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Support functionals and smoothness in Musielak—Orlicz
sequence spaces endowed with the Luxemburg norm
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Abstract. Support functionals in Musielak-Orlicz sequence spaces endowed with the Lux-
emburg norm are completely characterized. An explicit formula for regular support func-
tionals is given. For obtaining a characterization of singular support functionals a gener-
alized Banach limit is applied. Some necessary and sufficient conditions for smooothness
of these spaces are given, too.
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0. Introduction.

This paper is divided into four parts. The first part is an introduction. The second
part consists of some results concerning the existence and the general form of regular
support functionals at points of the unit sphere S(1%) of Musielak-Orlicz sequence
spaces [2. In the third part a general formula for singular support functionals at
points of S(I%) is given. In the last one a criterion for smoothness of Musielak—Orlicz
sequence spaces is obtained.

Smoothness and uniform smoothness of Orlicz spaces equipped with the Luxem-
burg norm were first discussed by Rao in [13] and [14]. However, no completely
full characterizations of these properties were obtained. Smoothness of Orlicz se-
quence spaces was considered by Ye in [14]. Next, Pluciennik and Ye considered
in [11] smoothness of Musielak-Orlicz sequence spaces obtaining almost complete
its characterization. Moreover, Chen obtained in [2] a characterization of smooth
Orlicz function spaces endowed with the Orlicz norm in the case of a non-atomic
finite measure. These problems were also considered in [15].

In the sequel N denotes the set of natural numbers, R denotes the reals, R denotes
the interval [—o00, +00] and is called the set of extended reals, Ry denotes the set
of nonnegative reals and ®; are Orlicz functions which means that ®; are vanishing
and continuous at zero, left-continuous on whole R, convex and even on R, and not
identically equal to zero. For any Musielak-Orlicz function & = (®;)2, we denote
by &* its complementary function in the sense of Young, i.e. ®* = (®})2,, where

& (u) = i\;gﬂulv - &;(v)} (VueR)

If ¥ is an Orlicz function and u € R, we denote by ¥~ (u) and ¥*(u) the left and
the right derivatives of ¥ at u, respectively. Given an Orlicz function ¥, we define

b(¥) = sup{u € R4 : ¥(u) < +o0},
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0¥ (u) =[¥(u), ¥ (u)] if u>0and u < b(¥)
=[T*(u), ¥ (u)] ifu<0andu>—b¥)
=[(¥7(u), +00) if u=20(T¥)and ¥~ (8¥)) < +o0
=(—o00, ¥t (u)] if u = —b(¥) and ¥H(=b(¥)) > —00
={+o0} ifu=>5(¥)and ¥~ (5(¥)) = +oo
={—o0} if u = —b(¥) and ¥H(—b(¥)) = —c0
It is not difficult to show that for any u € R and v € 8¥(u) we have ¥(u) +
U*(v)'= uv.
Moreover, if ¥ is an Orlicz function with finite values then

(0.1) OV(u)={veR:¥(u)+ T*(v)=uv} (VYueR).

When ¥ is an Orlicz function which jumps to +o00, equality (0.1) holds only for
these u € R which satisfy ¥(u) < +o0.

Let us denote by I° the space of all sequences of reals, and for any = = (z;)2, € I°
and A C N define z4 = 2 ica Titi, where e; are the i-th basic sequences, i.e.
e; =(0,...,0,1,0,...), where 1 stands on the i-th place. For any = € I° we define
also

.’L'(") =(‘Th$27"'7z"’0"")'

If & = (®;)2, is a Musielak-Orlicz function and z = (z;)2; € I°, we define
0%(z) = (0%i(zi))2,. Moreover, we define

b = bi(®)),
a; = a;(®;) = when ®;(4;) <1,
=&7(1) when ®;(b;) > 1.

Given a Musielak-Orlicz finction ®, we define on [° a convex functional Iy by
the formula

Is(z) = ) ®i(z:) (Yz=(z:)€l).

=1

The Musielak-Orlicz space I® generated by a Musielak-Orlicz function ® is defined
in the following way

1? ={z€l’: I(\z) < +oo for some A > 0}.
This space endowed with the Luxemburg norm
llzlle = inf{A > 0: I(z/}) < 1}
is a Banach space (cf. [8], [7] and [8]).

For any Musielak-Orlicz function ¢ we define h? to be a closure in I# with respect
to the norm topology defined above of the set h of all sequences in I° with finite
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number of coordinates different from 0. This space will be considered with the norm
| lle induced from *.
In the case when b; = bj(®;) = +oo for any i € N, we have

h® = {z € I’ : I§(\z) < 400 for any A > 0}.
Every functional z* € (h*®)* (=the dual space of h®) is of the form

o<}

(0.2) ) =Y zw (Vy=(w)eh?),

=1
where z = (z;) € I*" (cf. [6], [7], [8] and [8]). It is obvious by the Holder inequality
(0.3) |z* ()] < 2llzlle- llylle

that every linear functional defined by formula (0.2) is also continuous on 2. Such
functional are called regular. '

A functional z* € (I%)* is said to be singular if z*(y) = 0 for every y € h®.

We denote by B(I*) and S(I?) the unit ball and the unit sphere of 1%, respec-
tively.

We say that ® satisfies the 63-condition if there exist constants K, a > 0, a number
m € N and a sequence (c;) of nonnegative extended reals such that Yo Ci < 400
and for any i € N and u € R satisfying the inequality ®;(u) < a, we have

<I>,-(2u) < KQ.(U) + ¢;.

Let X be a Banach space and X* be its dual space. Then z* € X* is said to be
a support functional at ¢ € X \ {0} if ||z*|| = 1 and z*(z) = ||z (cf. [10]). We
denote by Grad(z) the set of all support functionals at z. If X is a Musielak-Orlicz
space and z € X \ {0}, we denote by RGrad(z) and SGrad(z) the sets of all regular
and all singular support functionals at z, respectively.

