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ZERO-FREE INTERVALS OF SEMI-STABLE
MARKOV PROCESSES

J. G. WENDEL!

1. Introduction.

Let {x(¢)} be a right-continuous stationary strong Markov process
starting at the origin. The process is called semi-stable of order « (Lam-
perti [10]) if for any ¢ > 0 the processes {x(ct)} and {c*x(¢)} have the same
joint distributions at any times #,%,,...,t,. Clearly the familiar stable
processes are semi-stable. Let Z be the set of zeros of z(t). Apart from
the trivial cases Z={0} a.s. (almost surely), or Z=[0,) a.s., Z is a.s. an
unbounded Cantor set of Lebesgue measure zero. These facts as well as
a complete determination of the stochastic structure of Z may be found
in [10]. Examination of the argument there shows that it applies equally
well when Z is taken to be the closure of the range of an increasing semi-
stable Markov process. The same extension, then, is valid for the results
presented here, but for simplicity we hold to the terminology ‘“‘set of
zeros”.

In the non-trivial case a.s. the open set [0,1)\ Z is the union of count-
ably many open intervals e,, which we take to be arranged in decreasing
order of length L,. The purpose of this paper is to determine (in terms
of suitable transforms) the distribution functions F,(z) of the lengths L,,.
We also determine the ‘“‘tied-down’ distribution functions F, *(x); loosely
speaking, these are the conditional distributions of the L, given that
1€ Z. (In the sequel it will be convenient systematically to affix a star
in order to distinguish the tied-down situation from the free one.)

The results obtained include work of Rosén [unpublished] on F,*(x)
for the tied-down Wiener process, and Lamperti’s [9, § 6] formula giving
F,(z) in the general case. It is easy to use the results to obtain the limit
theorem of Getoor [5] (cf. also Stone [12]) on the number of L, =z,
xz — 0, and to obtain the corresponding limit theorem for the tied-down
case. The results may have some relation to those of Kesten [7].

The plan of the paper is as follows. Rosén’s results are outlined in § 2.
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1 Research supported by the U. S. National Science Foundation. A preliminary an-
nouncement appeared in [13].
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In § 3 we assemble some known facts about Z, while § 4 is devoted to the
definition and basic properties of the tied-down set Z*. F,(x) and F, *(x)
are evaluated in § 5. Some auxiliary quantities M, *(x) are discussed in
§ 6; these lead to the limit theorems appearing in § 7.

2. Rosén’s results.

Part of the motivation of the present work was the desire to collate
two seemingly different expressions for F,*(x) obtained by Rosén; for
that reason we devote this section to a brief sketch of his methods and
results, included with his kind permission.

The basic idea is to approximate the tied-down Wiener process by
means of a tied-down random walk, and then pass to the limit. Let S,
denote the sum of independent random variables taking values + 1 with
probabilities } each. Let

uy = Pr{S,y=0} = (—1)N<_1.V7),
and

X
fa = Pr{first return to zero occurs at time 2n} = (—1)*-1 (;) .

Let I be the longest interval between zeros of S,,, during time 0 £n < 2N ;
we seek Pr{ly <2k | S,y=0}. Write

By classifying paths according to times of first return to zero we obtain

k

Un,k = zfnvN—n,k;
n=1

hence the generating functions
) k
v(t) = Joyty  and  fit) = XS0
N=0 n=1

are connected by the relation v(¢)=(1—f,(t))"'. By a careful analysis
of the latter expression’s partial fraction decomposition Rosén obtained

(2.1) F*(z) = lim Pr{ly < 2[Nx] | Syy =0}
N—>oo

= lim UN, Nz [uy

o]
= 2nx~t Y (—s;) exps(l+27t), O<z<l.

k=—oc0
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The numbers s, range over the zeros of the confluent hypergeometric
function @(1,%;s) (notation of [4, § 6.1])L.

