

Werk

Label: Article **Jahr:** 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0103|log48

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON THE EXISTENCE OF SOLUTIONS OF THE n-TH ORDER NON-LINEAR DIFFERENTIAL EQUATION WITH DELAY

JÁN FUTÁK, Žilina (Received May 25, 1976)

In paper [2], the existence theorem for a non-linear differential equation of the fourth order with delay is proved by means of Schauder-Tychonoff fixed point theorem.

In this paper several assertions from [3] are generalized to the differential equation (1). The method from [2] is used to prove Theorem 1.

Consider a differential equation of the n-th order with delay of the form

(1)
$$y^{(n)}(t) + \sum_{k=0}^{n-1} r_k(t) y^{(k)}(t) = f(t, y(t), ..., y^{(n-1)}(t), y[h(t)], ..., y^{(n-1)}[h(t)]),$$

where $n \ge 2$ is a natural number. Let the following conditions be fulfilled:

- (a) $r_k \in C(J \equiv [t_0, \infty), R), k = 0, 1, ..., n 1,$ (b) $h \in C(J, R), h(t) \le t,$
- (c) $f(t, v_1, ..., v_n, u_1, ..., u_n) \in C(D \equiv J \times R^{2n}).$

Let $\Phi(t) = {\Phi_0(t), \Phi_1(t), ..., \Phi_{n-1}(t)}$ be a vector-function defined and continuous on the initial set

$$E_{t_0} = \left(\inf_{t \in I} h(t), t_0\right].$$

If $\inf h(t) = \min h(t)$, $t \in J$, then $E_{t_0} = [\inf_{t \in J} h(t), t_0]$.

Initial Problem. Find a solution y(t) of the differential equation (1) on the interval J which fulfils the initial conditions

(2)
$$y^{(k)}(t_0+) = \Phi_k(t_0) = y_0^{(k)}, \quad y^{(k)}[h(t)] \equiv \Phi_k[h(t)], \quad h(t) < t_0,$$
$$k = 0, 1, ..., n-1.$$

Let $x_i(t)$, j = 0, 1, ..., n - 1 be the solutions on J of the differential equation

(3)
$$x^{(n)}(t) + \sum_{k=0}^{n-1} r_k(t) x^{(k)}(t) = 0$$

which fulfil the initial conditions

(4)
$$x_j^{(k)}(t_0) = \delta_{jk} = \begin{cases} 0, & j \neq k, \\ 1, & j = k, \end{cases}$$
 $j, k = 0, 1, ..., n-1.$

Then every solution $x(t) = \sum_{j=0}^{n-1} C_j x_j(t)$ of (3) where C_j are real numbers satisfies $x^{(k)}(t_0) = C_k$, k = 0, 1, ..., n-1.

Remark 1. The Wronskian W(t) of solutions $x_i(t)$, j = 0, 1, ..., n - 1 satisfies

$$W(t) = \exp\left\{-\int_{t_0}^t r_{n-1}(s) \, \mathrm{d}s\right\}.$$

For the sake of brevity we shall further write W(t) only. Denote

(5) $W_{k}(t,s) = \begin{vmatrix} x_{0}(s), & x_{1}(s), & \dots, x_{n-1}(s) \\ x'_{0}(s), & x'_{1}(s), & \dots, x'_{n-1}(s) \\ \vdots & \vdots & \vdots \\ x_{0}^{(n-2)}(s), & x_{1}^{(n-2)}(s), & \dots, x_{n-1}^{(n-2)}(s) \\ x_{0}^{(k)}(t), & x_{1}^{(k)}(t), & \dots, x_{n-1}^{(k)}(t) \end{vmatrix}, \quad k = 0, 1, \dots, n-1.$

Evidently $W_k(t,s) = \partial^k W_0(t,s)/\partial t^k$ for every $t, s \in J$, $s \le t, k = 1, 2, ..., n-1$ We define

(6)
$$D(s) = \max \{ |W_{k0}(s)|, |W_{k1}(s)|, ..., |W_{kn-1}(s)| \}, \quad s \in J,$$

k = 0, 1, ..., n - 1, where $K_{ki}(s)$, i = 0, 1, ..., n - 1 are determinants obtained from $W_k(t, s)$ by omitting the *i*-th column and the *n*-th row.

