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The statistician’s strategy in probability sampling consists in the
choice of the sampling design (plan) and of the estimation method
(procedure). A strategy may be called optimum if it solves the
conflict between cost and accuracy in the best way. In this paper
Bayes approach is accepted, i. e. the accuracy is measured by the
expected variance with respect to a certain a priori distribution of
ascertained values. A general solution of the problem is derived for
a rather wide class of admissible sampling designs, estimators, cost
functions, and for the following two most important assumptions
concerning the a priori distribution: (a) The ascertained values are
realizations of non-correlated random variables. (b) The ascertained
values are realizations of a random sequence with stationary convex
correlation function and stationary cosfficients of variations.

In the introductory sections the conceptions of ‘“‘sample’ and
“estimate‘‘ are defined, and a general formula for the variance and
estimated wvariance of linear estimates is derived; furthermore, a
method of improving estimates based on suffieient statistics is
presented, and two sampling designs with varying probabilities are
discussed.

A. INTRODUCTORY SECTIONS (1-—5)

1. Definitions

Let us have a population S consisting of N elements of arbitrary nature,
so that they may be represented by integers 1,..., N, § = {1,..., N}. From
8 we select a subset s in such a way that any subset s c S possesses a pro-
bability P(s) of being selected. The selected subset s will be called the sample.
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Let us denote by v, ..., ¥y values of a certain variable associated with
elements 1, ..., N, respectively. We try to estimate the total

N
Y =>4 (L.1)

i=1
by an estimate g having the form
A
Y = Zyiwi(s) , (1.2)
where w;(s) are arbitrary weights, s es, s ¢ S, and Z extends over the elements
€8
¢ included in the sample s. The estimate (1.2) will be called a linear estimate.
The necessary and sufficient condition for the estimate (1.2) to be unbiassed
is, obviously, that
Swfs)P(s)=1, i=1,..,N, (1.3)

$3%

where the sum > extends over all samples containing the element .

The probability of selecting a sample s which contains the element ¢, say
7;, equals
7wy = > P(8) - (1.4)
Similarly, the probability of selecting a sample which contains both elements
1 and 7§, say m;;, equals
TE“'=2P(8), ’l:,j= 1,...,N. (1.5)

834
EEY)

1 . . . .
If we put wy(s) = —tes sC S, we get the simple linear estimate:

Z

T—>Y, (1.6)

g Ui

It is easily seen that the simple linear estimate is unbiassed, i. e. that (1.3)
holds.

We have defined the “‘sample” as a subset of the population. However, one
could think of a more detailed specification of the ‘‘sample”. For example,
it is possible to define it as an ordered subset of the population, or, still more
distinctively, as a sequence, all members of which belong to the population.
For brevity, let us use the following symbols:

subset s, ordered subset s', sequence s”. (1.7)

The sample s only tells us’ what elements have been selected, while s’ and
s” comprise further information. The sample s’ fully describes the element-

by-element sampling without replacement, and s” fully describes the element-
by-element sampling with replacement.
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If we delete in the sequence s” all members which appear in some of the
preceding places we get on ordered set s’, s’ = s'(s”). If we dispense with the
ordering in ', we get a set s, s = s(s’). Symbolically,

s = s(s") = s(s’(s")) , (1.8)

i. e. &’ is an abstract function of s” and s is an abstract function of s’, and,
naturally, of s” too.

The collection (1.7) of possible definitions of the sample is naturally not
exhaustive. For example, we shall use, in section 3, the sample s* which tells
how many times each element has been included in the sample. Clearly, if we
dispense with the ordering in s", we get s*. Thus it holds that '

§* = s*(s"), s=s8(s%). (1.9)

If we deal with double sampling, we may define the sample as a couple of
subsets (s;, ), where s, is the “larger’”” sample and s is the ultimately selected
sample. As we can see, the possible definitions of the sample might be continued
as long as we wished.

Now, let us define the observation and the estimate in probability sampling.
The observation, say (s, %), (s',¥), (s”,y), etc., involves a knowledge of the
sample s, s, s”, etc. and of the values y,; associated with elements in s, §', ",
ete., respectively. The estimate ¢ is any function of (s, y), (s', %), (8", ¥), ete.:

“t=1t(s,y), t=1ts"y), t=1s",y), ete. (1.10)

2. Estimating sampling error of linear estimates

We begin with the Definition 2.1. Any estimate £,(s), which equals 0 if s does
not contain the element ¢, will be called an (7)-estimate; any estimate ¢,,(s),
which equals 0 if s does not contain the element ¢ or j (or both), will be called
an (7, j)-estimate. 7

If we complete the definition of w,(s), as function of s, putting for s not:
containing the element 7

wy(s)=0, snonsi, (2.1)

" then w,(s) becomes an (i)-estimate of 1 and (1.2) may be rewritten in the
following form:

A XN
Y= Zlyzwz(s) . (2.2)
Theorem 2.1. If for the values z,, ..., 2 the equation
N N
> zawy(s) = Z z; (i.e. £ = 7Z) , (2.3)
i=1 f=1
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holds with probability 1, then the mean-square error of the estimate (2.2) equals

MY — Y)e = z Z (y &) 22, (Mw; + Mw, — 1 — Mww,) (2.4)

t=1j=

where Mt = > i(s) P(s) denotes the mean value over all possible s. In the unbiassed
case (Mw; = 1,1 =1, ..., N) we have

M — ¥) = Z Z (y* - y—) 22,1 — Muwa,) . (2.5)

i=17=1

2
The sum of the weights standing in (2.4) at the terms — 3 (% %) , 1 =+ 9, equals

i j

>>zziMw, + Mw; — 1 — Mww;) = Zz”M (w; — 1)2. (2.6)

tJ

Proof is based on the following easy identities:

N N
M — ¥)2 = M[Syiw; — DI = > > Ml — 1w, — 1) =

i=1j=1

ZZ‘/‘ i, M(w; — 1)(w; — 1) =

i=1l¢=1

N N - ;
> >l—sfe -2 +i(y') + 3 () ] o, — o, — 1

N N 5
1 : :
=§zz(y;_z_) [Pty Muoy — 1 = Mangaty] +

7

i=17=1
N 5 N
Y
+ Z (Z) M [zz(wz - l)zzi(wi - 1)] .
t=1 j=1
N
The last term, however, vanishes, since, according to (2.3), > z,(w;, — 1) = 0
j=1
with probability 1. The identity (2.6) is implied by the same fact: We get
0 = — MQzw; — 1))2 = > Sziz,[Mw; + Mw,; — 1 — Mwaw,] —
ixg

N
— > 2iM(w,;— 1)?, which is equivalent to (2.6).
t=1
Formula (2.5) for simple estimate was given in [5].
As regards the estimated mean-square error, we shall use the following

Theorem 2.2. On replacing 1, Mw;, Mww; in (2.4) or (2.5) by any their (3, §)-
estimates, we get an estimated means square error of the estimate (2.2). Ones of
the possible unbiassed (i, j)-estimates of 1, Mw; and Mw,w; are the following:
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Estimate of 1 =

P T e LU I W o R ORS

n—1 P(s)
knones

n—l 2 2, s—{’ﬁ(}s“’“’*}’, i jes. (2.7)

knones

k nones hnones

Estimate of Mw, =

= wi(s) + i z wi(s — {7} + {k}) e ‘I{J?s)Jr ") jes. (28)

knones

Estimate of Mwaw,; = wy(s) w;(s), %,jes, (2.9)

where s — {j} + {k} and s — {3, j} + {k, h} denotes the subset got from the subset

s by replacing the element j by the element k or the elements {v, j} by the elements

{k, R}, respectively, and > denotes the sumation over all elements k not contained
knones

mS.