A different analysis led Rosén to a surprisingly simple expression for
F,*(x) on the subinterval }<x<1. Let

When Iy=2k>N then the longest interval is unique. By classifying
paths according to its left-hand endpoint there results

N—k
Wy, = 2, Un Sr Uyt 2k>N,

n=0

and therefore simply
(2.2) wN,k =fk’ k= [N/2]+1,...,N.

Since fiyz/uy~ 3 N-1x-32 it follows from (2.2) that for x>}

N
(2.3) Fi*x) = 1- lim 3 wy fuy
N-—>oo k=[Nzx]

1
_ 1_f%y_3/2dy =2-2% l<z<l.

3. Properties of Z.

Lamperti’s results [9] [10] on the structure of Z were obtained by an
elegant study of an auxiliary Markov process y(t), whose transition func-
tion

P(t,z,B) = Pl‘{y(t) eB | y(0)=x}
is that of
Yo(t) =t — supfz: t2ze€Z}.

The process y(t) is stationary, strongly Markov, and has right-continuous
sample functions, a.s. A sample path y(f) starting at x consists of a
stretch of the 45°-line y =2 +¢ until a jump to 0 takes place, at a random
time ¢= U. Thereafter it behaves like a (shifted) copy of y,(¢). The process
Yo(t) is semi-stable of order 1, and its set of zeros is precisely Z. Its
sample paths consist of slope 1 line segments resting on the ¢-axis at the
points of Z.

1 All s; have negative real parts, and s,=—0,854 ... is the only real one. Writing
84 = —tptiug one has [2, § 17] ug ~ 27k, ty ~ 3log k. Thanks are due to the Danish
computing centre Regnecentralen for the approximate values s ;= —4,25 +6,384, 5, ,=

—5,18+12,89:. Using only s, in (2.1) one obtains the approximations 0,97, 0,55 to the
exact values F *(1)=1, F *(})=2—2¥~0,59.
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The transition function P is uniquely determined up to a parameter
B €(0,1); in particular
8.1) Pz {z+t}) = Pr{U>t|y(0)=xa} = 2P (x+8)8, x>0,
and
_Jest—y)lty-Pdy, O<y<t

(3.3) ¢y = (sinzf)[n .

Thus y,(¢) has a density, and the Lebesgue measure of Z vanishes, a.s.
Let 0<a<b=t and B=(0,b—a). Then P(t,0,B) becomes

(3.4) P(b,0,(0,b—a)) = p(a,b) = Pr{Z meets (a,b)}
bla
= cﬁf yHy—-1)Fdy.
1

For the Wiener process, f=1%, and (3.4) goes back to Lévy [11, § 44].
Blumenthal and Getoor [1] obtained (3.4) for Z =the closure of the range
of the drift-free increasing stable process of index 8, and for the set of
zeros of the symmetric stable process of index « € (1,2) with the identifi-
cation f=1—«"1. (The symmetry restriction was removed in [5, note
added in proof].)

It is convenient to note that as ¢ - 0

(3.5) pla,a+¢) ~ cy(efa)~-?

uniformly in a=é>0.

There are two important first-passage random variables connected
with the process y(f): U, the time of first passage from y=1 to y=0,
and 7', defined by interchanging “from” and “to”. As (3.1) shows, the
distribution of U is given by

(3.6) Pr{Uedt} = g(@+1)#1dt, t>0.
It follows by an easy calculation that

(3.7) E(exp—sU) = o-Y, §>0,

D = P(s) = D(1,1-4;9), [4; op. cit.]

Y = Yis) = I'(1—p)esss.
Lamperti [8] found the corresponding expression for 7' as a byproduct of
other considerations. We present a direct proof of

THEOREM 1. E(exp—sT)=1/D(s).
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Proor. For any random variable ¥ we abbreviate E(Y | y(0)=2) to

E_Y. Let g be a real continuous function on [0, o) which vanishes at co.
Define

o]

(3.8) flz) = f et B g(y®)dt, s>0.