A Banach space X is said to be smooth if for any z € S(X) the set Grad(z) has
only one element (cf. [2] and [10]).

1. Regular support functionals in I*.
We start with the following

Lemma 1.1. (i) For any z* € (I*)*, we have (2*(e;)) € v,
(ii) The functional T* defined by

oo
3'(2) = ) sile)n (Vo =(z)€l®)
i=1
is continuous on % and the functional z* defined by
(1.1) z*(z)=z*(z)—-T"(z) (Vz€ %)

is singular.
(iii) For every z* € (I*)*, we have

(12) *=%"* + ;‘t’
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where T* and z* are the regular and singular parts of z* defined above, respectively.
The representation (1.2) is unique for any z* € (I%)*.

PROOF : (i) Let us denote by Z* the restriction of z* to the subspace A% and let
z € h®. Then ||z — 2(™||s — 0 and

#*(z™) = z": z*(ei)z;.

i=1

Therefore,

#*(z) = limz*(z{™) = limzn:z'(ei)z; = iz*(e;)z;.

i=1 i=1

In view of the general representation of linear continuous functionals over h%®
(cf. formula (0.2)), we conclude that (z*(e;)) € 1*".

(ii) This follows immediately from (i) and from the Holder inequality (0.3).

(iii) Equality (1.2) is obvious. It is obvious also that z* and Z* coincide on h.
Therefore, they coincide also on h®. Hence it follows that z* is a singular functional.
The uniqueness of the representation (1.2) is obvious. [ ]

Lemma 1.2. Assume that z € S(I*) and z* € RGrad(z) is represented by a se-
quence A = (X\;) € 12", Then:

(i) Aizi 20 for any i € N,
(ii) if Aigzip > 0 and |z;5| < ai, for some ig € supp z*, then Is(z) = a, where
a = sup{le(y™** * ) : |lylle < 1}.

PROOF : (i) Assume that \;,z;, <0 for a certain i; € N and define
zT= Z Tie; — Tiyei,.
iio

Then we have ||Z||¢ = 1 and z*(Z) > z*(z), a contradiction.
(ii) Assume that A;,z;, > 0 and |z;,| < a;, for some iy € N as well as Iy(z) < a.
There is a number ¢, ¢ > |z,,|, such that

Y B(zi) + Bi(c) < .
i#ig
Defining

E= Z zie; + csgn(A;, ey,
i#ig

we get ||Z]l¢ <1 and z*(Z) > z*(z), a contradiction. This finishes the proof. ]
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Lemma 1.3. Let a = sup{Js(y) : |lylle < 1},z € S(I*) and z* € RGrad(z). Then
supp z* C A, = {i € N: |zi| = a;} whenever Is(z) < a.

PROOF : Denote by A = ();) the sequence in 1#" which generates the functional z*.
Assume now that Is(z) < @ and there is iy € supp ¢* which satisfies |zi| < @i
Then there is a number c, |zi,| < ¢ < ai,, such that

(1.3) Y ®i(zi) + Bin(c) S 1.
i#io
Defining
(1.4) = z;e; + csgn(Aig)eiq,
i#io .

we have ||Z|ls = 1 and 2*(Z) = Lioy MTi > L2 Mizi = 1, a contradiction.
Therefore, the Lemma is proved. [ ]

Lemma 1.4. Let ¢ € S(I?) and z* € RGrad(z). Then for everyi,j € supp z*
there ezist d; € 0®i(z:),d; € 0%®;(z;) such that

(1.5) z'(e.-)d_,' = a:'(e,-)di.

PROOF : Denote shortly z*(e;) = A;. In virtue of Lemma 1.2(i) and the definition
of 8®;(z;) we know that A\ja; and Aja; are of the same sign. Therefore, we may
assume without loss of generality that A; > 0,d; > 0,A; 2 0, and d; > 0. If the
equality (1.5) does not hold, then

(1.6) /\.‘dj # /\jd,‘

for every d; € 8%(z;),d; € 8®(x;), where 1,j € supp z*. Hence it follows that
(1.7) /\,'QJ-—(.‘L'J') > /\j‘p?'(:t")

for some i, j € supp z*. Indeed, if condition (1.6) is not satisfied, then

(1.8) )\,‘@’-_(.'tj) > A]@f(x,) or /\,-@;(:cj) < /\JQ;’-(:C,)

The first inequality of (1.8) is exactly inequality (1.7). If in the alternative (1.8)
the second inequality holds, then it must be also

(1.9) Ai®F (z;) < A;®87 (24)-
Indeed, in the opposite case it would be

(1.10) A} (z5) > ;@7 (),
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because the equality is not possible by inequality (1.6). However, inequality (1.10)
together with the second inequality in (1.8) and the fact that 0% (u) are connected
sets (intervals) for every k € N yield that

Aid; = \;d;
for some d; € 0%(z;) and d, € 8®;(z;), a contradiction. This proves that condition
(1.6) implies the alternative of conditions (1.9) and (1.10). However, the meanings of
these two conditions are the same. Only the roles of i and J are changed. Therefore,
we may assume that condition (1.7) holds. This implies that ®}(z;) < +o0 and
Ai > 0. Therefore |z;| < b;. First, we restrict ourselves only to the case when
®}(z;) > 0. Then, in virtue of inequality (1.7), we have
Xi/ ®F (2i) > 2/ @5 (z;).

Thus, there exists a number k > 0 such that

A/ (2:) > k> Xj/9 (z5).

Since ®} is right-continuous and @ is left-continuous, there exist Z; and T; such
that z; < Z; < 400, 0 < T; < zj, and

(1.11) Ai/BF(T:) > k> A;/%5 (),
(1.12) / ®F(t)dt = [ &5 (t) dt.