Proof. The first assertion of the Theorem only tells that on replacing, 1,
Mw; and Mw,w; in (2.4) or (2.5) by any their (z, j)-estimates, we get a function
of (s, y), i. e. an estimate (see Section 1).

Now, in view of (2.1), we have

Z wi(s .7(8 z w‘,,(.S‘) w 8) P( ) Mwiw:i )
33,9

where 3 denotes the sum extended over the subsets s contalmng the both

§34,7

elements ¢ and j, by which it is shown that w,w; is an unbiassed (4, 7)-estimate
of Mw,w;,.

In order to prove the assertion concerning (2.8), let us note, that any subset
z containing the element 7 but not containing the element j may be converted
in a subset s containing both elements ¢ and j by omitting an element, say
k, different from 4, and by replacing it by 7, and that this may be donein n — 1
ways. Consequently,

5 [o

(s — G} + iy =+ {’“}’] P(s) =

834,5 knones P(s)
=>w wi(s — {j} + {8) (Pls — {j} + {k}) =
§3¢,§ 83,5 knones

=Zwi(s)P(s)+zni (n — 1) wy(z) P(z) Zw (8) P(s)

§3%,5 3% 837
snon?)

Before proceeding to (2.7), let us note, that any subset z not contaizﬁng either
1 or j may be converted in a subset s, which does contain both elements ¢ and 7,
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by omitting any two of his elements, say k£ and A, and by replacing them by
¢ and 4, and that this may be done in n(n — 1) ways. Consequently,

_ i) — i)
Z[1+n_1z (s {7}+{} n_lz P(s {7,})—[—{}

837, knones knones

— {1, k, h
ek S 3 R lARB,

knones, Anones
k*h

ZP(SHZ _n—1) <s)+2%ll(n—1ms>+
snonsi sc S

snonsj
which accomplished the proof.

Remark 2.1. The (i, j)-estimates shown in the theorem 2.2 are of use in
situations where w,(s) depends of s (s » ¢) not much, and they will be used in
section 4. Their scope might be widened by this device: We may, for each
(1, j) separately, select several samples containing both elements 3,7, say
81, -+ Sy, and then replace the (¢, j)-estimate, say u,,;(s), by the arithmetic
mean

k
1
UF(Sys +ves Sx) = 7G-E:u,-,-(s,) : (2.10)

y=1

If the probabilities m;; of including both elements < and j and mean values
Mww; and Mw, are simple, we may use the following unbiassed (7, j)-estimates:

Mw; +~Mw; — 1 — Mw,w; if {i,}cs

Estimate of [Mw; + Mw; — 1 — Mwaw;] =

Tij
= 0 wn the other case , (2.11)
or, in the unbiassed case
Bitimate of [ — Miogo;] — 1_—:’”3- it {if)ca,
%)
= 0 n the other case . (2.12)

Remark 2.2. The device of ratio estimation may be useful also in estimating
the mean square error. For example, in view of (2.6), we may hope that the
estimated mean square error

m(F — ¥)p— it i szM(w" =1
ZZ 22 Mw, + Mo, — 1 — Mol i

ies Fes

(2.13)
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where [.];; denotes a proper (s, j)-estimate of [.], will be better than the
estimated mean square error

— \%;
€S JeS

A 1 i A\
Remark 2.3. If the estimated mean square errors (2.13) and (2.14) are too
laborious, we may select randomly with equal probabilities a subset

M of k couples {, j} c s without common elements, when possible, and then
replace (2.13) and (2.14) by

1 . \ 2
b) Zz (% - %) zz;Mw; +Mw; — 1 —Mww;];; »
s 2 2
mY —Y)2= {5 d}e2 Zz%M(wi —1)2
ZZ zz;(Mw; + Mw; — 1 — Mwaw;],,; i=1

{i,i}eM

(2.15)

o ] \2 -
m¥ —¥): = ”_("_2_]6_1)22 (Z_ - Z_’) 22, [Mw; + Mw; — 1 — Mww,]; ;. (2.16)

(Gayem \ d

Remark 2.4. If not directly the values y; but unbiassed estimates of them
are at hand, say ¥;, e. g. in the case of subsampling, and if estimates 4, are
mutually independent, then the formula (1.2) is changed into

¥ =3 jans),

€8

and the formula (2.3) into

N N A Ayg
A 1
M — Y)2=5ZEM[(%—Z—:)]7«'U[MW:' + Mw; — 1 — Mww;] +

2
i=1j=1

N
+ 2, D), (2.17)

where M(.) and D(.) denote the mean value and the variance over the estimates
2 2

¥; (for example, over the subsampling).

It means that the estimated mean square error has, generally, the form

A A\e .
m® — 7): = %zz(z_ —i’—,’) [Mw, + Mw, — 1 — Mwaw,l;, + D, , (2.18)

ie8 Jes

A » 2 A
where D, is an estimate of >, D(,) .
i=12
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3. Improving estimates connected with element-by-element sampling
with and without replacement

We have denoted by (s”, ) the observation consisting in a knowledge of
s” and of values ¥, associated with elements appearing in s”, and a similar
meaning has been ascribed to (s, y) and (s', y). It is easily seen that the know-
ledge of (s”, y) enables us to establish (2", y) for all z” such that

8(z") = s(s") , (3.1)

or, similarly, knowledge of (s’, ¥) enables us to establish (', ) for all 2" such that
s(2') = s(s’). For example, if we know that on the sequence of elements
s" = (2, 4, 3, 2, 4) there were ascertained values (13, 18,15, 13, 18), respecti-
vely, we may infer that on the sequence z” = (3, 3, 2, 4) would be ascertained
values (15, 15, 13, 18), respectively, because we simply know that yg = 15,
Y, = 13 and y, = 18. Conversely, knowing (2", y) for any z” such that (3.1)
holds, we can establish (s”, y).

This trivial fact has an interesting application: Having an arbitrary estimate

tll — tll(sll, y) . (3'2)
we may replace it by the estimate

212", y) P(2")
t=t(s,y) =" Se) (3.3)

[8]

where the sum 3 extends over all z” such that s(z”) = s = s§(s”). Indeed, if
[s]
we know (s”, y), we can evaluate ¢"(z", y) for any z” such that (3.1) holds, and
hence we can evaluate (3.3).
A brief inspection of the equation (3.3) shows that ¢ is a conditional mean
value of ¢” with respect to (s, y). Consequently

Mt = Mt” (3.4)
Dt = Dt" — M(t — ¢")2. (3.5)

In other words, ¢ is at worst as equally good an estimate as ¢”. This means that
the subset-definition of a sample is fully satisfactory, since any good estimate
is a function of (s, y) only. (Of course, it may happen that #” and the estimated
variance of ¢ are more easy to compute than ¢ and the estimated variance of L)
A similar conclusion may be drawn concerning the estimates ¢’ = ¢'(s’, ¥)
ete.
Now, let us show how the method works:

b
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Example 3.1. Let us perform independent samples of one element with

N
probabilitieg Bys ooy Cpp z o; = 1, until n distinct elements have been selected.
i=1 N
Let us chooge any unbiassed estimator of the total Y = > y,, for example,
i=1
A .
¥ (3.6)

&

where 2, denotes the element selected as the first. Let us take a conditional

A 5
'mean value of Y with respect to (s, ¥), where s is the set of n distinct elements
included in the sample. Using the formula (3.3) we see that

¥ =M 9) = > Lrgs), (3.7

where P,(s) is the conditional probability that the element ¢ will be included
as the first in the sample under the condition that the distinct elements
selected consist the set s. Probabilities P,(s) are not easy to compute, except

A . : 1
when the sampling is uniform, i. e. a; = ... = oy = 7 Or when n = 2.