We define further

$$C = \sum_{j=0}^{n-1} |C_j|$$

and

(7)
$$\alpha_k(t) = \max \{ |x_0^{(k)}(t)|, |x_1^{(k)}(t)|, ..., |x_{n-1}^{(k)}(t)| \}, \quad t \in J,$$

where $x_j(t)$, j = 0, 1, ..., n - 1 are the solutions of (3) fulfilling the conditions (4). From (6) and (7) it is evident that the functions $\alpha_k(t)$, k = 0, 1, ..., n - 1 and D(t) are continuous on J.

Because $\alpha_k(t_0) = 1$, we put $\alpha_k(t) \equiv 1$ for $t \in E_{t_0}$, k = 0, 1, ..., n - 1. Denote

(8)
$$\beta_{k}(t) = \begin{cases} \max \{\alpha_{k}(t), \alpha_{k}[h(t)]\}, & t \in J, \\ \alpha_{k}(t) \equiv 1, & t \in E_{t_{0}}, \end{cases} \quad k = 0, 1, ..., n-1.$$

Remark 2. If the functions $\alpha_k(t)$ are nondecreasing, then $\beta_k(t) = \alpha_k(t)$.

Theorem 1. Let the conditions (a)-(c) be fulfilled and let there exists a constant $\lambda > 0$ such that

(9)
$$|\Phi_k(t)| \leq \lambda, \quad k = 0, 1, ..., n-1, \quad t \in E_{t_0}.$$

Further suppose that there exists a function $\omega(t, r_1, ..., r_n, z_1, ..., z_n)$ defined and continuous for $t \in J$ and $0 \le r_1, ..., r_n, z_1, ..., z_n < \infty$, which fulfils the following conditions:

- (i) for every $t \in J$ $\omega(t, r_1, ..., r_n, z_1, ..., z_n)$ is non-negative and non-decreasing in all the other arguments;
- (ii) $|f(t, v_1, ..., v_n, u_1, ..., u_n)| \le \omega(t, |v_1|, ..., |v_n|, |u_1|, ..., |u_n|)$ on D;

(iii)

(10)
$$\int_{t_0}^{\infty} \frac{\prod_{k=0}^{n-2} \alpha_k(t)}{W(t)} \omega(t, \beta_0(t) \lambda, ..., \beta_{n-1}(t) \lambda, \beta_0(t) \lambda, ..., \beta_{n-1}(t) \lambda) dt < \frac{\lambda - C}{n!}.$$

Then every solution y(t) of the initial problem (1), (2) which fulfils the conditions

(11)
$$\sum_{k=0}^{n-1} |y_0^{(k)}| = \sum_{k=0}^{n-1} |C_k| = C < \lambda$$

exists on J and satisfies

(12)
$$|y^{(k)}(t) - x^{(k)}(t)| < \beta_k(t)(\lambda - C), \quad k = 0, 1, ..., n - 1,$$

where $x(t) = \sum_{j=0}^{n-1} C_j x_j(t)$ is the solution of (3) with $C_j = y_0^{(j)}$ (cf. (2) and (11)).

Proof. Let Y_{n-1} be the space of functions y(t) which have n-1 continuous derivatives on $E_{t_0} \cup J$. Let $\{I_l\}_{l=1}^{\infty}$ be a sequence of compact intervals such that $\bigcup_{l=1}^{\infty} I_l = J$, where $I_l = [t_0, t_l]$ and $I_l \subset I_{l+1} \subset J$ for every l.

Define in the space Y_{n-1} a system of seminorms

$$R_{l}(y) = \max_{k=0,1,...,n-1} \left\{ \sup_{t \in E_{t_0} \cup I_1} |y^{(k)}(t)| \right\}.$$

This system of seminorms induces a local by convex topology on Y_{n-1} and therefore the space Y_{n-1} is local by convex.

Consider a subset $F \subset Y_{n-1}$ defined as follows:

$$F = \{ y \in Y_{n-1}, |y^{(k)}(t)| \le \lambda \beta_k(t), k = 0, 1, ..., n-1, t \in E_{t_0} \cup J \},$$

where $\beta_k(t)$ are defined in (8).