Let T = (Z,)32,, where
Tpn =2, whenn#iandn#j,
=7Z; whenn=71,
=7Z; whenn=j.
In virtue of equality (1.12) we have ;
16(Z) = Ia(z) + Bi(T:) — Bi(i) + 85(T;) — ®j(z;) =
~ Telz) & / B (t) dt — / "9 (t)dt = In(z) = 1.
zi z;
Therefore, ||Z]|¢ = 1. Moreover,
2*(Z) - 2*(z) =(NTi — Aizi) — (Ajz; — \,Z;5)
=k(f,' — :L',')/\,'/k == k(a:j - f_,)/\,/k

= [k - a0 + a0
(113) - [ 1870+ Ok - a5 e)
k([ " Ok~ 8 ©) dt - [ ourk - a5y ary

+{/_ ®F(t)dt — /_ &5 () dt).

i
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In virtue of equality (1.12) the value of the last bracket is equal to 0. Moreover,

Xi/k> @) (Ve [zi,Ti)),
Ak < @5 (t) (Vte[g),z,])

Therefore, .
(1.14) /ii[A;/k — &} (t)]dt >0, =
(1.15) /_ [\i/k - ®5 (1)) dt < 0.

Combining equality (1.13) and inequalities (1.14) and (1.15), we get ;
*(7) > z*(z) =1,

which contradicts to the fact that z* ¢ RGrad(z). This finishes the proof in the
case of ®F(z;) > 0.

Assume now that ®](z;) = 0. Then it must be ®f(z;) > 0 for any Z; > z;.
Indeed, in the opposite case we have &} (z;) = 0 for some T; > zi. Defining
T = 3 ;z:iTie + Tiei, we have 7 € S(I?) and z*(Z) > z*(z), a contradiction.
Therefore, we can find Z; > z; and T; < z; in such a way that equalities (1.12) and
(1.13) hold, X;/k > ®](t) for any t € (zi,%i) and \j/k < @7 (t) for any t € [zj, ;]

Now, we can repeat the proof from the case of ®f(z;:) > 0. [ ]

Corollary 1.5. Let & and z € S(I*) be such that 0%(z;) = +oo or 8%i(z;) = —o0
for a certain i € N. Then for every z* € RGrad(z) it must be supp z* C {i € N:
|zi| = bi}.

PROOF : This follows immediately from equality (1.5) of Lemma 1.4. ]

Lemma 1.6. (i) Let & and z € S(I®) be such that A, = {i € N: |zi| = a;} #0.
Let (\;)iea, be a family of nonnegative numbers such that ZieA, i = 1. Then the

functional z* defined by the formula N
(1.16) 2 (y)= Y Avilei (Vy=(uw)€ *)
i€A:

1s a support functional at z.
(i) If additionally AP = {i € A; : |zi| = b;} # 0, then every z* € RGrad(z) is
of the form

(1.17) )= Y Az (Yy=(w) €M),

i€EAP

where A; > 0 for any i € AP and EieA:’ X =1

667
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PROOF : (i) We have z*(z) = 3";c 4  Ai = 1. Assume that y € B(I*). Then
lyil < a; for every ¢ € N. Therefore,

l* W) < D Mlwil/ai < ) Ni=1,
i€, i€,

which means that ||z*|| = 1, i.e. z* € RGrad(z).
(ii) Assume that A # @ and z* € RGrad(z). Then, in virtue of Corollary 1.5,
we have supp z* C A°. Therefore,

(1.18) )= Y zm Yy=@w)el),
iEAP

where z; are some reals such that

(1.19) z*(z) = Z zizi =1,
i€AP
(1.20) [lz*] = 1.

In virtue of Lemma 1.2(i), we have A; = z;z; > 0. Moreover, in view of (1.19),
we have EiGA:" Ai = 1. Since z; = A;j/z; for every i € A, we can write formula
(1.18) in the form (1.16). ]
Lemma 1.7. Let z € S(I*). If d(z,h®) = inf{||z — y|le : v € h?} < 1, then
Grad(z) = RGrad(z).

PROOF : We have ||z — y|l¢ < 1 for some y € h®. Let z* € Grad(z). If z* in (1.1)
is nonzero, then

L=lz*l = IZ*)| + llz*|| = 2*(2) = *(2) + 2*(z — ) < [Z*] + llz"[| = ~ ylle
SIz*+ 12l e - vlle,

a contradiction. ]

Remark 1.8. If & and z € S(I*) are such that A, = {i € N : |z;| = a;} # 0, then
RGrad(z) # 0.
Indeed, in view of Lemma 1.6, the functional z* is defined by the formula

e*(y) =vi/z: (Vy=(w)€®),

where i € A;, belongs to RGrad(z).

The problem arises whether or not for every z € S(I%), the condition Is(z) = a,
where o = sup{ls(y) : |lyll¢ < 1}, implies that RGrad(z) # 0. The answer to
this problem is negative. A counterexample will be given after the theorem written
below.
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Theorem 1.9. Let ® be a Musielak-Orlicz function, z € S(1%),z* € (I1*)*,A =
supp z*. Then z* € RGrad(z) if and only if

(1.21) Is(z) = a, where a = sup{Is(y) : ||ylle < 1,supp y C A},
(122) 2"y =Q_dw)/(Q_diwi) (Yy=(w)el®),
i€EA icA
where
(1.23) d; € 0%(z;) for any i € A and Zd;z; < +00.
i€EA

PROOF : If |z;| = a; for any i € A, then condition (1.21) is satisfied. If |z;,| < a;,
for some iy € A, then the necessity of condition (1.21) was proved in Lemma 1.2,

Let z* € RGrad(z) and denote z*(e;) = A;. In virtue of Lemma 1.4 there exists
a constant k > 0 such that A; = kd; for i € A, where d; € 3®;(z;). Therefore, z* is
of the form

