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Casopis pro péstovani matematiky, rot. 103 (1978), Praha

ON THE EXISTENCE OF SOLUTIONS OF THE »-TH ORDER
NON-LINEAR DIFFERENTIAL EQUATION WITH DELAY

JAN FutAk, Zilina
(Received May 25, 1976)

In paper [2], the existence theorem for a non-linear differential equation of the
fourth order with delay is proved by means of Schauder-Tychonoff fixed point
theorem.
 In this paper several assertions from [3] are generalized to the differential equation

(1). The method from [2] is used to prove Theorem 1.

Consider a differential equation of the n-th order with delay of the form

() 590 + 20 ) = 1050, 00 STHOL O LHOD,

where n = 2 is a natural number. Let the following conditions be fulfilled:

(@) e C(J = [to, ©),R), k=0,1,...,n — 1,
(b) he C(J, R), h(t) < t,
(¢) f(t, 045 ..., 0 g, ..., u,) e C(D = J x R?").

Let ®(t) = {®(1), ®y(2), ..., ®,—4(t)} be a vector-function defined and continuous
on the initial set

E'O = (il‘lf h(t), to] .
teJ
If inf h(f) = min h(t), t e J, then E,, = [ inf h(t), t,].
teJ

Initial Problem. Find a solution y(f) of the differential equation (1) on the
interval J which fulfils the initial conditions

2) YO(to+) = B(to) = y5*, yULh()] = aW[A()], h(f) < to,
k=0,1,..,n—1.

Let x,(t), j=0,1,...,n — 1 be the solutions on J of the differential equation
n—1
(3) x0(t) + 3 nlt) xB(t) = 0
k=0
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which fulfil the initial conditions

1, j=k,

n—1

Then every solution x(t) = ), C; x(f) of (3) where C; are real numbers satisfies
i=0

@ .xgk)(‘0)=5jk={0’ S+ s jk=0,1,....,n—1.

x(k)(to)=ck, k=0,1,...,n—1.

Remark 1. The Wronskian W(r) of solutions x(1), j = 0,1,...,n — 1 satisfies

W) = exp{— j ;r,,_l(s) ds}.

For the sake of brevity we shall further write W(t) only.
Denote
xo(8)y  x((s)y ..o Xp—y9)

xo(s), {c'l(s), oo .X.T:,__ 1(s)

: : ’
xg'_z)(S), x(l"_Z)(s)’ s XS."—_IZ)(S)
D0, X0, .o x,(1)

Evidently W(1,s) = 0"Wy(t, s)[or* for every t, seJ, s<t, k=1,2,...,n—1
We define
© Ds) = max {|Wicls)] [l o [Wous O} 5€

k=0,1,...,n — 1, where K,“-(s), i=0,1,...,n — 1 are determinants obtained
from W,(t, s) by omitting the i-th column and the n-th row.
We define further

5)  Wilts) = k=01,...n—1.

n—1
C =3 |c)
ji=0
and
() a(t) = max {[xP()], X)), ..., X2}, ted,

where x,(t), j = 0,1, ..., n — 1 are the solutions of (3) fulfilling the conditions (4).
From (6) and (7) it is evident that the functions a(f), k = 0,1, ...,n — 1 and D(t)
are continuous on J.
Because o(t,) = 1, we put o(f) = 1 forte E,;, k =0,1,...,n — 1.
Denote

_ fmax{a(2), a[R(1)]}, ted, , 3
(8) ﬁk(t)_{ak(t)ﬁ 1’ tEE,o, k—0, 1,...," 1.
Remark 2. If the functions o,(t) are nondecreasing, then Bi(t) = o4(t).
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Theorem 1. Let the conditions (a)—(c) be fulﬁlled and let there exists a constant
A > 0 such that

) |D(t) =X, k=0,1,...,n =1, teE,.

Further suppose that there exists a function @(t,ry, ...,y Zy, ..., 2,) defined
and continuous for teJ and 0 S ry, ..., 1y 245 ..., 2, < 00, which fulfils the fol-
lowing conditions:

(i) for every te J w(t,ry, ..., 1, 2y, ..., 2,) is non-negative and non-decreasing
in all the other arguments;

(@) [ £t D15 cor Ops Wgs s )] S @8, [0g]s s J0)s g5 - o5 [10]) om0 D

(iii)

0 n—2
l—.[ak(t) Ar—C
) 0 a(t, Bo(t) s .oy Bumr () Ay Bo(D) A, ..., Buoi(f)A) dE < .