0
In particular, from (3.2), (3.3) we have

o 0]

(3.9 1) = T =gyt [ evy=rg(y) dy .
0
By the strong Markov property we can write

13
Eyg(y(t) = ong(y(t—u)) dPr{U=u} + g(t+1)Pr{U>t}.
0
Taking Laplace transforms yields
(3.10)  f(1) = £(0) B(exp—sU) + fe—stg(t+ 1)(t+1) ds .
0

We now make the further assumption

(3.11) g(t) =z 0, g(t) = 0, g(t) vanishes on [0,1].
Then comparison of (3.9) and (3.10) yields
(3.12) 0 + f(1) = f(0) E(exp—sU)+f(0)¥(s)

= f(0)D(s) .

On the other hand, the assumption (3.11) implies that if y(0)=0 and
T >t, then g(y(¢))=0. It follows that

Ey(y(t)) = f Eyg(yt—1)dPr{T<7}.
0

A Laplace transform then gives

f(0) = f(1) E(exp—sT)
and the result follows from (3.12).

4. The tied-down set of zeros, Z*.

It will be recalled that one of the equivalent ways of constructing the
tied-down Wiener process, x*, from the free one, z, is that displayed in
the equations
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x*(*)[t* = x(t)t
(4.1) t* = t/(1+1), O=t<oo, O=t*<I,
z*¥(1) = 0.
Thus, if we agree to call oo a zero of x(f) the correspondence ¢ «+» ¢* carries
the zero-sets for the free and tied-down processes onto each other.
Although (4.1) seems to have no analogue in the case of other stable
processes it motivates the following

DEFINITION. Z*={2/(1+2): 2€ Z} U {1}.

To show that this definition is “‘correct’’ we want to connect it with
something that is intuitively closer to the concept of “tying down” the
set Z. Let C(¢) be the event that Z meets the interval (1,1+¢); let J
denote a finite system of disjoint open intervals in (0,), and let J* be
the system obtained from the correspondence t*=¢/(1+t¢). Write p(J)
for the probability that Z meets each interval of J; this, by the definition
of Z*, equals p*(J*), the probability that Z* meets each interval of J*.
Finally, let p°(J*) be the conditional probability, given C(¢), that Z meets
each interval of J*.

THEOREM 2. lim, ,(p (J*)=p(J) (=p*(J*)).

Proor. We give only the first two steps of the required induction on
the number of intervals in J.
If J=(a,b) then, by the Markov property,
b+
p((a*,b%), (1,1+¢)) = fp(l —t,1—t+e) d,pla*,t) .
Dividing by p(1,1+¢) and letting ¢ — 0 it follows from (3.5) that
b*
lim,_,op(7*) = [ (1=0P~ dipla*,t) .
The change of variable ¢=y/(1 +y) throws the last integral into the inte-
gral (3.4) giving p(a,b), that is, p(J).
If J={(a,b), (¢c,d)} then

p((a* b*), (c* a*), (1, 1+£))

= fp( t’d*—t)5 (l—t,l—-t-'l-é‘)) dlp(a’*,t)

(G NS Py
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for semi-stability of y,(t) implies that p(kJ)=p(J), £ >0. Again we divide
by p(C(e)), let ¢ - 0, and use (3.5). By the first part of the proof there
results

*

b
c*—t d*—t
3 | (O S I, 1—-¢3)8-1(g * 1)
Ip (l—t, l——t)( ) tp(a’ 3t)’

the change of variable used above converts this into

b
fp(c—y,d—y) d, p(a,y) = p(J),

a
as required.