(1.24) e (y)=kY diyi (Vy=(u)el®).
i€EA
By the assumption, .
1=z*z) =k dizi,
i€A
whence it follows that d = (d;)e 4 satisfies condition (1.23) and k = 1/(3;¢ , diz:).
Combining this with formula (1.24), we obtain formula (1.22). ’

Assume now that z* is a functional from (I%)* satisfying conditions (1.21), (1.22)
and (1.23). Then we have

@(.1:.) + q"(d.') = d;z; (V t € A)

Therefore

(1.25) Io(z*) + I (d) = Y _ dizi,

i€EA
whence it follows that Is-(d) < +oo, i.e. d € I*°, whence d/k € I*", where
k = 1/ 3 ;cadizi. Thus, the linear functional z* defined by formula (1.22) is
continuous over [®. It is evident that z*(z) = 1. Moreover, for every y € B(I® ), we
have Is(y*) < a. Thus, in virtue of equality (1.25) and the Young inequality

| Zdiyil < Ia(y*) + Ise(d) < a + Is-(d),
icA

we obtain |¢*(y)| < 1. Therefore, z* € RGrad(z), which finishes the proof.
|

Now, we are ready to give a counterexample announced before Theorem 1.9.
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Example 1.10. Let & = (®;)2,, where

®,(u) = |u| if Ju|-< 27!
=2(Ju| =27 1) 4 271 if Ju| > 271,

Define z = (z;)$2,, where z; = 27'~1 4+ 272"~1, We have ®;(z;) = 2"* for every
i € N. Therefore Ig(z) = 1 = a, whence ||z]|¢ = 1. It is easily seen that ®; are
smooth at z; for any i € N and 9%;(z;) = {2'}. Moreover,

0o oo

Y 2= iz"(z-"‘ $2% 1> iz‘z*‘-l =) "1/2=+c0.
=1 =1

=1

=1

Therefore, in virtue of Theorem 1.9, we have RGrad(z) = .

2. Singular support functionals.
We start with the following

Lemma 2.1. Let ® and z € S(I%) be such that Is(z) < 1, |z;| < a; for everyi € N.
Let z* € Grad(z) and A be a subset of N. If 0 < ||z#||e < 1, then z*(y*) = 0 for
every y € B(1%).

PRrOOF : It follows by Lemma 1.2(ii) that z* € SGrad(z). We divide the proof
into two steps.

I. First, we shall prove that
(2.1) z*(z4) = 0.
Assume for a contrary that z*(z4) > 0. Define
Cy=aAleA e

We have ||yl = 1. Choose k € N in such a manner that Is(y4*) < 1/2, where
Ap = {n € N:n > k}, and define

Yyi=vyi if i€ Aand i >k,
=0 otherwise.

Since y — ¥ has only finite number of coordinates different from 0 and z* is singular,
we have

z*(@) = 2*(y) = 2*(z*)/||z*]|s -
Let B=N\ A and ! €N, !> k, be such that
Y &i(z) < 1/2.

i€B
i>l
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Define w = (w;), where

w; =Y 1fl€Aandsz,
=z; if i€Band:i>]|

=0 otherwise.

Then Is(w) < 1/2+ 1/2 =1, whence ||w||¢ < 1. Moreover,

z*(w) = 2*(y*) + 2°(2P) = 2" (2*)/l|z* e + =*(=7) >
> z*(z?) + z*(2B) = 2*(z) = 1,

because the elements w — (y# + z2) and z — (z# 4 £®) have only finite number of
coordinates different from 0 and z* is singular. This contradicts to the fact that
z* € Grad(z).

II. Assume now that there exists y € B(I?), y # z, y # 0, such that
z*(y*) # 0. We may assume without loss of generality that z*(y4) > 0 and
ly4lle = 1 (considering y“/||ly*||e instead of y* if it is necessary). Choose m € N
in such a way that

Z @i(yi) < 1/2.

1€EA
Define w = (w;)$2,, where
‘w; =y; whent€ Aandi>m,

=z; wheni€ Bandi>]|,

=0 otherwise.

Then - o
Io(w) = ) ®i(ys) + Y Bu(e:) <1/2+1/2=1,
€A ich

whence ||w||¢ < 1. Moreover, in view of singularity of z*, we have
(2.2) z*(w) = z*(y*) + =* (zB).
In virtue of equality (2.1), we have

z*(z8) = 2*(z) — z*(z?) = z*(z) = 1.
Combining this with equality (2.2), we get

z*(w) = 2*(y*) + 2*(2) = 2" (y*) +1 > 1,
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what contradicts to the fact that z* € Grad(z). ]

Define for any Musielak-Orlicz function ®:

Sg(i*) = {z € S(®) : d(z,h®) = 1}, where d(z, h®) = inf{||z — y||e : y € ~*}.
Lemma 2.2. Let z € Sg(I*), N, = supp z, and z* € SGrad(z). Lety € S(I*) and
N* ={i € N, : z;y; > 0},

N~ ={i€ N, :z;y; <0},

N°={ie N, : z;y; = 0}.

Then:

(i) z*(y®) >0 whenever QC N,
(i) z*(y9) <0 whenever QC N,
(iii) z*(y?) =0 whenever @ C N°.

PROOF : (ii) Let @ C N~ and i € Q. Then z;y; <0 and therefore

|z; + yi| < max(|z;l, |vil),

whence
®i(z; +yi) < max(®i(zi), Pi(yi)) < Pi(x:) + Ri(yi) -

Thus,
Is(z +y9) < Ia(z) + Is (y9) < 2.

There exists a natural number k such that
N @i +y?) <1

i=k

Define w = (w;)§2,, where
wi=gzi+y® ifi>k,

=0 if i <k.