(10)

to

Then every solution y(t) of the initial problem (1), (2) which fulfils the conditions

n— n

1 -
(1) ) = Scd - ¢ <a
exists on J and satisfies
(12) ly®(@) — xP@1)] < ()X = C), k=0,1,....,n -1,
where x(t) = Z C; x,(1) is the solution of (3) with C; = y§” (cf. (2) and (11)).
Proof. Let Y,_; be the space of functions y(f) which have n — 1 continuous
derivatives on E, u J. Let {I,};2; be a sequence of compact intervals such that
U1, = J, wherel, = [to, ;] and I, = I,,, < J for every L.
=1

Define in the space Y,_; a system of seminorms

RO) =, max { sup [y}

nlte,ou,

This system of seminorms induces a local by convex topology on Y,_; and therefore
the space Y,_, is local by convex.
Consider a subset F < Y,_, defined as follows:

={yeYoy, pP0) M), k=0,1,...,n — 1, te E, L J},

where (1) are defined in (8).
Define for y € F an operator T:

(13) (TyY)®(t) = ©(1), teE,, k=0,1,...,n—1,
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(T)®() = x9() + [ %S)S) F(5 9(5)s +ves 37 (), YIAG)] s -es y*D[A(5)]) ds
k=0,1,...,n—-1, teld,
where x(f) is a solution of (3).

a) It is obvious that F is a convex closed set.
b) We show that TF < F.

For t € E,, we obtain with regard to (9)
[(Ty)® (1) = |@(r)] A =2B(t), k=0,1,....,n—1.

Since (5) implies the estimate

Wit, )| < ! ak(t):.lj:a,(s),

we obtain for te J from (13)

(T)® ()] = [x®)] + J. L9 s, () ..o v,

w(s)
JHE oy DLW ds

o n—2
a(t)
Sa)|C+n | E—oat, Bo(DN, .., Bues()A, Bo(D A, ..., Bay() M) dE | <

w(1)

< wlt) [C + n! ()";——'C—)] S g()h = B

¢) We show that T'is continuous.
Let {y"},, k=0,1,...,n — 1, y;e F be a sequence which converges to y*,
k=0,1,...,n — 1, y € F uniformly on every compact subinterval of J.
Let I; = [to, t;] be an arbitrary compact interval from J and let ¢ > 0 be given.
We show that (Ty;)® (1) 3 (Ty)® (1), k =0, 1,...,n — 1 provided t eI,
Denote
A, = max o), k=0,1,...,n—1.
te[to,1;] )
As the function f is continuous and y{® = y®, k = 0, 1,...,n — 1 holds on every
compact interval I, there exists such M > 0 that for j = M
n—-2
[Ta)

19 0 O] 0D -
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— f(t, y(2)s s YO O(), Y[R, - YO O[R(])] <

€

<——, k=0,1,..,n—-1, tel,.
Ak(tl—to)n!

From (13) with regard to (14) we obtain for tel,and j 2 M

t n—Za()

[(Ty)® (1) = ()@ ()] = () mt | 2 v‘;,() |7(s, y(5), --

to

), BT, s v OTHED) = £ (6) -
Y (), YA ooy O[] ds < AL j ds <

At = to) n!

<&t —to) _ ety = to)

- (ts — to) - (t — 1)

d) We show that TF is a compact set. The assertion a) implies

=é&.