In the case when the sampling is uniform, we clearly get P,(s) = -:—b—, so that

= N
Yz—ﬁz%.

‘ €S
Now, let us consider the case n = 2, denoting the two distinct elements
included in the sample by ¢ and j. The probability that the element ¢ was
selected first and the element § second, equals
KX
]. — Xy ’

Py =P =[]} = (3.8)

Similarly, the probability that the element j was selected first and the element
1 second, equals
Py = P{s’ = [}, i} = —2—. (3.9)
A 1 —u
This means that the conditional probability that the element ¢ has been
selected first equals

Ps) = — % (3.10)

2‘—'0(2-—‘065

When substituting into (3.7) we get

¥V — %4 1, (3.11)
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As regards the variance of ¥, we may use the formula (2.5) since (2.3) is clearly
satisfied for z; = «;. It means that

N N
¥ _ 1 yi . % _
MY - Y= Zl Z (;i (xj) xioe[1 — Mww,] . (3.12)

In order to find Mww; let us first compute =;;:

7;;=P{i,jes} =Pls={i,j}} = Py; + P;; =

Xi%; X% oa065(2 — o — o)
= = = &
T— "1~ U —adl—) (3.13)
Now, in view of (3.11),
wy(s) = _i=% D e s {1, 7}

2 — oy — o5 oy
and, consequently,

Mwaw; = 23, wy(s) wy(s) P(s) = wawm; =

832,
_ooaxi(2 — o — ) (L—o)(l—y) 1 1
Tl — )l xg) (2 — e — ) gy 2 — o — oy
On substituting (3.13) into (3.12) we get that

N N
5 1 Y ?/52 1 — o, — o
M(Y_Y)Z_EZE(&:_—OT) ooy ————————— (3.14)

’2—“,"—0(7'

i=1j=1
Finally, we may use the (7, j)-estimates (2.12), where =;; are given by (3.13),
and get the following unbiassed estimated variance:

2
5 % vva (YY) A —a)(I — o) (1 — x; — )
dY =mY — Y): = (“i 06;-) PRrp—s . (3.15)
o +d- :
As (1 —a))(1 — o) = (1 — ‘—2—‘) , we have that
2
a¥ < % (% _ %) (L — o — ) (3.16)

If the ordered-set sample s’ consists of elements s’ = [y, ..., ¢,], then there
are the following unbiassed estimates of ¥:

A

L=

5 Yi,

Y=y, + . (1 — &), (3.17)
> Y

Ynzyi1+"'+yl'n—x+a.ﬂ (l_aix-—"'—“in—l)’

in
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where i, is the element included in the sample as the k-th. These estimates
A
are non-correlated, and, moreover, the conditional mean value of Y, given
n

A A
Y, ..., Y, equals Y. Consequently, any constants ¢, ..., C,, z c; =1, ge-
t=1
0 A
nerate an unbiassed estimate ¥ — > ¢,Y; such that
i=1
n A 7 A
D( Y c.Y;) = DY, (3.18)
i=1 i=1

A further unbiassed estimate might be

1 Ys
— ) = ; 1
- 2 - (3.19)

where the sum > extends over all elements of the sequence s” and v denotes

7
the number of members of s” (i. e. the number of independent selections of
one element until » distinct elements have been selected).

The estimate (3.19) may be identified as a conditional mean value of (3.1)
with respect to (s*, y), where s* is the orderless-sequence sample defined in
Section 1:

1Su_y (z_

v = [+ (7N

(s*, y)) ) ' (3.20)

This means, in view of (1.9), that the conditional mean of (3.19) with respect
to (s, y) also equals (3.7). In addition, it is thereby proved that (3.19) is an
unbiassed estimate.

Example 3.2. Let us perform a fixed number, say m, of independent selections
of one element always with probabilities «y, ..., «y and consider the well-
known estimate

y-1S% (3.21)
m g
8"
where the sum > extends over the selected sequence s” = (¢, ..., i,,). It may
8"

be easily shown that the estimate (3.21) is a conditional mean value of (3.1)
with respect to (s*, y), where s* is again the orderless-sequence sample.

If the sampling is uniform, i. e. oy = ... =y = li\” then the conditional

mean value of (3.21) with respect to (s, y) is easily seen to be

F =Mt | 69)=F D, (.22)

fe8 =
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where d is number of distinct elements in the sample and s is the set of the
distinct elements in the sample.

If the probabilities «; are varying we may get ¥ as follows: First let us re-
write ¥ in the form
y_lS% 1S
Y = mZai + mz (b —1) 2 (3.23)
where k; is the number of times the element ¢ has been selected. The conditional
probabilities of events {k; = kI, ¢ € s} obviously equal

-1

i S 0 0 —
constI_[ e =1, zkz =m. (3.24)

ieS

If all elements in s” are distinct then ¥ — Y. If there are m — 1 or m — 2
distinct elements in the sample s”, then (3.24) generates the following con-

ditional distribution of Z (k; — 1) L

“2
i€
Y% _ Y _ m — 1 distinct "
P {Zs(ki DE =21, y)} —cx,, Ges, [elements (3.25)
z a KX
P{z(ki—l)%=%+% (s,y)}=0212’!’ -
ies £ a b m — 2 distinct
Y; Y, o2 2,048, elements > (3:26)
¥ _9¥ — o2

€8
where ¢ is a constant. From (3.25) and (3.26), after some computations, we
get that

) ¥ — 1 Yi | i ’ [m —1 d.lStlnCt:I, (3.27)
m | oy Z elements
1«
zyi (1 =1 3 z[x )
= 1 Ys ies o m — 2 distinet
V — = Ji | 9 < g .28
+ ’ [elements ] (325}

lET Sy
&;

€8 £
Jes

If there are less then m — 2 distinet elements, then precise evaluation of ¥ be-
comes too complicated. We may use, however, the approximation

- 1 = = i _ . .
- Y 4 pis ’ [m rdlstmct] (3.29)

elements

which seems to be a good one.
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Example 3.3. Let us consider a double sampling design and denote by s,
and s (s c s;) the subsets of elements selected in the first and second phase,
respectively. Let

A

Y = zs YiWir(81) (3.30)
be an estimate based on the sample 's;. Now, we may judge the sample s, as
a population with ascertained values yav,(s,), ¢ ¢ s;, and construct a linear

estimate
A

Y= Zs, YW (81) Wis(sy, 9),
1€
whose weights depend on s;. As the final obser'vat/iAon (s, ) is, obviously, an
abstract function of (s, s, y), any good estimate Y must not depend on s,,
i. e. we must have

Wy (81) Win(81, 8) = wz('s') , §cscl. (3.32)

If (3.32) does not hold, the estimate may be improved by the method we have
used in Examples 3.1 and 3.2.