We have I(w) < 1, whence ||w|| < 1 and z*(w) < 1. Therefore,
12 2%(w) =2*(z +y9) = 2"(z) + 2" (4%) = 1 + =" (¥9),
whence z*(y?) < 0.
(i) Take Q C N*. Replacing y by —y, we obtain the situation as in (ii), whence

z*(-y?) < 0,ie z*(y9) > 0.
Statement (iii) follows by (i) and (ii). |
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We are now near the position to give a formula for singular support functionals.
In virtue of Lemma 1.7 it follows that for z € S(I*) singular support functionals at
the point = may only exist if d(z, h®) = 1. Moreover, in view of the Hahn-Banach
theorem we have SGrad(z) # @ whenever z € S(I?) and d(z,h®) = 1. We should
note here that for € S(I?), we have d(z, h?) = 1 if and only if

(*) Z ®,(A\z;) = +oo for any m € N and any A > 1.

i=m

To obtain a formula for z* € SGrad(z) if = € Sg(I*), we shall first define on I*
a Banach functional g, generated by z € Sg(I®). By using the analytical version of
the Hahn-Banach theorem, we shall deduce that there is a linear minorant for g,
which coincide with g, on the set {Az : A € R}, and we shall prove that every su¢h
a minorant is a singular support functional at z.

Definition 2.3. If z € Sg(I®) then the collection E(z) = (Ny,Na,...,Ni) of
pairwise disjoint subsets of N such that supp z = Uf=1 N; is said to be a finite
decomposition of supp z.

The set of all finite decompositions of supp z for z € Sg(I?) denote by £(z). |

Lemma 2.4. Let = € Sg(I®) and E(z) = (Ny,...,Ni) € E(z). Then ||zVi|le =1
for some 1 € {1,...,k}.

PROOF : Since I3 (Ax) = +oo for every A > 1, it follows that there exists a number
i € {1,...,k} such that Is(Az™') = 400 for every A > 1, whence the equality
lz™é||e = 1 follows. n

Denote by ext E(z) the set of all N; € E(z) such that Card(N;) = +oo and
aNi € S(1?). 1t follows from Lemma 2.4 that ext E(z) # 0 for any z € Sg(I%).
Take an arbitrary element z € Sg(I®) and define on I® the following functionals:

Uz:(y’ E(-'C)) = sup ’ il—f—ﬁ (y.‘/z") (V y= (y'.) € IQ)'
Ni€ext E(z) 1EN;,i—o0

2.3
i) o:(v,E(z)) (Vy=(ui)€el®).

z = inf
exv) =, Mk
Lemma 2.5. Let = € Sg(I®). Then the functional o, defined by formula (2.3) is
a Banach functional on 12, i.e. g, is subadditive and positively homogeneous.

PROOF : The equality o-(Ay) = Aoz(y) for any A > 0 and y € I® is obvious. Now,
we shall prove the subadditivity of ¢,. Take arbitrary y,z € I* and € > 0. We can
find By = Ey(z) = (Ny,...,Ni) € E(z) and E; = Ey(z) = (Ny,...,N,) € &(z)
such that

Qz(y) +e> Uz(yv El)9
0:(2) + € > 0.(z, E»).
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Define a new decomposition of supp z, Eg = {N;N N, }}_,* _,. Denote N;nN N,, =

Nin. If ".‘L'N'"‘ |l# = 1, then the inclusions Ni,, C N; and Ny C N:,. yield ||.1:N' le =
[|lz¥m||¢ = 1. Therefore,

o:(y, Eo) = oy ieN,li_ma—.oo(y‘/z‘) <
(24) 1m Eext Eg ms

< sup  lim  (yi/z:) = 0.(y, Ev).
Ni€ext E tEN,i—o00

We'can prove in the same way that o,(t, Eg) < 0.(t, E;). Therefore,

o:(y+2z)= Eg}t(' )a;(y +2,E) < 0.(y+ 2, Ep) < 0:(y, Eo) + 02(2,Ep) <
z
< 0:(y, E1) + 0:(y, B2) < 02(y) + 02(2) + 26
The arbitrariness of € > 0 yields 0-(y + z) < 0:(y) + 0z(2). ]

Note. The functional o, defined by formula (2.3) and generated by an element
z € Sg(I?) is linear over the subspace I, = {\z : A € R}.

Definition 2.6. Let = € Sg(I?) and g, be the Banach functional defined by for-
mula (2.3). Denote by B-lim(z) the set of all linear minorants for p,, i.e. the
set of all linear continuous functionals z* over 1% such that z*(y) = g.(y) for any
y €l = {Az: ) € R} and z*(y) < 0z(y) for every y € I®.
In virtue of the analytical version of the Hahn-Banach theorem such a linear
continuous functional always exists. Therefore B-lim (z) # 0 for every = € Sg(I?%).
For every z* € B-lim(z) and every y € I, we write

z*(y) = B-lim(y;/z;).

Lemma 2.7. Letz,y,N*, N~ and N° be as in Lemma 2.2 and let g, € B-lim(z).
Then

(i) 02(y™") = 0x(y)  whenever o(y) 20,

() =V |le <1 and 0,(yV" ) = 0.(y) whenever o.(y) <O.

PROOF : (i) For any finite decomposition E = E(z) of supp z, E = (Ny,...,Ni),
define a new decomposition Eg = (N}, N7, N?)L,, where Nt = N;n N+ N =
N;NN—,N? = N; N N°. Note that we defined in such a way a mapping 7 from
&(z) into itself. Define

E(z)=vE ={Ey: Eo =yE for some E € £(z)}.

In the same way as in (2.4), we have

o:(y,Eo) < 0.(y,E) (Vyel®).



Support functionals and smoothness in Musielak-Orlicz sequence spaces ...
Hence it follows that

i Ey) < i = 1
Eoggmaz(y, 0)_Eelg)f(z)0'z(y)E) o:(y)

Since &(z) C &(z), i.e. for any A € E(z) there is B € £(z) such that A C B, we
have

= inf Ey).
o':(y) Eogéo(:)az(y’ 0)

In the same way we can obtain

Nt — A f Nt E
ez(y" ) E.,é'éoma’(y yEq).

