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Summary. In the paper we prove an Ambrosetti-Prodi type result for solutions u of the
third-order nonlinear differential equation, satisfying 4’'(0) = v/(1) = u(n) =0, 0 < n < 1.
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1. INTRODUCTION

In a recent paper, Fabry, Mawhin and Nkashama [3] have considered periodic
problems of the form

u' + f(z,u) = s,
u(0) — u(2rn) = u'(0) —u'(2n) =0
and have proved that if
f(z,u) > 00 as|ul > o0

uniformly in z € [0,2n], an Ambrosetti-Prodi type result [1] holds, namely, there
exists s; such that the above problem has no solution if s < s;, at least one solution
if s = 81, and at least two solutions if s > s;. A similar result holds for

u' +f(1:,u) =38,

u(0) = u(2n)

(see [5]) and the corresponding proofs rely on a combination of the techniques of
lower and upper solutions and the degree theory.
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In [2] a somewhat weakened Ambrosetti-Prodi-like [1] result is given only for the
following special case of a higher order boundary value problem (BVP):

u™ + g(u) = 5+ e(z, u),
w(0) — u(2r) = ... =« D(0) — u(*V(2n) = 0.

In this paper we prove an Ambrosetti-Prodi-like result [1] for the third-order BVP

(1), u" + f(t,u,u',u") = s,
() w(0)=u'(1)=u(n) =0, 0<n<L

This problem models the static deflection of a three-layered elastic beam.
The proofs in this chapter are based on a combination of the techniques of lower
and upper solutions and the degree theory.

2. NOTATIONS AND DEFINITIONS

lzll = max {|z(t)|, ¢ € [0,1]}.
Functions o, and 0, € C3(0,1) satisfying

> s — f(t,z,0(t), 07 (t)),
Ug’ $s-— f(ta z’aé(t)aoél(t))

for t € [0,1], z € [min{oy (t), 02(t)}, max{o, (t),02(t)}] and

o1(n) = o2(n) =0,
01(0) <0, 01(1) <0,
93(0) >0, 03(1) >0,

will be called a lower and an upper solution of the BVP (1),, (2), respectively.

By replacing the above inequalities with strict inequalities we obtain the definition
of a strict lower and a strict upper solution of the BVP (1),, (2).

The BVP (1),, (2) is equivalent to

Lu+ N,u=0,
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where

L: domL — C°(0,1), Lu = u", _
X = {z € C%(0,1), z satisfies (2)}, domL = C3(0,1) N X,
N,: X - C°(0,1), N,u= f(t,u,u’,u")—s, seR.
It can be easily proved (see [4]) that L+ N, is L-compact on Q@ (with @ the closure

of ), where 2 is an open bounded subset of X.

3. LEMMAS AND THEOREMS

Lemma 1. (On a priori estimates) Let u be a solution of (1), (2) and let ||u’'|| <
R, R € R, R > 0. Assume that for every R € R, R > 0 there exists a continuous
function hg: RY - [ag,0) (ag > 0) such that

(3) |f(t1$§ Y, Z)' < hR(IZI)

for z,y € [-R,R], t € [0,1], z € R, where

* tdt
4 —_—
@ o ha)
Then there exists r* (depending only on s, R, hg) such that

"l <r*.

Proof. Let u be a solution of (1),, (2) and ||u'|| < R. We define

* tdt

8@ = | mrG ¥l

From (4) it folows that {2 is a bijective mapping of R* onto itself. From (2) it follows
that there exists ag € (0,1) such that u”(ao) = 0. Let r* = Q~1(Q(1) + 2R) and
assume that |u"(2;)| > r*, where t; € (ao,1]. Let [a1,1] C [ao,1] be the maximal
interval containing ¢; in which |u"(t)| > 1 and let s; € (a1,b1] be such that

(5) |u"(.91)| = 01 = max {|u"(t)|: ay < t S bl}
Fl'oin (3) and (1), it follows that
(6) " = |s = f(t,u, o', 0")| < ha(lu"]) + sl
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If u”(t) > 1, then
81 uIIuHI /61
—— < u” dt.
ay h‘R(uH) + Isl h ay
The last inequality implies that Q(g;) — (1) < 2R and g; < r* which contradicts