Define for $y \in F$ an operator T:

(13)
$$(Ty)^{(k)}(t) = \Phi_k(t), \quad t \in E_{t_0}, \quad k = 0, 1, ..., n-1,$$

$$(Ty)^{(k)}(t) = x^{(k)}(t) + \int_{t_0}^t \frac{W_k(t,s)}{W(s)} f(s, y(s), ..., y^{(n-1)}(s), y[h(s)], ..., y^{(n-1)}[h(s)]) ds,$$

$$k = 0, 1, ..., n-1, \quad t \in J,$$

where x(t) is a solution of (3).

- a) It is obvious that F is a convex closed set.
- b) We show that $TF \subset F$.

For $t \in E_{t_0}$ we obtain with regard to (9)

$$|(Ty)^{(k)}(t)| = |\Phi_k(t)| \le \lambda = \lambda \beta_k(t), \quad k = 0, 1, ..., n-1.$$

Since (5) implies the estimate

$$|W_k(t,s)| \leq n! \alpha_k(t) \prod_{l=0}^{n-2} \alpha_l(s),$$

we obtain for $t \in J$ from (13)

$$|(Ty)^{(k)}(t)| \leq |x^{(k)}(t)| + \int_{t_0}^{t} \frac{|W_k(t,s)|}{W(s)} |f(s, y(s), ..., y^{(n-1)}(s),$$
$$y[h(s)], ..., y^{(n-1)}[h(s)])| ds \leq$$

$$\leq \alpha_{k}(t) \left[C + n! \int_{t_{0}}^{\infty} \frac{\prod_{l=0}^{n-2} \alpha_{l}(t)}{W(t)} \omega(t, \beta_{0}(t)\lambda, ..., \beta_{n-1}(t)\lambda, \beta_{0}(t)\lambda, ..., \beta_{n-1}(t)\lambda) dt \right] \leq \alpha_{k}(t) \left[C + n! \frac{(\lambda - C)}{n!} \right] \leq \alpha_{k}(t)\lambda \leq \beta_{k}(t)\lambda.$$

c) We show that T is continuous.

Let $\{y_j^{(k)}\}_{j=1}^{\infty}$, k = 0, 1, ..., n-1, $y_j \in F$ be a sequence which converges to $y^{(k)}$, k = 0, 1, ..., n-1, $y \in F$ uniformly on every compact subinterval of J.

Let $I_l = [t_0, t_l]$ be an arbitrary compact interval from J and let $\varepsilon > 0$ be given. We show that $(Ty_j)^{(k)}(t) \rightrightarrows (Ty)^{(k)}(t), k = 0, 1, ..., n-1$ provided $t \in I_l$.

Denote

$$A_k = \max_{t \in [t_0, t_1]} \alpha_k(t), \quad k = 0, 1, ..., n - 1.$$

As the function f is continuous and $y_j^{(k)}
ightharpoonup y^{(k)}$, k = 0, 1, ..., n - 1 holds on every compact interval I_i , there exists such M > 0 that for $j \ge M$

(14)
$$\frac{\prod_{k=0}^{n-2} \alpha_k(t)}{W(t)} | f(t, y_j(t), ..., y_j^{(n-1)}(t), y_j[h(t)], ..., y_j^{(n-1)}[h(t)]) -$$

$$- f(t, y(t), ..., y^{(n-1)}(t), y[h(t)], ..., y^{(n-1)}[h(t)]) | <$$

$$< \frac{\varepsilon}{A_k(t_l - t_0) n!}, \quad k = 0, 1, ..., n - 1, \quad t \in I_l.$$