Analogous calculations show that the random sets Z and Z* share
certain invariance properties with the zero sets of the free and tied-down
Wiener processes. For example, if J-1 denotes the result of applying
the mapping ¢ - ¢-! to J it can be shown that p(J-1)=p(J), i.e. that Z
and Z-! are stochastically the same. Then applying the transformation *
we find that p*(J*)=p*(1 —J*), so that Z* is unchanged by the symmetry
t - 1 —t. Combining this result with the fact that ¢ — kt leaves Z stochas-
tically fixed we find that Z* is stochastically unchanged by any linear
fractional transformation f leaving the set {0,1} invariant. Proofs are
omitted, as we have no further use for the results at present.

Let ¢ be a given point of (0,1), and define

a = max {z*: t22* € Z*} .

It should be clear from the preceeding that the random variable @ has a
probability density, given by

(4.2) fi*(a) = —;—ap*(a,t) = cﬁ(l—t)f’(t—a)“ﬁaﬁ—l(l—a)—l, O<a<t<l.

Theorem 2 shows that for Z* the probabilities of finitary events, those
depending on the answers to a finite number of questions of the form
“does Z* meet (a,b)?”’, can be evaluated as the limits of the correspond-
ing conditional probabilities for Z, using the same intervals (a,b). We shall
now extend this algorithm to the nonfinitary events L,* <z, where
Li*>= Ly2*> ... run through the lengths of the open intervals constituting
[0,1]N\Z*. Let

F *@x) = Pr{L,*<z} and F,(x)=Pr{l,=zz|C(e)}.

An easy argument shows that these are continuous functions.

THEOREM 3. lim,  F °(x)=F, *(), 0=x=<1.
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Proor. Let J be a system of n disjoint open intervals in (0,1)
which have rational endpoints and lengths exceeding z. Let {J,} be an
enumeration of all such J, and write W, or W,* for the event that at
least one interval belonging to J;, meets Z or Z*, respectively. Let @,
or @, * be the intersection of the first kW’s or W*’s. These are finitary
events, and it follows that

Pr{Q,*} = lim, o Pr{Qy | C(e)}
Clearly

{Losa) = W, = Q.
k=1 k=1
and the same with stars throughout. Therefore
F *(x) = lim;, Pr{Q,*} = lim,lim, Pr{Q, | C(e)}
(4.3) 2 lim,lim, Pr{Q, | C(¢)}
= lim, F,(z) ,

since the @), decrease as k increases.

To finish the proof suppose that z, is a point and {,,} is a sequence
tending to zero, such that for some n, F;m(z,)+ Fy(x,), while for
each n the function F,*»(-) tends to a (right-continuous) distribution
function G,(-) on its continuity set C,. Then, by (4.3)

F,*@) z G,(2), z€C,
F:o(xo) > Gno(xo_o) o2

Since Z is a Lebesgue null-set with probability one, so are Z* and Z
conditioned by C(e,). Hence

o}j:lE(Ln*) _ iE(Ln |0(e)) = 1.

(4.4)

Then

m—>oo

1 1
1 = fz (1-F,(x)) dz = lim fz (1= F () do
(4.5) 0 0

1 1
2 [Slim(1- Fm@)de = [ 3 (1-6,(@) da,
0 0

by Fatou’s lemma and the fact that m(N;>_,C,)=1. In view of (4.4)
and the continuity of Fy the last member of (4.5) exceeds

1
fZ(l—Fn*(x)) i = 1.
0

The resulting contradiction completes the argument.
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5. The distributions F,, and F,*.
We prove the following result by an extension of the method Lam-
perti [9] used to find F,(x).

oo

THEOREM 4. (i) fg-sz d(l —F,,(l/x)) = (@ YP)-1/@n .

0
(i) f e gh1(1— F,*(1/2)) dw = ['(f)sH(®— Wyr|on .
0

Proor. Clearly

Pr{L,>1[x} = Pr{y,(t) crosses y=1/x at least n times during 0<#<1}
= Pr{y,(t) crosses y=1 at least n times during O<t<z},

since y,(xt) and xy,(!) have the same finite-dimensional distributions.
Let {T',} and {U,} be independent copies of the first passage random
variables 7' and U; let S,=7,+U;+...+7,+U,. Then

(5.1) 1-F,(1z) = Pr{S, ,+T, .=z},

and part (i) follows at once from (3.7) and Theorem 1.
To prove part (ii) we have, by Theorem 3 and the semi-stability of y(t),

1—F, *(1/z) = lim, , Pr{S, ;+7T,<x|Z meets (x,z+¢)}.