(5). We can obtain a similar contradiction if u”(t) < —1 on [ay, s1]. For ¢; € [0, ao)
the proof is analogous. Lemma 1 is proved. O

Theorem 2. Let o1 be a lower solution and ¢, an upper solution of the BVP
(1)s, (2) and let 0} (t) < o5(t) for every t € [0,1]. If the function f satisfies (3), then
the BVP (1),, (2) has a solution u such that

o1(t) < u/(t) < oy(t) foreachte[0,1].

Proof. The theorem follows from Lemma 1 (On a priori estimates) and from
the results given in [6]. O

Remark. [6] deals with the BVP
u'" = f(t,u,u,u"), (2).
The existence of a solution u satisfying
o1(t) < u'(t) < o3(t),

where 0y, 02 is a lower and an upper solution, respectively, is proved under a more
general growth condition than (3).

Theorem 3. Let f be nonincreasing (or nondecreasing) for t € [0,17) (fort € [n, 1])
as a function of z for every fixed y,z € R. Further suppose there exist R, s; € R,
R; > 0 such that

(7 f(t,Ri(t —n),0,0) <s; forte[0,1],

and for any r; > R; the inequality

(8) 81 < f(t\, —r1(t—1),y,0) forte[0,1], y < —r1,

is valid. If the function f satisfies (3), then there exists so < s, (with the posibility

that s = —oo) such that for s < sp the BVP (1), (2) has no solution and for
8 € (80, 81] the BVP (1),, (2) has at least one solution.
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Proof. Lets* =max{f(¢0,0,0); ¢t € [0,1]}. From (7) and (8) it follows that
s* — f(t,2,0,0) > 0 and s* — f(t,z,—R1,0) < 0 for t € [0,1], z € [min{0, —Ry (¢t —
n)}, max{0, —R;(t—n)}]. From the last two inequalities we get that oy = —R;(t—7)
is a lower solution of (1),+, (2) and o2 = 0 is an upper solution of the BVP (1),.,
(2), so Theorem 2 implies that the BVP (1),., (2) has a solution.

Next we show that if the BVP (1),, (2) has a solution u for s = s < s; then
it also has a solution for s € [s,s;]. If s € [s,s] then v’ = s — f(¢,u,u’,u") and
u" < s—f(t,z,u',u") fort € [0,n],z > uorfort € [n,1], z < u. It is easily seen that
for s < s; all solutions of (1), (2) satisfy the relation —R; < u'. If v/(to) < —R; for
some tp € (0,1), then there exists t; € (0,1) such that min{u'(t), t € (0,1)} = v'(t1),
u'(t1) = 0, u"'(t1) > 0. If t; € [p,1) then v'(t;) = —r1 < —Ry, ¥'(t) > —ry for
t € [n,1) and u(t1) > —r1(ty —n). From (8) it follows that s; < f(t1,u(t1), —71,0),
u"'(t;) < 0 and this contradicts our assumption. A similar contradiction can be
obtained for ¢; € (0,7].

(8) implies that s — f(¢,z,—R1,0) < 0 for ¢t € [0,1], z € [min{u(t),—Rui(t —
1)}, max{u(t), —Ri(t — n)}]. Setting o1 = —Ry(t — n), 02 = u and using Theorem 2
we can see that the BVP (1), (2) has a solution.

Taking so = inf {s € R: (1), (2) has a solution} with sp = —oo if the BVP
(1)s, (2) has a solution for any s < s, it follows from the above discussion that
so < 8* < s; and that (1),, (2) has a solution for any s € (so,s:]. Theorem 3 is
proved. O

Lemma 4. Let @ = {z € domL: 0i(t) < z'(t) < o5(t), ||z"|| < k}, where
01 < 02, 01 is a strict lower solution and o3 is a strict upper solution of (1), (2). If
f satisfies (3) then there exists k € R such that the coincidence degree of L + N, in
) relative to L (see [4]) satisfies

dy(L+ N,y Q) = £1 (mod 2).