From (13) with regard to (14) we obtain for $t \in I_1$ and $j \ge M$

$$|(Ty_{j})^{(k)}(t) - (Ty)^{(k)}(t)| \leq \alpha_{k}(t) n! \int_{t_{0}}^{t} \frac{\prod_{i=0}^{n-2} \alpha_{i}(s)}{W(s)} |f(s, y_{j}(s), ...$$
..., $y_{j}^{(n-1)}(s)$, $y_{j}[h(s)]$, ..., $y_{j}^{(n-1)}[h(s)]$) $-f(s, y(s), ...$
..., $y^{(n-1)}(s)$, $y[h(s)]$, ..., $y^{(n-1)}[h(s)]$) $ds < \frac{A_{k}n! \, \varepsilon}{A_{k}(t_{l} - t_{0}) \, n!} \int_{t_{0}}^{t} ds \leq \frac{\varepsilon(t - t_{0})}{(t_{l} - t_{0})} \leq \frac{\varepsilon(t_{l} - t_{0})}{(t_{l} - t_{0})} = \varepsilon$.

d) We show that \overline{TF} is a compact set. The assertion a) implies

$$|(Ty)^{(k)}(t)| \le \beta_k(t) \lambda, \quad k = 0, 1, ..., n-1, \quad t \in E_{t_0} \cup J.$$

If we choose k = n - 1 in (13) and differentiate, we obtain

$$(Ty)^{(n)}(t) = x^{(n)}(t) + \int_{t_0}^t \frac{W_n(t,s)}{W(s)} f(s,y(s),...,y^{(n-1)}(s),y[h(s)],...$$

...,
$$y^{(n-1)}[h(s)]$$
 ds + $f(t, y(t), ..., y^{(n-1)}(t), y[h(t)], ..., y^{(n-1)}[h(t)])$,

where

$$W_n(t,s) = \begin{vmatrix} x_0(s), & x_1(s), & \dots, x_{n-1}(s) \\ x'_0(s), & x'_1(s), & \dots, x'_{n-1}(s) \\ \vdots & \dots & \vdots & \dots \\ x_0^{(n-2)}(s), & x_1^{(n-2)}(s), & \dots, x_{n-1}^{(n-2)}(s) \\ x_0^{(n)}(t), & x_1^{(n)}(t), & \dots, x_{n-1}^{(n)}(t) \end{vmatrix}.$$

The last equality yields for $t \in J$ the estimate

$$|(Ty)^{(n)}(t)| \leq |x^{(n)}(t)| + \int_{t_0}^{t} \frac{|W_n(t,s)|}{W(s)} \omega(s,\beta_0(s)\lambda,...,\beta_{n-1}(s)\lambda,\beta_0(s)\lambda,...,\beta_{n-1}(t)\lambda,\beta_0(t)\lambda,...,\beta_{n-1}(t)\lambda,$$
..., $\beta_{n-1}(s)\lambda$) ds + $\omega(t,\beta_0(t)\lambda,...,\beta_{n-1}(t)\lambda,\beta_0(t)\lambda,...,\beta_{n-1}(t)\lambda)$,

which implies that $(Ty)^{(n)}(t)$ is bounded on I_l . Thus have obtained the uniform boundedness of $(Ty)^{(k)}(t)$, k = 0, 1, ..., n on $E_{t_0} \cup I_l$, hence the equicontinuity of $(Ty)^{(k)}(t)$, k = 0, 1, ..., n - 1 on $E_{t_0} \cup I_l$. Therefore \overline{TF} is a compact set.

With regard to the Schauder-Tychonoff fixed point theorem, the operator T has at least one fixed point in F satisfying

(15)
$$(Ty)^{(k)}(t) = y^{(k)}(t), \quad k = 0, 1, ..., n-1.$$

The assertion (12) follows now from (13) by virtue of (15) and (10). The proof of Theorem 1 is complete.

Theorem 2. Let the assumptions from Theorem 1 hold with the condition (10) replaced by

$$\int_{t_0}^{\infty} \frac{D(t)}{W(t)} \omega(t, \beta_0(t) \lambda, ..., \beta_{n-1}(t) \lambda, \beta_0(t) \lambda, ..., \beta_{n-1}(t) \lambda) dt < \frac{\lambda - C}{n}.$$

Then every solution y(t) of the initial problem (1), (2) which fulfils (11) exists on J and satisfies (12) with x(t) from Theorem 1.

Proof proceeds as that of Theorem 1, only we use (6) to estimate $W_k(t, s)$.