Since p(y) > 0 by the assumption, in virtue of the definitions of N;” and N, }’, we
have (defining the limits over finite sets to be equal to 0)

lim (yi/zi) <0 and iEI\Il,!i’f?—.m(yi/zi) —0.

iEN] im0
Hence it follows that

0=(y) Eogéo(:)g,(y 0) Eoé‘éo(,) seN#naxt Boyi—sidivo (vi/=:)

= inf N* Ey) = Nt 3
s.,é’é.,(z)”’(y vEo)=0:(y" )

(ii) Assume that p,(y) < 0. First, we shall prove that N + ¢ ext E(z). Assume
for a contrary that N* € ext E(z). In virtue of Lemma 2.4, we have N}" € ext E(z)
for some j € {1,...k}. Therefore

0:(y, Eo) 2 iGN}im+ (yi/z:) 20 (Y Eq € &(2)).
ji—too
Hence
= i >
0:(y) Eogg:f(z)az(y,Eo) >0,

a contradiction. Therefore Nt ¢ ext E(z). In the same way we obtain N° ¢
ext E(z), whence N;-" ¢ ext E(z) and N) ¢ ext E(z) for any j € {1,... k}. There-
fore,

ol(ys EO) = sup . _!’—m (yl'/z") = at(yN- 7E0))
Nj- €ext Eg 'EN,' yi—+00

and g.(y) = ¢z(y"™ "), which finishes the proof. »
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Theorem 2.8. Letz € Sg(I*). Then z* € SGrad(z) if and only if z* € B-lim(z).

PROOF : Sufficiency. Take an arbitrary z* € B-lim(z). It is obvious that z* is
singular. Since z*(z) = 1, we have ||z*|| > 1. Take an arbitrary y € S(1*),e > 0,
and define :

Ny = {i € supp z : |yi| > (1 +¢)|zil}, N2 = supp z \ Ny.

The pair E, = (N1, N) is a finite decomposition of supp z. Let ¥ = (¥;)2,, where
Y; = yisgn(z;) (sgn(0) = 0 by the definition). Obviously 7 € S(I*). If |z = 1,
then |[g™||¢ > (14¢)[|lz™ |6 = 1+¢, a contradiction. Therefore, ||zV1||s < 1, and
az(yv E!) = i€N33£+w(yi/xi) <1l+e.
This yields
Qz(y) < inf 9:(97 Ez) =1,
>0

whence the inequality ||z*|| < 1 follows. Thus, in virtue of ||z*|| > 1, we have
lz*]l =1, i.e. z* € Grad(z).

Necessity. Take an arbitrary z* € SGrad(z). We shall prove that z* € B- lim(z),
ie. 2*(y) < o.(y) for any y € I%. If this inequality does not hold, there exists
y € S(I1?) such that

2" (y) > ex(y).
We shall show that this yields a contradiction. Let us consider for this purpose two
cases separately.
1) ez(y) > 0. Define N* = {i € N, : z;5; > O, N~ = {i € N, :
ziyi < 0},N° = {i € N, : z;3; = 0}, where N, = supp z.? In view of Lemma 2.7,
we have p,(y) = g,(yN+). Moreover, by Lemma 2.2, z*(y" ") < 0 and z‘(yNo) =0.
Thus

") =) — 2V ) - (™) > 2* (1) > ea(y) = 02 (yN).

Therefore, we may assume without loss of generality in this case that z;y; > 0
for any i € N;. By the definition of o,(y), there exists a finite decomposition
E = {N;}%, of N, such that

(2.5) z*(y) > 0:(v, E) > 02(y) > 0.

Take a positive number € such that A+¢ < z*(y), where A = 0,(y, E). Define a new

finite decomposition of N, E, = {N§, Nf, where N¢ = NiNN¢,Nf = N;NN., and
N*={ieN.:0<yi/zi<A+e}, N.=N,\Ne.

Since z;y; > 0, we have N, = N*U N;. If N; € ext E,, by Lemma 2.4, there exists
to such that N{ € ext E,. We have

im  (yi/zi) > A +e.
(e <]

ieﬁ;o R
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Since Nfo C N;,, we have
N; N§
12 [z lla 2 flz 7 ]le =1,
whence

A=o.(y,E su z;) > fim iJxi) > A+e

(1 B) = NGt B SNt 4o wif=;) 2 iENg i—rtoo We/z) 2 ’
a contradiction. Therefore, N; ¢ ext E,. By Lemma 2.4, we conclude that N° €
ext E,. In virtue of Lemma 2.1, we have z*(z™¢) = 0. Therefore,

2*(y) = 2* (™) + 2 () = 2 ™).

Moreover,
ly™ lls < A +6)z™ fle = A+ )z lle = A +e,

whence,
) <y lls llz*l S A+,
what contradicts to the inequality A + ¢ < z*(y) = z*(yN") written just after
inequality (2.5).
2) 0z(y) < 0. It follows from Lemma 27(11) that ||:cN le < 1 and oz(y™")

= 0.(y). In view of Lemma 2.1, we have z‘(y” ) = 0. Therefore, z*(y) = z*(y" ")
and

(2:6) e (—yV )= —2* (V) = —2"(y) < —e:(y) = —e(y" ")
Putting z = —yN™, we have z;z; > 0 for any i € N. By (2.6),

*(2) < —oz(—2 inf — =
=8 0x(-2) = ECE(z) N'Se‘:xp;E :eN.,:—~+ (=2j/25) =

= sup inf lim  (zj/z;).
E€t(z) Ni€extE jeN;j—+oo

So, there exists a finite decomposition E = {N;}%_, of N, such that

z*(z) < inf lim zi[x;).
()< it Jm (/)

Take a positive number ¢ such that z*(z) < A —¢ and A —¢ > 0. In virtue of
z;z; > 0, applying Lemma 2.2, we get z*(z) > 0. Define a ﬁmte decomposition E,
of N, by E, = { I,N},_l,whereN N; N N¢, N NﬂN and