A
It ¥ = MY , where M(.) denotes the mean value with respect to the second
2 2

phase (or stage) of sampling, then
MY — ¥)2 = MP — ¥)2 + M — P)e. (3.33)

Example 3.4. The same considerations may be applied to sampling whose
result is given by k interpenetrating samples (sy, ..., s;). We come to the
conclusion that the “good” estimates must not depend of how many times an
element has been selected, i. e. ist must be a function the set sof elements
contained in at least one set s, ..., s;, and of the observations ascertainéd
thereon.

Now we shall leave this topic, since, as will be shown in the section 4, there
exists an exact theory of fixed-size sampling with varying probabilities with-
out replacement.

Remark 3.1. The method could be formulated as an application of the
well-known Rao-Blackwell theorem on improving estimates by taking their
conditional mean value with respect to a sufficient, statistic. In fact, in the
space of all possible observations (s”,%) we mahy consider the system
{P,....4x(-)} of admissible distributions generated by all possible sequences
of values y,, ..., ¥y in such a way that

Pyl (8" m) =P(s"), if (s"9) =(s",9),
, otherwise .

Let us note that (y4, ..., ¥y) plays a role of a parameter.
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4. Rejective sampling

Let us perform » independent draws of one element always with probabilities
®, ..., &y and accept or reject all the selected elements if or if not at no two
draws the same elements has been selected, respectively. If the sample is
rejected, let us repeat this procedure until we get an acceptable sample. In
this well-known sampling scheme, we have, obviously,

P(s) = 2 1_[ o for any s consisting of n elements , (4.1)
TeS
where
A= z n ]
seVy, tes

where V,, denotes the class of all subsets of the population which consist of
n elements. Our point is to show that the sampling design just described is
capable of exact and easy treatment.

First, let us observe that any sample z not containing the element 7 may be
converted in a sample which does contain the element ¢ by omitting any one
of its elements and replacing it by the element 7. This may be done in n ways
as z contains » elements. If the obtained sample is s, then, by (4.1),

P(z) = z—’; P(s) ,

where k is the element which has been omitted. This means that

L= 2P + > Pl = DR+ > Ple) > =

$3% znonsi 834 knones

1= Za + nx;
2 1 kes R : 4.9
§31 knones $34
where > extends over all samples not containing the element i. Denoting
znon?j
1 —« nx; .
& = Z“k ’ wz(s) = ——‘_;L_;-j;—i » lLes, (4'3)
kes
we may rewrite (4.2) in the form
> wi(s) P(s) = 1. (4.4)
§3¢
The equation (4.4), however, means that w,(s) are weights of the unbiassed
estimate
3 l—x4nx;, 1—a<Cuy;
Y = - e J 2
Zy . — 7 +> . (4.5)
te ie ie$

The estimate (4.5) equals Y identically when y, are exactly proportional to
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numbers «;, 1 =1,..., N, i. e. (2.3) is satisfied for z; = «;. Consequently,
according to (2.11), we have

DY = —zz ( 5) s s(1 — Mwgaw,) . (4.6)

€S Je8

The (¢, §)-estimates of 1 and of Mw,w; we shall seek in the form (2.7) and (2.9).
Let us observe that, in view of (4.1),

P(s — {5} + {k})

P(s) T
Pls — {i,i} +{k. A}) _ oo
P(s) T ooy

and substitute these results into (2.7) and (2.9). We get:

1
st e
imate of 1+n—1 n—l
knonea knonss

%1ZZ“Q‘

Icnonss hnonss

(1 — & + ne)(1 — o + noey) — nooe; — z o3
- knones i jES .
n(n — 1) e, S
(L— o+ ne)(l — o +naxy)

nlo;;

Estimate of Mww; =ww; =
This gives:
Estimate of [1 — Mw,w,] =
2, of

_ (]_ — o + noc,-)(l —x + nzx,-) _ Xi%; __ knones S (4 7)
- n¥(n — 1) n—1 nn—1)" '

On substituting (4.7) into (4.6) we obtain the following unbiassed estimated
variance:

A (1 — & + ne;) (1 — o 4 ne;)
dY:?n-lZZ( )[ n n o

€8 Jes

e ;‘/— Z L‘X%]. | (4.8)

knones

Now, remembering that for any numbers p,, > p; = 1, the identity

222( —~ )p,p,—g(?ﬁ—mi—ip.-)zpi
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holds, we can (4.8) rewrite in the following form:

b L[Sl s a3 sEL
_,xzz__

€8

=1, (4.9)

kes

The relative magnitudes of the terms on the right side are 1, ¥ (1 — lTTn)
2
and (l%) , respectively. If o, = ... =ay= —]17 we get the well-known

formula for simple random sampling.

If we wish to exploit the proportionality of values y, to certain values z;, we
may use the ratio estimate

1_“2% +Zyz i

¥ = > a={X. (4.10)

1—0,2“1_‘_2 z, i1

ze8

Alternatively, we may also use the unbiassed ratio-type estimate

- Surisis +%gg_i[x_gxi_;j %) wy

€8

which is a variant of the estimate introduced GoopmaN and HARTLEY in the
case of simple random sampling (see [13]). To show the unbiassedness, let
us rewrite (4.11) in the form

Y zyl ]l —« yi-l-

xi
€8

1 Y; - 1 —« Z

— > = —xz; — ; — 1. 4.12

- ani [A = . Z % n—l,-csz_{i}zx,»] ( )
tes jes—{i}

The first two terms on the right side are nothing else but the unbiassed estimate

(4.5) of Y. Consequently, if we show that the conditional mean value of

z 7+1_(x z o (415}

des— {1} La

under the condition s » 7 equals X — z;, our proof will be completed. However,
from (4.1) it is easily seen that conditional probabilities of s under the condition
s » i, say P(si), equal

P(sld) = 24; [T &;, s21,

jes—{i}
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i. e. conditional distribution has the same structure as the nonconditional
one. Now the estimate (4.13) has the same form as the unbiassed estimate
(4.5) except that n is replaced by » — 1, probabilities «y, ..., &, are replaced
oy Ki-1 Oity Cn
—o; Tl —o;l —e,” 71—
omitted from the population. Consequently, the estimate (4.13) actually is
an unbiassed estimate of X — z; under the condition s > 4. :

The variances of (4.10) and (4.11) are naturally complicated but they
may be estimated in lines with Theorem 2 . 2, since (2.3) is satisfied for z; = z,.

by probabilities 1 , and the element ¢ is

5. Permutation sampling

The rule of including and not-including the element ¢ in the sample is the
following: We take a random permutation R, ..., Ry of numbers 1, ..., N,
all permutations having the same probability, and than include or not include
the element ¢ in the sample if or if not

RiéﬂiN’ 1:=1,...,.N. (5.1)

If the numbers ;N are not integers, we may replace R; by R; — &,, where
&, are independent random variables distributed uniformly over the interval
(0,1).

It is easily seen that the numbers =; used in (5.1) are directly probabilities
of including the element in the sample. If z; < 7;, and the element 7 has been
included in the sample, then, because R; = R; and R; < n,N < w;N, R; may
take on z;N — 1 integers not greater than ;N and N — =;N integers greater

then 7;N, each of them with the same probability N——}_—l— Consequently,
the probability of including both. elements ¢ and j in the sample equals

N —1
Mg = Ty jT:T’ [7; = 7] . (5.2)

When we are using the above mentioned random variables &; the formula
for m;; must be slightly modified.

