodal distance-transitive graph Z,% = @. Consequently there must
exist a perfect 3-error correcting code in the derived graph G'. Perhaps
this is a code that Biggs [3, p. 296] question for.
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