N ={ieN,:0<z;/zi<A—¢€}, N ={i€N;:z/z;>X—¢}.
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Since z;z; > 0 for any i € N, we have N* UN' = N,. First, we shall prove that
N¢ ¢ ext E,. If not, N® € ext E, and by Lemma 2.4 there exists ig € {1,...,k}
such that N € ext E,. Thus,

iGN.'o,i—t-l-oo GN.?o,i-+

A< li (zi/zi) < lim  (zi/zi) <A —e,

which contradicts to ¢ > 0. Thus, N® ¢ ext E,. Since ¢ € Sg(I?), applying
again Lemma 2.4, we get N' € ext E,. By N¢ ¢ ext E, and Lemma 2.1, we have
z*(zV°) = 0. So, z*(zV ) = z*(z) = 1. We have for any i € N,

[Z,’ == (/\ == 6)3.’]/1’.’ > 0 and [z,- == (A = 6)13,']3,' Z 0.
Thus, in view of Lemma 2.2, we get :c‘(le —(A = e):tNl) >0,ie.
z'(zN') > (A —e)x'(zN') =A—€.

But, on the other hand, by N® ¢ ext E, and Lemma 2.1, we have z*(zV°) = 0.
Therefore,

22V ) = 2°(2) — 2*(2M") = 2*(2).

Combining this with the previous inequality, we get z*(z) > A—¢, which contradicts
to the inequality z*(2) < A — €. The theorem is proved. ]

Theorem 2.9. Let z* =T* + z* be a linear continuous functional over 1%, where
T* and z* are its regular and singular parts, respectively. Then

(2.7) =™l = lIz*1l + l=*]l -

PROOF : As it was already proved, we have
e o]
' (z) =) = (e,
i=1

and z*(z) = 0 for every € h®. We need to prove the inequality ||z*|| > ||Z*|| +
lz*||. Take an arbitrary € > 0. There exist (1), z(?) € S(I*) such that

(2.8) (=) 2 2" - £,
(29) | @) 2 =) - <.

We shall consider two cases.
I. z® has infinite number of coordinates different from 0. Since the series
z*(z®) = wl.zsz)’f‘(e.‘) is convergent, there exists a number k € N such that

(2.10) | ixﬁ”a*(e,-n <el4.

i=k
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We have Ip(zM) = 522, ®;(z") < 1, because ||z(V|| = 1. Thus, there exists
a number [ € N, ! > k, such that

oo oo
(2.11) > a(=V) < Y @i(=),
=l i=k
i €
(2.12) 1> et (el < e
=l
Define
2 = {2,
where xﬁ” = :cgl) when 1 > [,
= 152) when i < k,
=0 otherwise.

Applying (2.11) and (2.12), we get

k—1 0o oo
L(®) =Y a:(a) + 3 2") < 3 &GP) <1,
i=1

=1 i=l
whence ||x(3)||¢ < 1. Therefore, in virtue of (2.8), (2.9), (2.11) and (2.12), we have
2] 2 2*(z®) = z*(z®) + F*(a®) =

k—1 o
=z*(zW) + szz)x'(e;) + Zx?)z"(ei) =
] 1=l

i=1

= 2(e™) +7"(e®) = 3 2Pz () = D 2iet(e) 2

i=k i=l

(e <} o0
> 2*(cM) +2°(=®) = | 3 2Pz (en) - | Y Vet (ei)l 2
1=k =l

€

Since € > 0 was arbitrary, this means that ||z*|| > ||Z*|| + ||lz*]|-

IL. 2? has only finite number of coordinates different from 0, i.e. there exists
a number k € N such that sz) =0 for any i > k. Let € € (0,2) and A =1—¢/4.

We have Is(Az(®) < ||Az®]l¢ < 1. Choose a natural number I, I > k, in such
a way that

50 k-1
(2.13) Y a) <1-2Y (=),
=l i=1

(2.14) |iz§”x*(e,~)| <e/a.

=l
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Define

2 = (2{V)z2

=1
where zss) = zgl) when i > [,
= /\x?) when @ < k,
=0 otherwise.

Then, in view of (2.13) and (2.14), we have

k-1 o0
L(®) =3 #0a)+ Y #:(=”) <1,

i=1 i=l
whence ||z(||¢ < 1. We have

Izl 2 2*(=®) = 2*(c®) + 7*(=) =

k-1 oo
=z* @)+ 2P2 () + Y 2Me(ei) =
=1

=l

oo

= z*(z) + Az* () + Ezsl)z'(eg) >
i=l

€ € e, €

> (lz*] = “HE-5-&>

> (el - 9+~ Dl -5 -5 >

2 ll2*l +[IZ*l —e.

The arbitrariness of ¢ in (0,2) yields ||z*|| > ||z*|| + [IZ*|- &

Note. For Orlicz spaces over a non-atomic measure space Theorem 2.9 was proved
by T. Andoin [1]. For Orlicz sequence spaces Theorem 2.9 was proved by M. Nowak
in [9].

Theorem 2.10. Let z € S(I*) and z* € Grad(z). Then z* € SGrad(z) if and
only if

(2.15) z* = azj + Bz},

where o, > 0;a + f = 1,z} € RGrad(z) and z3 € SGrad(z).