The event {S,_;+7T,<z and Z meets (z,2+¢)} is the union of the dis-
joint events 4,={S,<x and Z meets (z,x+¢)} and B,={S, ;+7T,=
x <8, <x+e}). The event B, is contained in the event B={x < S, <z +¢}.
Since the density of U never exceeds f (cf. (3.6)) the same is true of S,;;
therefore Pr{B,}<pe. Taking (3.5) into account it follows that
Pr{B, | Z meets (x,2+¢)} vanishes with e.

By the strong Markov property we have

Pr{d,} = fp(x—y,x—y+e)dPr{Sn§y},
0

Therefore
1-F,*(1/2)

lim, ,,Pr{4, | Z meets (z,z+¢)}

&e—>0

ot flamgprameis, ).
0

A Laplace transformation then yields (ii), and completes the proof.
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Putting »=1 in part (ii) we obtain

Je—s”xﬂ-lFI*(l/w) dx = e’fc,D;
0
inversion yields

Fi*(x) = ple a1 Y (—s;) exp{sy(l+a71)};

@D(1,1-4; s;,)=0 defines the numbers s,. This specializes to Rosén’s
result (2.1) when g=1.

6. The moments M,*.

Let N*(x) be the number of L, * exceeding «x; clearly N*(x)=n if and
only if L, *>x. We define the modified factorial moments of N*(x) by

*
M, *(x) = E’(Nn(x)), n=0,12...;
clearly M *(x)=1,0 < < co,whileforn=1,2,...,22 1/n, M, *(x) vanishes.

We now prove

TarorREM 5. With f*(a) as in (4.2) we have
1-2

6.1) M* () =fM:(x/t)f;§$(t) dt, O<z<l, mn=01,...
0

Proor. The probability that N*(x) equals N is evidently Fy, (z)—
Fy*(x), N=0,1,.... Therefore

oo

N
M@ = 3 () Fha@-Fi@)
N=o

which is really a finite sum, since the term in braces vanishes as soon
as Nz >1. Applying Theorem 4(ii) we obtain

f e-s2ap-1 M, *(1/x) de = I'(B)s—(PY-1—1)n.

0

Therefore the function «#-1 M ¥,  (1/z) is obtained from its predecessor by
convoluting the latter with the inverse Laplace transform of @¥-1—1.
It is not difficult to verify that the inverse transform is cza—1(x—1)7,
x>1, zero elsewhere. The desired conclusion now follows from elemen-
tary calculations.
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There is a similar but more clumsy formula in the free case, which we
omit. There is a loss of symmetry due to the presence of the zero-free
interval containing ¢=1, which is no longer an interval between zeros
belonging to [0,1].

Rosén’s second formula (2.3) for F;*(z) in the Wiener case is a con-
sequence of Theorem 5. Putting =1 and n=0 in (6.1) we obtain

E(N*x)) = M*(x) = z~*—1, O<z<l.
When z >} the only possible values of N*(z) are 0 and 1. Hence also
E(N*(x)) = 1-F,*@x), }<z<l1,

and (2.3) is immediate. In principle the method could be applied to
permit computation of the first » of the F,*(x) on the interval
1/(n+ 1)<z <1 from the first n moments M,*(x).

The steps leading from Theorem 4(ii) to Theorem 5 can evidently be
reversed, and it therefore seems worthwhile to sketch in a heuristic way
a direct probabilistic proof of Theorem 5.