The permutation sampling is useful, for example, in connection with the
ratio estimate i

ies ! zx = 4% (5.3)

Practical performation of permutation sampling goes as follows: We decide
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that 7;s should by proportional to numbers a; and that the mean sample size
should be n. Then we compute the number

Now we select elements by simple random sampling element-by-element without
replacement and the element selected as the k-th, say 4,, we accept or reject if

or if not a; = ky. It is easily seen that, if @, = min a@; and e* = maxa,,
1<:i<N 1<igN

the first £t <k, = 07* elements are accepted certainly, and, on the other

*
hand, the sampling is certainly finished when k = k* = %-.

We may observe that in permutation sampling we need know the a;s only

%
for the first £ < % selected elements and that no sums of a;s are needed.

B. OPTIMUM STRATEGY. CASE I:
THE ASCERTAINED VALUES ARE NON-CORRELATED

The assumption that the ascertained values are (a priori) non-correlated is
of fundamental importance and, as the reader will see in section 8, of rather
wide scope. For previous results see [6].

6. Bayes approach to the optimum strategy

Sampling-estimating strategy is defined by probabilities P(s), s c S, and by
weights w;(s), 7 € s, s ¢ 8. The quality of this strategy will be judged, on the
one side, by the mean square error

X - N
MY — ¥)* = 2 (2. yawdls) — 2, 9:)* Pls) , (6.1)

and, on the other side, by costs which have generally the form
C =7 cs, w) P(s) (6.2)
sCS
where c¢(s, w), s c S, are costs of ascertaining the values y; on s, and of comput-
A
ing Y with the weights w,(s), ¢ ¢ s; perhaps, in ¢(s, w) may be included costs of

computing estimated sampling error, i. e. estimated square root of (6.1). The
right side of (1.2) is called a cost function.
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Sampling-estimating may be optimum in two senses: it either minimizes
the mean square error (6.1) for given expected total cost (6.2), or conversely,
it minimizes expected total cost (6.2) for given mean square error (6.1).

The notion of optimum strategy is useless when only one particular sequence
Yy, ++., Yy 18 considered, because the problem disappears, if we know it, and
has no solution, if we does not know it. This difficulty may be overcome in
various ways. In this paper we shall prefer the Bayes approach. It means we
shall suppose that there is a certain probability distribution in the space of
sequences (¥, ..., ¥y), and our criterion of accuracy will be

EMY — Y) | | (6.3)

where E denotes the mean value over the random sequence (y, ..., ¥y) and
M denotes the mean value over the samples s.
As can be seen from (6.1) M(f’ — Y)? is a quadratic form in y;s, so that

A
EM(Y — Y)? depends only of the mean values, covariances and variances of
Y1, ..., Yy. Consequently, specification of the distribution of y,, ..., ¥y may
only consist in the determination of the first and second-order moments:

Byi = ws, Vyi=dy, Cov(y,y;)=4dy, 47=1..,N (6.4)

where V denotes the variance in the (yy, ..., yy)-space.
Bayes approach seems to be reasonable on these grounds: (a) In most cases,
we really have some knowledge of conditions producting values vy, ..., ¥,

and we can express them in the form (6.4). (b) Assumptions (6.4), if accepted,
only influence our choice of sampling-estimating strategy and do not influence
the validity of our estimated sampling errors, confidence intervals etc. Sampling
error will be valid for any particular sequence yy, ..., ¥y and consequently,
any mistake in assumptions (6.4) will only cause the sampling errors to be
on the average greater than they would be, if our assumptions were right.

There are, of course, cases, when the sample is selected in such a way that
sampling error cannot be estimated on the basis of ascertained values ¥, ..., ¥y
only (e. g. in systematic sampling). However, even in these cases, the Bayes
approach is the only way of getting any estimated sampling error at all. We
shall conclude with a few remarks.

Remark 6.1. The first to use the Bayes approach for the solution of sam-
pling strategy was, according to the author’s knowledge, W. G. COCHRAN, in
the pioneering paper [1].

Remark 6.2. As emphasized by R. A. FISHER, any statistical work is a
whole consisting of two aspects: experimental design and statistical procedure.
This applies to probability sampling, too, the two aspects being the sampling
design and the estimation procedure.



Remarks 6.3. Not only in probability sampling but in any statistical work
there is a fundamental distinction between the case where the a priori distribut-
ion is an orgamic part of the statistical procedure (i. e. influences the validity
of the probability statements), and the case where it only influences the choice
of the experimental design and of the statistical procedure.

7. Sufficient conditions for the optimum strategy

We shall restrict ourselves to unbiassed linear estimators, i. e. > w,(s)P(s) =

sCS
=1,72=1,..., N, and to the simple cost function
O = z C;7T; - (7.1)
i=1 '

(7.1) is based on the assumption that the cost associated with the element
© equals ¢;, i. e. does not depend on the estimation method and on which other
elements were selected.

Supposing that the y.s are non-correlated and that the estimator ¥ is un-
biassed, let us evaluate (6.3). First, we change the order of the mean-value
operators E and M, and then make use of the assumption that the y;s are non-
correlated:

EM(Y — ¥)* = ME(Y — Y)2 = ME( > gy (o) — zyz)z =

€8

N
— M{(gﬂiwi(s) “izll-‘i)z ‘*‘i; di(wi(s) — 1) 4 Z diy =

inone s

N N
= M( 2 pawi(s) — 2 wi)* + 2, dal 2, (wi(s) — 1P P(s) + 2 P(s)] (7.2)
te€ 1= = 832 snon3u
where u; = Ey;, d;; = Vy;, and s et and % € s denote that 7 is not contained
in s. Bearing in mind (1.3) and (1.4) we get

S (wis) — 12 PE) + > P(s)g[Z(W() 1)Ps)] St T 2 e

Sei snon21i 837 snonsi
833

1 1
S 2 \2 e
- 7; (1 7'6,) + (1 731) 7; 1 > (73)
where the sign of equality holds if, and only if, w,(s) are independent of s,
s 3 1. Independency of w,(s) of s, in connection with (1.3) and (1.4), implies

" that

w,-(s):nl, 1es, schl. (7.4)
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The result just obtained together with (7.2) gives that

N
A 1
EMY —Y)2 > L= =
MT —7) = zd“ (ﬂ 1) (7.5)
N
where the sign of equality holds if and only if, first, > uw(s) = > u; for any
ie$ i=1

s such that P(s) > 0, and, second, (7.4) holds, i. e. Y is a simple linear estimate:

5 Y:
Y=, =. 7.6
gs T i)
Finally let us choose optimum =, ..., wy under the supposition that the

expected total cost is given by (7.1). For brevity, let us denote the right side

of (7.5) by .
b= zd,.,. (g% = 1). (7.7)

i=1
The use of Cauchy’s inequality gives that
N N N p N 2
C[D + Zldii] = (zl Ciﬂi) (2 Z) = (21 Vcidii) (7.8)

where the sign of equality holds if
d

Ciﬂi=}-2_i§, i=1,...,N,
TT;
1. e.
ﬂ',;=}. —c—', 1= 1,...,N, (79)

where 1 is a constant by which we may regulate the expected variance or cost
when substituting into (7.7) or (7.1), respectively; of course, 1 must be chosen
sothatz, < 1.
N
Since the z; s satisfying (7.9) minimalize the product C[D + > d,,] for
t=1
any A, (7.9) solves simultaneously both problems: minimization of C for
given D, and of D for given C. The minimum value of C or D for given D or C,
respectively, may be obtained from the equation

ofp=3a]- (3

=1 i=1

2

(7.10)

Let us summarize our results in a theorem:
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Theorem 7.1. Let us suppose that d;; = 0,4 % j, > wy(s) P(s) = 1,1 =1,., N
N

sCs
and C = ¢;m;. Then any strategy for which the conditions
i=1
ﬂi=l %, 7;=1,...,N, (7.11)
1 .
wis) =—, ies, scf, (7.12)
N
> uawy(s) = > u;, Pls) >0, (7.13)

ieS t=1

are fulfilled, is the optimum one.