Lemma 1. Let (a) – (c) hold. Let $[t_0, T)$ be the maximal interval of a solution y(t) of the initial problem (1), (2) and let the functions $y^{(k)}(t)$, k = 0, 1, ..., n - 1 be bounded on $[t_0, T)$. Let moreover $\Phi(t)$ be bounded on E_{t_0} . Then $T = \infty$. The proof can be found in [3].

Lemma 2. Let $\gamma(t)$, a(t), F(t), q(t) be functions belonging to the class $C([t_0, b), [0, \infty))$ and let a function $\omega(z) \in C([0, \infty), (0, \infty))$ be non-decreasing. Denote

(16)
$$\Omega(z) = \int_{z_0}^z \frac{1}{\omega(s)} ds, \quad z_0 > 0, \quad z \ge 0.$$

Let $z(t) \in C([t_0, b), [0, \infty))$ satisfy the relation

(17)
$$z(t) \leq \gamma(t) + a(t) \int_{t_0}^t F(s) q(s) \omega[z(s)] ds, \quad t_0 \leq t < b.$$

Then we have for every $t \in [t_0, b)$

(18)
$$z(t) \leq \Omega^{-1} \left\{ \Omega[\Gamma(t)] + A(t) \int_{t_0}^t F(s) \, q(s) \, \mathrm{d}s \right\},$$

where Ω^{-1} is the inverse function to (16), $\Gamma(t) = \max_{t_0 \le s \le t} \gamma(s)$ and $A(t) = \max_{t_0 \le s \le t} a(s)$, $t \in [t_0, b)$.

Proof. Define a function Z(t) on the interval $[t_0, b)$ by the relation $Z(t) = \max_{t_0 \le s \le t} z(s)$. It is evident that Z(t) is a continuous, non-negative and non-decreasing function. With respect to the properties of $\omega(z)$, we obtain from (17) that

$$z(t) \leq \Gamma(t) + A(t) \int_{t_0}^t F(s) \ q(s) \ \omega[Z(s)] \ ds.$$

Let $\bar{t} \in [t_0, t]$ be a point at which z(t) assumes its maximum on $[t_0, t]$. Then

$$Z(t) = z(\bar{t}) \le \Gamma(\bar{t}) + A(\bar{t}) \int_{t_0}^{\bar{t}} F(s) \, q(s) \, \omega[Z(s)] \, \mathrm{d}s \le$$
$$\le \Gamma(t) + A(t) \int_{t_0}^{\bar{t}} F(s) \, q(s) \, \omega[Z(s)] \, \mathrm{d}s .$$

If we apply the Bihari lemma (see [1]) to the last inequality, we conclude

$$Z(t) \leq \Omega^{-1} \left\{ \Omega \big[\Gamma(t) \big] + A(t) \int_{t_0}^t F(s) \, q(s) \, \mathrm{d}s \right\}.$$

Since $z(t) \leq Z(t)$, (18) holds.

Theorem 3. Let the assumptions (a)-(c) be fulfilled. Moreover, let

- (i) $\psi(t) \in C(J, [0, \infty));$
- (ii) the function $\omega(z) \in C([0, \infty), (0, \infty))$ be non-decreasing and

$$\int_{t_0}^{\infty} \frac{\mathrm{d}s}{\omega(s)} = \infty;$$

(iii)
$$|f(t, v_1, ..., v_n, u_1, ..., u_n)| \le \psi(t) \omega(|v_1|),$$

for every point $(t, v_1, ..., v_n, u_1, ..., u_n) \in D$.

Then every solution y(t) of the initial problem (1), (2) exists on J and fulfils the inequality

(19)
$$|y(t)| \leq \Omega^{-1} \left\{ \Omega \big[\Gamma(t) \big] + A(t) \int_{t_0}^t \frac{D(s)}{W(s)} \psi(s) \, \mathrm{d}s \right\},$$

where Ω , Ω^{-1} have the meaning from Lemma 2, $\Gamma(t) = \max_{t_0 \le s \le t} |x(s)|$, $A(t) = \max_{t_0 \le s \le t} \alpha_0(s)$, $x(t) = \sum_{j=0}^{n-1} C_j x_j(t)$ is the solution of (3) with $C_j = y_0^{(j)}$ (cf. (2) and (11)), $\alpha_0(s)$ is defined in (7) and D(s) in (6).