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REPRESENTATION OF SEMIGROUPS BY PRODUCTS OF TOPOLOGICAL
SPACES WITH PRESCRIBED CARDINAL FUNCTIONS
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Abstract. Given an m-tuple @1,... , ém of cardinal func-
tions and an m-tuple of cardinal numbers Cypecey Ly, WO ex-
amine when there exists a space X homeomorphic to X but
not to X° such that &,(X) = o, for all i = 1,...,m. We show

that under some natural assumptions about the cardinal funeti-
ons, such space X exists provided that there exists at least
one space Y with d:i(Y) = oy for all 1 = 1,...,m. A more ge-

neral setting of representations of commutative semigroups by
products of spaces is investigated.
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I. Introduction and the Main Theorems. Let (S,+) be a

commutative semigroup, ¥ a class of topological spaces. A
mapping r:S —> 3 such that for all 81,8,¢ 8
(1) r(sl) is homeomorphic to r(sz) iff s = s, and
(i1) r(sl + 52) is homeomorphic to r(sl)x r(52)
is called a representation of (S,+) by products in ¥ .
Representations of commutative semigroups by products
of topological, algebraic or relational structures have been
investigated by many authors, for a survey of topological re-
sults see [7].
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In the present paper, we investigate representations of
semigroups by products of topological spaces with prescribed
values of some cardinal functions. The notion of a cardinal
function is as in [2)] or [3], i.e. an arbitrary function from
the class of topological spaces into the class of all cardi-

nal numbers such that homeomorphic spaces have the same value,

Given a class T of topological spaces, an m-tuple of car-
dinal tunctionsd)l,... »$, end an m-tuple of cardinal numbers
o(l,...,ccm, we denote by

T( d>1~> OCyseney Qm-—é =)
the ciass of all spaces X €T such that q:i(x) = o¢; for all
i =1,ic.,ms The aim of the present paper is to prove the two

theorems below.

Theorem 1. Let T be a class of topological spaces con-

taining all metrizable continua and closed with respect to
homeomorphic images, finite products and countable coproducts
(= disjoint unions as closed-and-open subspaces). Let @1,...
oioie § {)m be an m-tuple of cardinal functions such that, for
every i = 1,2,,,.,m,
(a) Qi(X) Z &, for every space Xe T and &i(K) =
whenever K is a metrizable continuum;
(b) ®,(Xx<K) = ®,(X) whenever X€T and K is a metriz-
able continuum;
(e) Qi(’;_:L" X)) -n-ﬂl:l?" @, (X)) (where 1l denotes the
coproduct), whenever X,e® for all n = 1,2,,,, »

() ¢,(x) = ¢i(x") for all n = 1,2,3,.., and all X1,

Then for every m=-tuple ccl,...,c(m of infinite cardinal num-

bers every countable commutative semigroup has a representa-
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tion by products in the class
T = T(()l—*_)hcl"“' @m_> OCm)

provided that the class M is non-empty.

1

Remark, It ie = -"i-k.:n tha¢ - .g. the weight, ar -weight,

net wveight, deusity, churacter, psenar-haracier fulfil (a)-(d)
abovs, so the Theorea 1 can be applied on them; the class T

can he chosen to be e.g. the class of all topologicel spaces,
all Tl—spaces, Hausdorff, resular, completely regular, wetriz-
able and many others. Unfo. junately, the ~lass of compact spa-
cesg doeg cot £it in it, this class is not ziired with respect

to countable disjoint unions. We present he:rs anciher theorem

for the compact Hausdorff spaces.

Given a seventuple c%l,..,,cL7 of cardinal numbers, let
u dsnote by

&tq,”_’_‘w; Comp (w —>olyy F—F AW —>Kq,d —>cl,

76——,»0(.5, 'q.r_->o(,6, t -*90(.7

the class of all compact Hausdorff spaces X such that its
weight w(X) = qy o -weight m(X) = 5, net weight nw(X) =
= of 4, density A{X) = o4 Character x(X) = &g, pseudocha-
racter y(X) = %, and tightness t(X) = o qe

Theorem 2., For every seventuple SLyseney xq of infinite
cardinal numbers, every finite cyclic group has a representa-

tion by products in the class ¢°‘1-'"'°‘7 provided that this

class is non-empty.