The condition (7.11) determines the expected frequency =, of the element
i in the sample and will be called the condition of optimum allocation. The
condition (7.12) will be called the condition of constancy of weights. The con-
dition (7.13) means that for any sample s which can be really selected the
sampling error vanishes as soon as y; exactly equal their expected values
Uy v =1,..., N. We can express this by words that the strategy is represen-
tative with respect to the values u;, 2 = 1, ..., N. In this way the vague notion
of “representativity’” becomes well-defined.

We can see that the condition (2.9) assumed in the section 2 was nothing
else than the condition of representativity with respect to the values z,
i=1,...,N.

From the course of the proof it is visible that small violations of the above
conditions are immaterial. Most frequently it is the condition (7.12) which is
not exactly fulfilled: the weights are not constant, and, moreover, they are
very often such that the estimate is not unbiassed (e. g. in ratio estimation).
Once we know that the above conditions are sufficient, it is inessential whether
they are approximately fulfilled by an unbiassed or biassed estimate. Another
question would be to choose an optimum solution within the whole class of
linear estimates. However, this problem is too subtle and hardly fruitful.

Sometimes we may decide which of two possible systems of weights w,(s)
and w[(s) is better in the following way: Suppose that the sampling design
considered is such that (7.11) and (7.13) hold, then, according to (7.2),

EM(Y — ¥)? = M{Sdu(wi(s) — 1) + 3 du}. (7.14)

inones

If it happens that for any s with P(s) > 0

2 da(wi(s) — 1)2 < 2 di(wi(s) — 1)2, (7.15)

te$ tes

then, clearly, the weights w (s) are the better of the two.
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Example 7.1. Let us compare the estimates

A 1 — o + ne,
Y= D, {116
A 1 Y .
Yy=—= >t
R szi’ (7.17)
under the hypotheses that
dy =28, 0<6<2, (7.18)

and that the sampling is rejective as described in section 4. The estimate
(7.16), as we have seen, is unbiassed, and the estimate (7.17) is biassed. We
cannot, however, a priori say which of them is better. Putting

1— A
wie) = LI i) = -, s,
we have
>, dullwdls) — 1* — (w(6) — 1] = 3 distwls) + w}(s) — 2).

* -2
c(wil8) — w(s) = A D a3 2 — & — mavy)(nex; — o)
7€8
m . . e . . .
The last expression, however, is non-positive since it equals the covariance
of values 2'a?~%2 — « — na,) and values na, and since the relation

[no; < moes] = [0d7%2 — ¢ — noy) = a8 ~%(2 — & — naxj)], (7.19)
0052, 4,jes
holds. Consequently, under the hypothesis (7.18), the estimate (7.16) is better
than the estimate (7.17).

Unbiassed estimated mean square error of the estimate (7.17) can be de-
rived in lines of the sections 2 and 4:

—no)(1— &) +n 2 ok

a
m(¥, _12( = Z«”) L M
Z"Ji ?

Yi ie8
+ a2 Ii__ i 7.20)
n ies *i z Gy (

€8

Now, we shall apply the theorem 7.1 to several typical examples.

Example 7.2. If 4; = const, d;; = const, ¢; = const, 2 = 1, ..., N, then all
the requirements of the theorem 7.1 are fulfilled by simple random sampling

together with the simple linear estimate — Z y.. I ws, dj;s and c;s are con-

1e8

stant within some parts (strata) of the population, and when these strata are
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large enough, then the requirements of the optimum strategy are satisfied by
the optimumly allocated sampling together with the simple linear estimate.
If the stratum S, contains N, elements from which we select n, elements, then
for an element ¢, belonging to the stratum S, ,we have

N
TT; Nh ’
According to (7.11) the n,;s must be chosen so that

A
N, Cn

where d,, and ¢, are common values of d/;s and c;s within the stratum §,.

ieS,. (7.21)

. h=1,..,H, (7.22)

However, from (7.22) it is seen that whenever the numbers AN h]/-—— are too

small, then (7.22) may not be fulfilled by any integers n, with a reasonable
degree of precision. In such situations is stratified sampling ineffective.

Example 7.3. Very often we may suppose that u;s are proportional to known
numbers x;:

wi=Az;, i=1,..N. (7.23)

In such situations the ratio estimates (5.3), (4.10) or (4.11) meet the con-
dition of representativity with respect to (7.23). The condition of constancy
of weights, however, may not be fulfilled. When using the estimate (5.3),
(4.10) or (4.11) we have weights

N
1 zxt
wH(s) = —=1 | 9
s (7.24
=T
N
2. %
1 — & + na; o M
wHH(s) — i i 7.25
i (s no z"’ 1 — & + noy (7.25)
i

wo=nf+ 12 Lr-Sas 1555, o

respectively. The variability of the weights depends on the sampling design
and on the relation between the values z; and n; or ;. Generally, the weights
(7.25) connected with the rejective sampling design described in Section 4 may
be expected to vary least.
The weights (7.24) can be used in connection with the permutatlon sampling
described in Section 5 with =, satisfying the condition of optimum allocation
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(7.11). If the weights (7.25) are used, in connection with the rejective sampling
described in Section 4, the «,s should be chosen so that the 7)s again satisfy
(7.11). Now from (1.4) and (4.3) it follows that

zl——oc—{—nocip(s)

1 : nx;
== o (7.27)
i > P(s)
whence it is easily seen that
N Nnot;
: <7 < L 9
1+ (n— 1) max (oc,-—oci)zﬂ’ =0 1—(n— 1)max(¢x,~—oc,-)'(7' 8)
i i
Consequently, the equation (7.11) will be nearly fulfilled if simply
;= A" %, i=1,....N. (7.29)

If the =;s are not smaller than, say, 0,1, we may use the approximate relation

7 ;“’"' oxs (7.30)
n_
1. €.
1- 2= |
oy et S (7.31)
”1__(_”_:_21_" ]
(N—l)nﬂ‘

It may be of interest to modify the sampling design in order that the weights
(7.24) vary as little as possible. Let us describe such a design for the uniform
(self-weighting) case (7, =... =@y = ®). In this case we try to select ele-
ments in such a way that =, = = and that the sum > z, is nearly constant.