We first obtain M *(x). Let the interval 0 <¢<1 be partitioned into
small subintervals dt;. Call dt; good if it contains the left endpoint a; of
some zero-free interval e, = (a;,b,) for which L, *=b, —a, >x. Since

Pr{dt; is good} ~ f/7.,(t;) dt;

and M *(x) is the expected number of good di;, it follows on letting
max;dt; - 0 that

M@ = [ fhad,
0
which is (6.1) for n=0.
Knowing M, *(z) we step up to M,  (x) in the following way. For
each good dt; let N; be the number of ¢, with L,*>x that are situated

in (0,%;). As we sweep through the good dt; from left to right the integers
N; run from 0 to N*(x)—1. In view of the elementary identity

(nl—\:1> N ivgol <7:)
it follows that
() -3 (%)

where Y, is the indicator of the event “dt; good”. We use the Markov
property to write
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B [(Nn,) Yf] L [(Zj> ItjeZ*] B(Y,),

and evaluate the first factor by stretching the time-scale with the factor
1/t;. It follows that the first factor is approximately

B [(*)] - et

Putting these estimates into (6.2) and letting maxd¢; approach zero we
obtain (6.1) again.

7. Limit theorems.

In this section we present the limiting distributions of N(x) and N*(x)
as ¢ > 0. The free case is due to Getoor [5], but the proof is different.

TaEOREM 6. We have
@) lim, o Pr{l(1-p)2’ N(z) <y} = Gy4(y) ,
the Mittag—Leffler distribution of index B;

(ii) lim, o Pr{I'(1-pg)a’ N*(x) <y} = G;*y),
defined by
(7.1) dGg*(y) = I'(1+B) y dGy(y), O<y<oo.

Proor. Getoor used the method of moments to prove (i), showing that
lim,_,, B({T(1—B)2? N(@)}") = n!/T(1+nf),

the moment-sequence that uniquely determines G,(y). It is illuminating,
however, to obtain the result directly from a limit theorem for partial
sums. In (5.1) we set x={I'(1—p)n[y}/# and subtract both sides from
unity. There results

(71.2) Pr{l'(1-p)a’N(x)<y} = Pr{S,_,+T,>[I(1—B)n[y]V#}.

Let V,=U,+Uy+...+U,. It follows from (3.6) and [6, § 35] that
V. [[I'(1—p)n]Y/? tends in distribution to the stable random variable X,
defined by E(exp —sX;)=exp—s’. Since E(T)=®'(0)=1/(1—p) is finite,
the law of large numbers implies that (7',+ 75+ ... +7,)[n'? tends to
zero with probability one. Combining these facts with (7.2) and letting
z - 0, n - o in such a way that y remains fixed we get

Pr{l'1-pB)2’N(z)<y} - Pr{X,>y-1} = Pr{X,#<y}.
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This is the desired result (i), for an easy calculation shows that the
moments of X,/ are precisely those defining G,.

We could follow somewhat the same line of argument to prove part (ii),
but it is simpler to work from the moments. Writing out (6.1) in explicit
form we obtain (cf. (4.2))

1z

My (x) = cﬁx—f’f M *(x[t) (1 —t—x)PtP-1 di](1 —t)
0

from which it follows by induction that
(7.3) lim, _, g2 M, *(z) = T(B){T((n+1)F)I(1—p)"} .

But then another induction shows that M, *(x) ~ E(N *(x)")/n! as
x — 0. It follows from (7.3) that

lim, . B({T(1 - f)a? N*(@)}") = ! TB)T((n+ 1)),

which uniquely determine the distribution function G4* given by (7.1).
This completes the proof of (ii). Analogous pairs of limit theorems for
certain free and tied-down random variables may be found in [3]; the
same limiting distributions G; and G4* appear there. It is natural to ask
whether there is a natural continuum of limit theorems lying between
the free and tied-down cases. For example, one might tie down at a
point a> 1 rather than at 1 itself, and perhaps obtain limiting distribu-
tions G4 tending to G4 as @ — c and to G4* as a - 1.
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