Proof. We define

9(t,z,y,2) = f(t,a(t,z), B(t,y),2) —y + B(t,y),
min{o,(t),02(t)}  for £ < min{oy(t),02(t)},
a(t,z) =< = for min{o,(t),02(t)} < z < max{o,(t),o2(t)},
max{o,(t),02(t)}  for z > max{o:(t),o2(t)},
o1(t) fory' <ai(t),
Bt,y) =4 v for o1 (t) <y < a3(2),
o5(t)  for y' > o5(t).
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The BVP
(9), : u"” + g(t,u, v, u") = s, (2)
~ can be written in the form of an operator equation
Lu+Gsu=0 in domlL,
where G5: X — C°(0,1), G,u =}g(t,u, u,u") —s. _
In Q the BVP (1),, (2) is equivalent to the BVP (9),, (2), the operator equation
Lu + N,u = 0 is equivalent to the operator equation Lu + G u = 0 and

di(L + G,, Q) = di(L + Ny, Q).

We define Q; = {z € domL: ||| < r*, ||Iz"|| < k}, where r* > max{||o1||, ||2|l}-
We shall prove that for A € [0, 1] every solution of the equation

(10) . Lu—(-MNIu+AGsu =0,

where Ju = v/, satisfies u ¢ 0. If ||u’ | > r*, then there exists ¢y € (0,1) such that

u'(to) 27 (or u'(to) < —1%),
u"(to) =0, |
u"(t) <0 (u"(to) > 0).

If r* is large enough, then

f(t,a(t,z),01,0) —s+7r*+07 >0 and
f(t,a(t,z),05,0) —s—1* +05 <0 forz€R, tel0,1].

For o/ (to) < =r* we obtain

- u"(to) — (1 =)' (to) + A_(f (o, a(to, u(to), 01 (t0),0) — s — u'(to) + .01 (to))) =0.
It follows from the last equality that u"'(to) < 0 which contradicts u"(tg) > 0. A
similar contradiction can be obtained if we suppose that u'(to) > r*. We have proved

that ||u’|| < r*. Since (3) is valid we get the inequality

- (1= Ny = A(£(t,a(t,2),B(t,9),2) - s =y + BEw))| < hallzl) + 2 +1s]
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for y < r*, and

/°° sds " 1 *® sds = oo
o FrG)+er +1s] © 11 228 Jo ha(s)

The last inequality implies that we can use Lemma 1 and for k large enough also
[lw”]l < k is satisfied. .

For A = 0 the equation (10) has only the trivial solution and dr (L — I,;) = +1
(mod 2). By the property of invariance under a homotopy we obatain dp (L +
Gs,1) = £1 (mod 2). Next we prove that every solution u of the equation Lu +
Gsu = 0 satisflesu € @ C Q. If u'(t1) > o5(t1) for some t; € (0,1) then there exists
an interval (a,b) C (0,1), t; € (a,bd), u'(t) > o4(t) for t € (a,b) and u'(a) = o5(a),
u'(b) = o5(b). This implies that there exists t; € (a,b) such that

u,(t2) > a;(t2)7
u’(t2) = 03 (ta),
uIII (t2 ) lll (tg )

Since u is a solution of (9) and o3 is a strict upper solution of (1),, (2), it follows
that

u"(t2) + f(t»a(tz, (t2),05(t2), 05 (t2) )) - s —u'(ts) +02(t2) =0,
u”’(t ) > a_lll(t )
This contradicts the inequality u''(t2) < 05'(t2). If u'(t) < o5(t) for t € (0,1)

and there exists t3 € (0,1) such that u'(t3) = o5(t3) then u”(t3) = o4 (t3) and
u"'(t3) < 04'(t3). This implies that

u"(ta) +  (ts, a(ts, ults), o ts), 05 23)) ) = s =

and since o3 is a strict upper solution of (9) we obtain u"’(t3) > o%'(t3). This
contradicts u"’'(t3) < a4’ (t3).