Remark., If {r(0),r(1)} is a representation of the cyc-
lic group ¢, = 40,1y, then the space X = r(1) is homeomorphic
to X322 r(1+141) = r(1). but not to r(0) = r(1+1) =~ X2, Hence
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the result mentioned in the abstract is obtained as the spe-
cial case of Theorem 1. The Theorem 2 can be also applied on

the group Coe

II. Proofs of the Theorems

1. Let N be the additive semigroup of all non-negative
integers, Nu the semigroup of all functions from M into N with
the pointwise addition (i.e. (£+g) (m) = £(m) + g(m)) and by
exp N" the semigroup of all its subsets with the addition de-
fined by

A+ B ={f+g| feA and ge B},
By [5], for every commutative semigroup (S,+) there exists a
homomorphism h: (S,+) —» exp NM such that

(i) card M = ¥, card S for each se S, card h(s) =

= X, card Sy for every sc S and every fe h(s),
f(m)#+ 0 for infinitely many me My

(11) 1f 848" then h(s)n h(s") = g.

Let C be a Cook continuum, i.e. a metrizable continuum such
that for any subcontinuum Kc C and any continuous map c:K—
—>C, ¢ is either the inclusion mep or a constant, see [1].
Let {K | n = 0,1,...,00} be a pairwise disjoint system of
non-degenerate subcontinua of C, 80 it e:Kn——> Km is a oonti-
nuous map then either n = m and ¢ is the identity or ¢ 1s a
constant map, For every map f:N—>N put

K(2) = 77, KE(®),

where Kfl(n) is the product of f(n) copies of K, (i2 £(n) = o,
then it is a one-point space) and TT denotes the (eountable)
product. By (41,
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if £,g:N—> N and f<g, then K(f) is not homeomorphic
to K(g)o

2. Proof of Theorem 1. Let a countable commutative se-

migroup (S,+) be given., We find = homomorphism h: (S,+) —>
—>exp N such that (1) and (11) from 1 are fulfilled. Since
T = 7( @1———->eol,..., $,—> ) is supposed to be non-empty,
we choose Y in 1t., Let ik, In = 0,1,...,003% and K(f) be as
in 1. We denote !xxw by Z and for every sc S define r(s) as
a coproduct (we denote coproduct in the class of all topolo-

gical spaces by 1l ) of ¥, coples of the space

11 n
meN,fehin 2" = X(f).

The properties of T and (a)-(d) in Theorem 1 guarantee that
r(s) ¢ T . It is easy to verify that r(s+s’) is homeomorphic
to r(s)x r(s”). Hence to prove that {r(s)| se S} is a repre-
sentation of (S,+) in T , it is sufficient %o verity that
if s+s’, then r(s) is not homeomorphic to r(s”).
Denote by Z(s) the subspace of r(s) consisting of all compo-
nents L of r(s) such that there exists no homeomorphism of
Ko into L. Since Z = Y<K_ , Z(s) consists of all 2" K(2)
with n = 0, i.e. 2(8) is the coproduct of ¥, coples of the
spaco_rl_k( )K(f). We define analogously Z(s’), hence Z(s’) is
a coproduct of i  copies of .l:k“' K(g). Since B(s)n h(s”) =
= § and K(f) is not homeomorphic to K(g) for t4g, Z(s) is
not homeomorphic to Z(s”), hence r(s) is not homeomorphic to

r(s”).

3. Proof of Theorem 2, The method of [6], simplified
by A. Ulehlovd is used. Let a seventuple “’1"""‘7 be gi-
ven such that Cdl'".m is non-empty, choose a connected
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space Y in it, Let a finite cyclic group e, = {O,l,....n—l}
be given (the operation of cy is the addition modulo n), We
construct the spaces {r(s) | se cn} as in > (by means of the Y

; n
chosen in ¢°‘1""""7) i.e. r(s) Bk,m;?\{,{e&(o)(z xK(f))k,

Let X = X u‘{gl be a one-point compactification of the space

X = r(1). Then ¥ is in cC, s Det X% ye gne
e

continuous map which maps b S R r(n+l) =2 r(1) onto X as a ho-
meomorphism and sends §“+1\~x“+1 to g . Let us denote by Vv

the inverse limit of the cheain

PO m+d e -42 (41?2 — 3
Tr_ o+l 477 ¥(n+1)€_ 4 = X(n+1)€__

Then V is in C(x «., @nd is homeomorphic to VBt1l, e uni-
Lo v ey

on of all closed~-and-open components of V isx homeomorphic to X,
Since the spaces x,xz,....x“ are pairwise aon-homeomorphic, the
spaces V,Vz,...,Vn are also pairwise non-homeomeorphic and they
form a representation of e, by r(0) = VB, r(1) = v tor 1=
= 1l,eeeyn=1,
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