€8
Let us suppose that the x;s are integers (which causes no loss of generality)
and consider the cyclical sequence

L2,..,2 ... + 2y, 1, 2 .., 0%

Now we associate with the element 7 the segment of the sequence containing
numbers {®, + ... +2; ., +1,..,2, + ... + 2}, 1= 1,..., N. Finally, we
select an integer » with equal probabilities intherange 1 <7 = x; + ... + 2y,

ar) , where

and include the element i in the sample with a probability

m(r) is the number of integers belonging simultaneously to the both segments
{r,...r +o—1} and {2y +...+2,_, +1,...,2 + ... +2;}. The prob-
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ability of including an element in the sample is the same for all elements,
namely

w

z, 4 ..y

This sampling may be preceeded by any, random or non-random, ordering
of elements.

= (7.32)

Example 7.4. If the a priori hypothesis is expressed by a regression relation

k
pi= > Bl + By, ¢=1,..,N, (7.33)

j=1
where B, B1, ---, Br are unknown constants, then the fulfillment of the con-
dition of representativity is not easy. We may use some type of regression
estimates, which are, however, difficult to compute, or, when the regression
is passing through the origin (i. e. B, = 0), some type of ratio estimates. Fi-
nally, we may use the so called acceptance-inspection method. This method
consists in rejecting samples which give a bad result in estimating totals X; of
controlled (concomitant) variables used in the relation (7.31). For example,

we repeat selections of a sample s until we get a sample for which

X, — X,|<¢]DX;, j=1,..F, (7.34)

where ¢; are properly chosen constants, say ¢; = 0,5. This method of attaining
to the representativity emphasizes the sampling-design aspect, and this is
right in situations, where we are dealing with extensive and fresh a priori
data and ascertain a number of variables y;, y7, ..., each of them is related
to variable 2, ..., z?. The theory of the acceptance-inspection method is
based on the supposition that the random vector (¥, X, ..., X;) has a (k 4 1)-
dimensional normal distribution. However, no theoretical argument for this
assumption is at our disposal in this time. Acceptance control is discussed
in the paper [8].

8. Some remarks on the applications

8.1. Uniform sampling. The cost function (7.1) does not reflect the jump
in cost which arises when the sampling is uniform (self-weighting) so that

the simple linear estimates are reduced to arithmetic sums, i. e. Y = 1 z Y-
T
€S8

Therefore, an optimum non-uniform sampling-estimating strategy is really
acceptable only if it is better than the uniform sampling connected with the
simple linear estimate or with the simple ratio estimate, etc. This device,
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consisting in dividing the possible strategies into classes within which the
problem has a simple mathematical formulation, is of wide use.

8.2. Subsampling. The flexibility of the previous theory is well-illustrated
by the subsampling problem. Let us suppose that the elements are primary
sampling units consisting of N; secondary units. We wish select in any primary
unit n; secondary units by simple random sampling, where n; is ascertained
from the relation

ni%=1, i=1,..,M, (8.1)

where 7; is the probability of including the primary unit in the sample and 7 is
the uniform overall probability of including a secondary unit in the sample.

A A
A comparison of EM(Y — Y)2, where Y is given by (2.30), with (7.2) shows
that the effect of subsampling is the same as the effect of increasing the
variances d;; by the second-stage variance of ¥;, i. e. by
N 3 2 ni
=L (1 - 17) , (8.2)
where o? is the expected variance within the element (primary sampling
unit) ¢. On the other hand, the costs associated with the element 7 is decreased
by subsampling by
(N, —my) e, (8.3)

where e; is the cost associated with a secondary unit within the element 2.

If we insert the changed a priori variances and costs into (7.1) and (7.7),
we get (N = M)

M
o* = Z mile; — (N; —ny) e] , (8.4)
i=1
M
N, n; 1
o =Sfacrfal-wE-) e
which by means of (8.1) gives
M M
O* = 3 myle; — Niey) +7 2 eV, (8.8)
=1 i=1
~ dg— Nt | 1w <
*_ w— 0 o 2 o8 — . — No?). i
D 2 =R Zl Nt Z (s — No?) 8.7)

It means that, if d;; — N,0> =0, ¢, — N,e; = 0, we have

M M /TVI_T—
C*[D* Z (dii — No))] = (le/dii — No¥)(c; — Nie;) + l/ ZNiO'? ZIN,-ei)2,
i=1 i= i=

i=1

413



where the sign of equality holds if

M
2 ZNz‘O'f M
Edﬂ——n—lv—zo-—z = /12761'(0;' - Nie,-) and i.=11 = At ZlNiei >
1. €.
[E ' .
dy — No? 20
T, = lvm y T= ﬂ.V T . (8.8)
‘ ' - ZlNiei

See also [10], § 4.

8.3. Relative emphasis on the sampling aspect. The conditions stated in the
Theorem 7.1 can be approximately fulfilled in many ways. When choosing a
particular way, we may utilize some information which has not been included
either in the assumptions about the a priori mean values and variances or in
the cost function. A problem of this kind is how to distribute the effort between
the sampling design and the estimation method. On some occasions it is better
to pay attention to the sampling design (e. g. see Example 7.3) and on other
occasions it is better to choose carefully the estimation method.

8.4. Connection between the a priori mean values and the assumption of
non-correlation. The assumption of non-correlation of ascertained values is
the more realistic, the more specific are the a priori mean values. For example,
in a population of areas on which total yields of cereal-crops are ascertained,
we may pub

L (8.9)
or
By = p; (8.10)
or, finally,
ue = btx; + ax, (8.11)

where z; is the size of the area and ¢; is an eye-estima,te' of the yield per unit
area. The assumption (8.9) means that all influences are understood as random
factors. The correlation of all these factors will cause the correlation of the
values y;. For example, in some regions there is a greater average size of areas
than in other and, therefore, a greater average total yield on there areas. If
we know the sizes z; and take the model (8.10), then this source of correlation
will disappear. In model (8.11), there is excluded a further source of correlation,
namely the correlation of fertility on neighbourhooding areas. When using
this last model we may hope that the yields are a priori approximately non-
correlated. ’
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8.5. Sampling designs with maximum entropy. A simple way of avoiding
unfavourable consequences of the possible violation of the hypothesis of the
non-correlation is to choose a sampling designs which distributes the probabil-
ities P(s) as uniformly as possible. This requirement may be formulated in the
form that we wish to maximize the entropy

E = — S P(s)log P(s) . ’ (8.12)
ics

If the probabilities =z;, see (1.4), are fixed, the sampling which maximizes
(8.12) is the Poisson sampling described in [10]. In fact, any sampling may be
understood as N experiments having two possible outcomes: including or not
including the element ¢ in the sample. When the probability of including the
element 7 in the sample, namely =, is given for each of these experiments,
then the entropy will be maximum, as is well-known, if all these experiments
are independent. By the last requirement just the Poisson sampling is defined.
Now we shall show that the rejective sampling (Section 4) with fixed
&1, ...y &y has the greatest entropy in the class of sampling design with the
same 7, ..., wy and with fixed sample size, n. In fact, bearing in mind (1.3) and
using the usual method of Lagrange multiplicators 1;, we get for P(s) and 1,

the following equations

N
0

py oy [ZV_ P(s) log P(s) +21,. ;P(s)] — —logP(s) — 1 +Zz,. =0, seV,,
) (8.13)
SPE)=m, i=1..,N, (8.14)
where V,, is the set of all samples with sample size n. Since the function
— x log « is strictly concave, there is a single maximum. If it happens that the
solution is such 0 < P(s) < 1, then it clearly coincides with the solution of
the problem restricted to the domain 0 < P(s) = 1, s e V,. Now, it is easily

seen that (8.13) is satisfied by the probabilities (4.1) and by

ho=logo +2(1—log 2. L. (8.15)
seV, iZes

As regards (8.14), it is fulfilled automatically, since we considered just those
7y, ..., wy Which are yielded by the given «y, ..., xy.