It is possible to prove in a similar way that u/(t) > o} (t) for every possible solution
u of the equation Lu + G,u = 0 and for every ¢ € [0, 1].

By using the excision property of the degree we obtain

(L + G4, Q) = £1 (mod 2)

and, finally,
dr(L + N,,Q) = £1 (mod 2).

Lemma 4 is proved. (]
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Theorem 5. Let us suppose that the assumptions of Theorem 3 are fulfilled.
Moreover, suppose that there exists M(s;) € R such that for s < s; any solution of
the BVP (1),, (2) satisfies the inequality

(11) u'(t) < M(s1) forte|[0,1]
and that there exists a € R such that
(12) ft,z,y,2) 2 a

for t € [0,1], z € [min{—Ry(t — n), M(s1)(t — )}, max{—Ry(t — n), M(s1)(t —n)}],
y € [-R1,M(s1)], z € R. Then the number s provided by Theorem 3 is finite and
for s < sg the BVP (1),, (2) has no solution,
for s = so the BVP (1),, (2) has at least one solution,
for s € (39, s1] the BVP (1), (2) has at least two solutions.

Proof. First we prove that sp is finite. Let u be a solution of (1),, (2). From
(1)s it follows that u" < s — . From (2) it follows that

u”(t) > i(a —s) forte[0,f] or

1
u’(t) < Z(s —a) forte[3,1].

If we take s such that 23* > M(s;) we obtain a contradiction to (10).

Let s € (s0,81) and let u be a solution of the BVP (1),, (2) for s =s. We can
assume that R; < |M(s1)|.

Let @ = {z € X: [z < [M(s1)], llz')ll < M (s1)l, llz" ()l < o}, where g is
taken sufficiently large. Since the BVP (1),, (2) has no solution for s_; < so, it is a
consequence of the basic properties of the degree that

(13) d(L+N,_,, ) = 0.

On the other hand, for s < s; all solutions of (1), (2) satisfy the inequality ||Ju’|| <
|M(s1)|. If o is large enough and s € [s—1,$;] then we have ||u”|| < g for all
solutions of (1), (2) (the bound given by Lemma 1 can be taken independent of s
for s € [s_1,81]). From the properties of the degree and from (13) it follows that
dr(L + Ng, Q) =0 for s € [s—-1,81] D (S0,381]

Let Q. = {z € X: ||z@t)|| < |M(s1)|, =|M(s1)] < 2'(t) < v/(t) +efort €
[0,1], lIlz"(®)ll < e}, where u(t) is a solution of (1),, (2) for s = s € (so,51) and
u(t) = u(t) + e(t —n). For s € (s,s1] it is possible (because f is continuous) to
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take £ such that ||u’|] < |M(s1)| and u(t) is a strict upper solution of (1)s, (2).
—|M (s1)|(t — m) is a strict lower solution of (1),, (2). Accordmg to Lemma 5 for
s € (s,51] we have

(14) dr(L + N,,,) = £1 (mod 2).
From the additivity property of the degree it follows that
(15) dp(L+ N, — Q,) = £1 (mod 2)

for s € (s, s1]. Relations (14), (15) imply the existence of a solution of the BVP (1),,
(2) in Q. and in Q; — Q.. Since s is arbitrary in (so,s1), the BVP (1),, (2) has at
least two solutions for s € (so, s1].

Now we prove that (1)s, (2) has a solution for s = sp. Let us take a sequence
{sn}52,, where s, € (so,s1], n € N, 11m Sn = So. We know that for any s, (1)s,
(2) has a solution u, satisfying ||un|| < |M(31)| [lul ]l < |M(sl)|, and according to
Lemma 1 we get ||ul|| < o for g large enough. Since u, is a solution of (1),,, (2)
the sequence {u;’}32, is bounded in C°(0,1). By the Arzela-Ascoli lemma we can
suppose that {u,}32; converges in C2%(0,1) to a solution of (1), (2). Theorem 5 is
proved. _ O
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