PROOF : It is obvious that z* € Grad(z) whenever z* = az} + Bz3, where
z},z3 € Grad(z) and o, > 0,a + 8 = 1.
Teke an arbitrary z* € Grad(z). In virtue of Lemma 1.1, z* can be uniquely
represented in the form
*=F* 4 20 ,
where Z* and z* are the regular and singular parts of z*, respectively. In view of
Theorem 2.9, we get

ll=*ll = 1z =1l + llz* |l
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Hence it follows that
z*(z)=[z*|| and z'(z) = llz"[-
Indeed, in the opposite case it would be
2*(z) =T*(2) + () < IZ°] + [l2"]| = 1

whence z*(z) < 1, a contradiction. Denote a = ||Z*|| and B = ||z*||. Then zj =
1z* € RGrad(z) and 25 = %g:_' € SGrad(z). It is obvious that z* = az] + fz;. ®

3. Smoothness of I%.
The following theorem characterizes smooth Musielak-Orlicz sequence spaces.

Theorem 3.1. A Musielak-Orlicz sequence space I* is smooth if and only if .
(i) ® satisfies the 83-condition,
(ii) for everyi,j € N,i # j, we have ®;(b;) + ®;(bj) > 1, "
(iii) for every i € N such that ®(b;) < +oo and ®;(b;) < 1 does not ezist
FEN, j#1, and ¢ > 0 such that 3®;(c) # {0} and Pi(bi) + ®i(c) <1,
(iv) ®; are smooth on the intervals [0, a;).

PROOF : Sufficiency. First, we shall prove that 1? = h® whenever @ satisfies
the 69-condition. We want to prove that for every z € 12 there exists a sequence
(™), with (™ € h such that ||z — z™||g — 0 as n — +oo. Let z € I* and

n
:B(") = z:.-e,- (V ne N).
i=1
There is a number A > 0 such that

Is(Az) = iq’i(’\xi) < 400,

=1
whence it follows that
(3.1) Ie(Mz —2™))= Y ®i(Azi) >0 as n— +oo.
i=n+1

We need to prove that condition (3.1) implies that
(3.2) Is(2\(z — ™)) 5 0 as n — +o0.

Let ¢ > 0 be given. Condition (3.1) implies that there exists a number no € N,
ng > m, such that

i ®;(\z;) < min(a,e/2k),

i=no+1
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and -

Z cg<%,

i=ng+1

where a, k,m and (¢;)2; are the numbers and the sequence from the 69-condition.
Therefore,

®i(Az;) < min(a,e/2k) (Vi>ng+1),

and, in consequence of the §3-condition, we get
Q,’(2/\1',‘) < k@;(/\z;) + ¢ (V 1> ng + 1),

whence

i ®i(2Xzi) <k i ®i(Azi) + i c.~<g+

i=ng+1 i=no+1 i=no+1

c_,
3 =¢
Therefore

Is(2X\(z — :c("))) <e (VYn2>ny),

which means that condition (3.1) implies (3.2). This implication yields
Is(a(z —2(™)) 50 as n — oo (VY a>0),

what is equivalent to

Iz =2™))le =0 as n— +oo,

and the equality I® = h® is proved.
Thus, condition (i) implies that Grad(z) = RGrad(z) for any z € S(1%).

Now, conditions (ii), (iii) and (iv), and the representation formulae for z* €
RGrad(z) when = € S(I?) given in Chapter 1 imply that Card(Grad(z)) = 1 for
any z € S(I?), i.e. I? is smooth.

Necessity. (i) If condition (i) is not satisfied then there are two elements z,yel®
such that ||zlle = |lylle = [z + ylle = 1 and the supports of z and y are disjoint
(cf. [5]). Therefore, the element z+y is not smooth (cf. [4], the proof of Theorem 8).

Therefore, in the remaining part of the proof of necessity, we may assume (and
we do it) that @ satisfies the 63-condition. Assume now that condition (i1) is not
satisfied, i.e. there exist i,j € N,i # j, such that ®;(bi) + ®;(bj) < 1. Then the
element z = b;e; + bje; belongs to S(I*) and the functionals

() =vi/bi (Vyel?),
z3(y) =y;i/b; (Vyel®)

are two different elements of Grad(z). Therefore, I? is not smooth.
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(iii) Assume without loss of generality that condition (ii) holds. If condition
(iii) does mot hold, there exist j # ¢ and ¢ > 0 such that 8%;j(c) # {0} and
®;(b;) + ®;(c) < 1. In view of (ii) there is k € N,k # ¢,k # j, and d > 0 such that

(I),'(b,') + ‘I’j(C) + @k(d) =1

Define z = b;e; + cej + dex. Then z € S(1%), because Is(z) = 1. Take n; €
8%;(b;), i € 0®4(d) and a,b € d%j(c),a # b, and define the functionals

N:Yi + ay; + NkYk £y
= "= (Vyel
n:izi + azj + NkTk Vy )
wr oy _ MiYi +by; + Ny @
z3(y) = 'I_i$—__—_i F bz + mezi Vyel®).

zi(y) =

.

Obviously, z} # z3 and, in virtue of Theorem 1.9, z7,z3 € Grad(z), i.e. z is not
smooth, and so [2 is not smooth, too.

(iv) Assume without loss of generality that condition (ii) holds. If condition (iv)
does not hold, then there exist numbers ¢ € N and u € [0, a;] such that ®; is not
smooth at u, i.e. d®;(u) is a nontrivial interval. In view of condition (ii) there exist
two natural numbers j, k;j # i,j # k,k # i, and two positive numbers v, w such
that

D;(u) + <I>J-(v) + (I>k(w) =1,

Define = = ue; + vej + weg. Then Is(z) = 1, whence ||zl = 1. Take ¢,d €
0% (u),c # d,e € 8%;(v), f € d®k(w), and define

ey _ CYiteyit+ fuk @
zl(y)——-——cu+ev+fw (Vyel®),
vy dyi +ey; + fyx ®
z5(y) = o o (Vyel®).

Then z} # z} and, in virtue of Theorem 1.9, z},z3 € Grad(z). Therefore, is not
smooth, and so [? is not smooth, too. ]

Remark 3.2. If ® does not satisfy the §3-condition, then he £ 2,
PROOF : The assumption implies that I contains an isomorphically isometric
copy of 1% (cf. [5]). Since h is not dense in [*°, it follows that h® £ 1%, ]
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