C. OPTIMUM STRATEGY. CASE II: THE ASCERTAINED VALUES FORM
A RANDOM SERIES WITH A STATIONARY CONVEX CORRELATION
FUNCTION AND STATIONARY COEFFICIENTS OF VARIATIONS (9—10)

If the population is meaningfully ordered (in time or space), the ascertained
values are very often governed by a convex correlation function. An empirical
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correlation function of this kind is shown in the Fig. 1, where also the estimated
correlation function is drawn. The data refer to a population of plots where
the area of forest land has been measured.!)

Convex correlation function are so often met with that they deserve a de-
tailed study. This has been undertaken in the paper [1], and in subsequent
papers [3] and [7], where, under the supposition

Correlation . .
coeflicients of convexity, it is proved that systematic sampling
is superior to simple random sampling, stratified
401
04¢*+066>"
05+
0 - . distance
0 05 10 45 20 25 30 of plots

Fig. 1.

sampling, and several independent systematic samplings. In the present
paper, using quite a different method, we shall derive a general result that
systematic sampling is better than any other sampling design under consi-
deration. Moreover, we shall replace the supposition that Ey; and Vy, are sta-
tionary by a more general supposition that only the coefficients of variation,

VVyi/Eyf, are so. As a solution we shall obtain systematic .sampling with
generally unequal probabilities.

9. Preliminaries

Lemma 9.1. Among all integral-valued random variables x possessing a given
mean value & the random variable which takes on only the values [£] and [E] + 1
18 of least variance. Here [£] denotes the greatest integral number not exceeding &.

Proof. Putting a = [£] + 3, we see that

Dr— 5 (k—a)*Pe =k} — (& — a),

where

(k—ap=4%, i k=[] or [£]+1,
> }, otherwise.

This accomplishes our lemma.

1) The Figure 1 is borrowed from the paper [2] with author’s kind permission.
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Definition. A correlation function R(i — §), 4,5 = 1, ..., N that satisfies
the condition

R(u)—‘zR(u;U)—I—R(v)gO, 0<wuv=N, (9.1)

is called convex.

Lemma 9.2. Any convex correlation function R(i — j), 2,7 =1, ..., N, of
of a discrete stationary random process may be expressed in the form

w N+i-1
R(i —7) =AEI wzl [B(2 + 1) — 2R(2) + B(A — )] gnudnes  (9.2)
1=4,j<N
where

Iae=1, if o—i<iZLow, (9.3)

=0, otherwise .

and '
R(A4+1)—2RA) +R(A—1)=0. (9.4)

Proof. The inequality (9.4) follows from the assumption (9.1) when putting
%=1+ 1, v =1 — 1. The equation (9.2) is a consequence of the following

identities:
N+4i-1

> Goudne=1—li—jl, it 2>]i—j
= 0, otherwise
and

5 l: 1(1 — i — IR + 1) — 2R(A) + R(A —1)] =
@ i
= S [R(A+1)—2B() +RA—1)] =

A=[iZF|+1 p=[i7]+1

= liﬂ ) ﬁ [R(2 + 1) — 2R(A) + R(A — 1)] =

= 2 [RBa—1)— Ru)]=R(i—7j])=Rt— 7).

u=li-il+1

10. An optimum property of systematic sampling

We shall suppose that the random sequence y, ..., ¥y possesses stationary
coefficients of variation and a stationary convex correlation function, i. e.

By, = wz;, Vy, = o%;, Cov (y,,y,) = o®zz,:R( — ), (10.1)
850y = Lwssg N 5

and shall choose a sampling design which
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(a) yields samples of fixed size, n,
(b) gives the following probabilities #; of including the element 7 in the

sample
nE;

x4+ ..oy’

TT; =

i=1,..,N (10.2)

(c) minimizes the expected variance of the estimator

=-zy‘ X = z (10.3)

i=1
Remark 10.1. The correlation function
Re—q=1, if 1=7,
= 0, otherwise,

is convex, and, consequently, the scheme (10.1) incorporates the case of non-
correlated random variables with stationary coefficients of variation as
a particular case. When supposing constant costs, i. e. ¢; =¢, 1 = 1,..., N,
then the condition (10.2) and the estimator (10.3) garantee that the sampling-
estimating strategy, we are choosing, will be optimum for this particular
case. In fact, then (10.2) is equivalent to (7.11) and the estimator (10.3)
implies the fulfilment of (7.12) and (7.13).

Theorem 10.1. T'he above problem is solved by systematic sampling defined as
follows: The sample consists of those elements i for which the sum z, + ... + ;
at first reaches or exceeds some of the numbers

N

r,r—l——%X,...,r—{—nle, (X=z$i),

i=1

where r is a random variable uniformly distributed over the interval 0 < r =

<1x.

n

Proof. Unbiassedness of the estimator (10.3) for any particular sequence

Y1, ---, Yy justifies the first of the following identities (the remaining ones are
obvious):

N N
EM(F — ¥)* = EM(Y — 3 )2 — E(Y — 3 pm)? =

i=1

=ME( zy’ —,uX)z—~E( — uX) =

-y on(zsz_»)_E( .

1€S JeS
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Consequently, it suffices to minimize M( > Z R(2 — 7)). Using (9.2) we obtain

i€8 jes

o N-i-1
M(2 2> R — ) = Z Z [B(% + 1) — 2R(3) + B(2 — DIM( 3 gi)?

jeS 7e8 A=1 1 ies

According to (9.4) it suffices to prove that M( > ¢:,)? is minimized for each

2 and . The definition (9.3) of ¢;;, implies that

X Z i(3) (10.4)

2€8 i=w—A+1

where p; are random variables such that

p(s) =1, if s»>1,
=0, otherwise. ‘ (h02)
This means that

(zqm)= S Mpen= > m=2 S

f=w—-1+1 {=w—A+1 i=w—2A+1
i. e., in accordance with the point (b), the mean value of > g;), is constant
€8
for any considered sampling design. Thus minimizing M( z g:20)? i equivalent
©
to minimizing D( 2, ¢;,,) for given mean value % > @ As D g, is an
tes

i=w—A+1 te$

integral-valued random variable, it suffices, according to lemma 9.1, to show

" < 7~
that g:s @0 only takes on values I:-X . E—;Hxi] and [f ' Z/Hlx,-] -+ 1, where
[£] again denotes the greatest integral number not exceeding &. This may be
done as follows: Z ¢iro 18 the number of members of the set {w — 1+ 1, ..., 0}

€8
which have been included in the sample, and this number, according to the
definition of the systematic sampling in Theorem 10.1, equals the number of

integrals £ = 1, ..., n for which

k—1
x1+...+X,‘,_,\<r+—n—X§x1—|—...—}—xw

F@ A+ o+ A=) F1I<ES T @+t —n+1. (106

The number of integrals lying in a interval of fixed length I, however, can
only equal [I] or [!] + 1. The proof may be thus completed by observing that

. n
the length of the interval (10.6) equals X Z X .

'i-w—i.+1
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