

Werk

Label: Abstract

Jahr: 1959

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0084|log81

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON A CLASS OF *l*-GROUPS

JÁN JAKUBÍK, Košice (Received March 24, 1958)

Let G be an l-group (see [2]). We denote by [G] the lattice of all l-ideals of G. If $A \subset G^+$, we put K'(A) = E (x: $x \cap y = 0$ for each $x \in A$), K(A) = K'(K'(A)). We consider l-groups satisfying the following condition:

- (P) If $A \subset G^+$, $x \in G^+$, there exist elements $y \in K(A)$, $z \in K'(A)$ such that $x \leq y \cup z$.
- G. Birkhoff proved the theorem ([1], § 18, "main structure theorem", theorem 33):
- (B) Let G be a commutative l-group, whose lattice [G] has finite length. Then either G is a direct product or G contains a unique maximal proper l-ideal.

Commutative l-groups need not satisfy the condition (P) and l-groups with property (P) need not be commutative. Nevertheless, the structure of l-groups with the property (P) is analoguous to the structure of commutative l-groups.

In theorems 1-3 we suppose that G has the property (P).

Theorem 1. Either G is an ordered (= linearly ordered) group or G is a direct product.

Theorem 2. If [G] satisfies the descending chain condition, then G is a direct product of a finite number of ordered groups.

Theorem 3. If [G] satisfies the ascending chain condition, then either G is a direct product or G contains a unique maximal proper l-ideal.

We will denote by B(0) the intersection of all l-subgroups $G_i \subset G$ such that $x \in G$, $x \parallel 0 \Rightarrow x \in G_i$. (The symbol $x \parallel y$ means that the elements x, y are incomparable.) It is proved that B(0) si an l-ideal in G; set $G/B(0) = \overline{G}$.

A generalization of the theorem 3 is:

Theorem 4. If B(0) satisfied the condition (P) and if $[\overline{G}]$ satisfies the ascending chain condition, then either G is a direct product or G contains a unique maximal proper l-ideal.

A generalization of the theorem (B) is

Theorem 4'. If the l-group B(0) is commutative and if the lattice $[\overline{G}]$ has finite length, then either G is a direct product or G contains a unique maximal proper l-ideal.

izent convelled Edition to 19

Donté au les les