

Werk

Label: Table of literature references

Jahr: 1994

PURL: https://resolver.sub.uni-goettingen.de/purl?313123012_0119|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

take ε such that $\|\underline{u}'\| < |M(s_1)|$ and $\underline{u}(t)$ is a strict upper solution of $(1)_s$, (2). $-|M(s_1)|(t-\eta)$ is a strict lower solution of $(1)_s$, (2). According to Lemma 5 for $s \in (s, s_1]$ we have

(14)
$$d_L(L+N_s,\Omega_{\epsilon})=\pm 1 \pmod{2}.$$

From the additivity property of the degree it follows that

(15)
$$d_L(L+N_s,\Omega_1-\overline{\Omega}_{\varepsilon})=\pm 1 \pmod{2}$$

for $s \in (s, s_1]$. Relations (14), (15) imply the existence of a solution of the BVP (1)_s, (2) in Ω_{ε} and in $\Omega_1 - \overline{\Omega}_{\varepsilon}$. Since s is arbitrary in (s_0, s_1) , the BVP (1)_s, (2) has at least two solutions for $s \in (s_0, s_1]$.

Now we prove that $(1)_s$, (2) has a solution for $s = s_0$. Let us take a sequence $\{s_n\}_{n=1}^{\infty}$, where $s_n \in (s_0, s_1]$, $n \in N$, $\lim_{n \to \infty} s_n = s_0$. We know that for any s_n $(1)_s$, (2) has a solution u_n satisfying $||u_n|| < |M(s_1)|$, $||u'_n|| < |M(s_1)|$, and according to Lemma 1 we get $||u''_n|| < \varrho$ for ϱ large enough. Since u_n is a solution of $(1)_{s_n}$, (2) the sequence $\{u'''_n\}_{n=1}^{\infty}$ is bounded in $C^0(0,1)$. By the Arzela-Ascoli lemma we can suppose that $\{u_n\}_{n=1}^{\infty}$ converges in $C^2(0,1)$ to a solution of $(1)_s$, (2). Theorem 5 is proved.

References

- [1] A. Ambrosetti and G. Prodi: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 93(4) (1972), 231-247.
- [2] S. H. Ding and J. Mawhin: A multiplicity result for periodic solutions of higher order ordinary differential equations. Differential and Integral Equations 1(1).
- [3] C. Fabry, J. Mawhin and M. Nkashama: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 18 (1986), 173-180.
- [4] J. Mawhin: Topological degree methods in nonlinear boundary value problems. CBMS Regional Confer. Ser. Math. No. 40. Amer. Math. Soc., Providence, 1979.
- [5] J. Mawhin: First order ordinary differential equations with several solutions. Z. Angew. Math. Phys. 38 (1987), 257-265.
- [6] M. Šenkyřík: Method of lower and upper solutions for a third-order three-point regular boundary value problem. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. XXXI (1992), 60-70.

Author's address: Martin Šenkyřík, Přírodovědecká fakulta UP, Tomkova 38, 771 46 Olomouc, Czech Republic;

Present address: Department of Mathematics, Oregon State University, Kidden Hall 368, Corvallis, OR 97331, U.S.A.

•