[(TY)® (1) < B()A, k=0,1,...,n—1, teE,UJ.
If we choose k = n — 1 in (13) and differentiate, we obtain

W1, 5)
w0 W(s)

(Ty)™ (1) = x*(1) + _[ J(s, ¥()s s () yIA(S)], -

-’ YO~ OLh(s)]) ds + £(t, YD) ..o y* ), Y[AO)], ..., y*~O[R()]) ,

where

xo(s),  x4(s), cees Xp—1(5)
x{,(s) x’l(s) iy ,', 1)
W) =] | coive® sivimsnn I swss
3530, 2056) ey |
""(t) (")(t) "" W(1)

The last equality yields for t € J the estimate

|(Ty)® (1)) < |x®(1)| + .[ LACD) (s, Bo(S) Ay - -5 Ba=1(5) A Bo(5)As ...

o WO
vos Bam1(8)N) ds + a(t, Bo() N, ..., Buz1(D) Ay Bo(B) A, - ..y Bu-a(D) D),
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which implies that (Ty)™ (1) is bounded on I, Thus have obtained the uniform
boundedness of (Ty)* (1), k =0,1,...,n on E, ulI, hence the equicontinuity
of (Ty)® (), k-=0,1,...,n — 1 on E,, U I,. Therefore TF is a compact set.

With regard to the Schauder-Tychonoff fixed point theorem, the operator T has
at least one fixed point in F satisfying

(15) (T)® (1) = y94), k=0,1,...,n—1.

The assertion (12) follows now from (13) by virtue of (15) and (10). The proof
of Theorem 1 is compiete.

Theorem 2. Let the assumptions from Theorem 1 hold with the condition (10)
replaced by
D(t A=C
W(()) 0t B s Boes() s Bl B (DR) 01 < 2E

Then every solution y(t) of the initial problem (1), (2) which fulfils (11) exists
on J and satisfies (12) with x(t) from Theorem 1.

Proof proceeds as that of Theorem 1, only we use (6) to estimate W(t, s).
Lemma 1. Let (a)—(c) hold. Let [t,, T) be the maximal interval of a solution y(t)
of the initial problem (1), (2) and let the functions y*®(t), k =0,1,...,n — 1 be

bounded on [t,, T). Let moreover ®(t) be bounded on E,,. Then T = 0.
The proof can be found in [3].

Lemma 2. Let y(t), a(t), F(t), q(t) be functions belonging to the class C([t,, b),

[0, ©)) and let a function w(z)e C([0, x), (0, ©)) be non-decreasing.
Denote:

(9 o) - [ L
Let z(t) € C([to, b), [0, )) satisfy the relation

(17) (1) £ (1) + a(i) I : F() a(s) o[(s)] ds, to <1< b.

, 20>0, z=0.

Then we have for every t € [to, b)
(18) () s @ {g[r(t)] + A() j F(s) a(s) ds},

where Q™' is the inverse function to (16), I'(f) = max y(s) and A(f) = max a(s)
toSsst

tosSss
te[to, b).
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Proof. Define a function Z(f) on the interval [y, b) by the relation Z(f) =

= max z(s). It is evident that Z(r) is a continuous, non-negative and non-decreasing
toSs=<t

function. With respect to the properties of w(z), we obtain from (17) that
t
2(1) S I(t) + A(1) j F(s) a(s) w[Z(s)] ds -
to
Let f € [to, t] be a point at which z() assumes its maximum on [t,, ]. Then

2() = (1) < I'G) + AQ) J’ " F(s) a(s) w[2(5)] ds =

to
t
< I(t) + A(t)f F(s) als) o 2(s)] ds -
to
If we apply the Bihari lemma (see [1]) to the last inequality, we conclude

Z() < - {g[r(:)] + A1) I "F(s) a(s) ds}.
Since z(t) < Z(1), (18) holds.

Theorem 3. Let the assumptions (a)—(c) be fulfilled. Moreover, let
(i) ¥(1) e C(7, [0, 0));

(ii) the function w(z) e C([0, ), (0, )) be non-decreasing and

[
to (D(S) ,

(iii) £t 015 s tms 11, oy )] S (1) (]0a])

for every point (t, vy, ..., Up, g, ..., U,) € D.

Then every solution y(t) of the initial problem (1), (2) exists on J and fulfils the
inequality

19) o) < 7 {atro] + 40 [ Z3#000s.
where Q, @~* have the meaning from Lemma 2, I(t) = max |x(s)|, Af) = max ao(s),

x(1) =u§C 1 x,(t) is the solution of (3) with C; = y§’ (cf. (2) and (11)), ao(s) is defined
=0
in (7) and D(s) in (6).
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