

## Werk

Label: Abstract

**Jahr:** 1958

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0083 | log166

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

а  $\mathfrak{M}(\mathbf{u_1}, X_1)$  обозначает множество всех действительных чисел t, для которых  $X_1 + t\mathbf{u_1} \in \mathfrak{M}$ . Если точке  $X_2$  соответствует тот же базис, как и точке  $X_1$ , то положим  $X_3 = X_2 + t_2\mathbf{u_2}$ , где  $t_2$  определяется условием

$$\label{eq:final_state} \textit{f}(X_2 + t_2 \textbf{\textit{u}}_2) = \min_{t \, \in \, \mathfrak{M}(\textbf{\textit{u}}_2 \textbf{\textit{X}}_2)} \textit{f}(X_2 + t \textbf{\textit{u}}_2) \, .$$

Если же точке  $X_2$  не соответствует тот же базис, что точке  $X_1$ , то для  $X_2$  повторяем процесс, примененный к  $X_1$ , с первым вектором соответствующего точке  $X_2$  базиса.

Предположим, что мы уже построили точку  $X_n$ . Пусть  $\mathbf{v}_1^{(n-1)}, \ldots, \mathbf{v}_k^{(n-1)}$  векторы соответствующего точке  $X_{n-1}$  базиса и пусть  $X = X_{n-1} + t_{n-1}\mathbf{v}_r^{(n-1)}$  ( $1 \le r \le k$ ); если точке  $X_n$  соответствует тот же басис, как и точке  $X_{n-1}$ , положим  $X_{n+1} = X_n + t_n\mathbf{v}_r^{(n-1)}$ , где  $\overline{r} \equiv r+1 \pmod k$ ,  $1 \le \overline{r} \le k$  и  $t_n$  определяется условием

$$f(X_n + t_n \mathbf{v}_{\bar{\tau}}^{(n-1)}) = \min_{t \in \mathfrak{M}(v_{\bar{\tau}}^{(n-1)}, X_n)} f(X_n + t \mathbf{v}_{\bar{\tau}}^{(n-1)}) .$$

Если же точке  $X_n$  не соответствует тот же базис, что точке  $X_{n-1}$ , то для  $X_n$  повторяем весь процесс с первым вектором соответствующего базиса аналогично тому, как это было у точки  $X_1$ . Тогда справедлива

**Теорема 2.** Последовательность  $\{X_n\}_{n=1}^{\infty}$ , построенная по описанному выше способу, является сходящейся; если обозначить  $X_0 = \lim_{n \to \infty} X_n$ , то  $f(X_0) = \min_{X \in X_n} f(X)$ .

Параграф 4 посвящается применению изложенной теории к случаю, когда f(X) я вляется суммой линейной формы и положительно-определенной квадратичной формы.

В параграфе 5 показано применение изложенного метода на примере.

## Summary

## AN A PPROXIMATIVE METHOD FOR NONLINEAR PROGRAMMING

JAROMÍR ABRHAM, Praha (Received August 27, 1957)

In the present paper an iterative process is formulated for finding the minimum of a strictly convex function f(X) on the set  $\mathfrak{M}$  of all nonnegative solutions of a system of linear equations

$$\sum_{j=1}^{m+k} a_{ij} x_j = b_i, \quad i = 1, ..., m, \ k \ge 1$$
 (1)

of rank m. We suppose that  $\mathfrak{M} \neq \emptyset$ .

Before formulating our iterative process we must introduce some concepts.

By a vector of the set  $\mathfrak M$  we mean a solution of the system of linear homogenous equations

$$\sum_{i=1}^{m+k} a_{ij}u_i = 0 , \quad i = 1, ..., m .$$
 (2)

We shall suppose that  $\lim_{t\to\infty} f(X+t\mathbf{v}) = +\infty$  for every vector  $\mathbf{v} = (v_1, \dots$ 

...,  $v_{m+k}$ ) of  $\mathfrak{M}$  such that  $v_i \geq 0$ ,  $i = 1, \ldots, m + k, \sum_{i=1}^{m+k} v_i > 0$  for every  $X \in \mathfrak{M}$ . Under this assumption the existence of the finite minimum of f(X) on  $\mathfrak{M}$  is proved (sec. 1).

A non-zero vector  $\mathbf{u} = (u_1, ..., u_{m+k})$  of  $\mathfrak{M}$  is said to be *basic* if there are indices  $i_1, ..., i_{k-1}$  such that  $u_{i_j} = 0, j = 1, ..., k-1$ .

Let  $X = (x_1, ..., x_{m+k})$  be a point of  $\mathfrak{M}$  for which  $x_{i_j} = 0, j = 1, ..., k - r, 0 \leq r \leq k$ . Then a basis corresponding to X is a set of k linearly independent basic vectors  $\mathbf{v}_1, ..., \mathbf{v}_k$   $(v_i = (v_{i_1}, ..., v_{i_m+k}), i = 1, ..., k)$  such that

- 1. there exist r vectors  $\mathbf{v}_{\nu_1}, \ldots, \mathbf{v}_{\nu_r}$  in the basis for which  $v_{\nu_i, i_j} = 0$ ,  $s = 1, \ldots, r, j = 1, \ldots, k r$ .
- 2. if  $\mathbf{v}_{\mu_i}, \ldots, \mathbf{v}_{\mu_{k-r}}$  are all others vectors of this basis then to every  $i_j$ ,  $j=1,\ldots,k-r$  there exists exactly one  $\mu_j$  such that  $v_{\mu_j},i_j>0$ ,  $j=1,\ldots,k-r$  and that  $v_{\mu_j},i_s=0$  for  $j\neq s$ .

A point  $X \in \mathfrak{M}$  is minimal with respect to a vector  $\mathbf{v}$  of  $\mathfrak{M}$  if for every real t such that  $X + t\mathbf{v} \in \mathfrak{M}$  it is  $f(X + t\mathbf{v}) \ge f(X)$ .

For the proof of the convergence we need

**Theorem 3.** Let f(X) be a convex function defined on  $\mathfrak{M}$  and possessing continuous partial derivatives of the 1st and 2nd order with respect to all variables. Than a necessary and sufficient condition for the relation  $f(X_0) = \min_{x \in \mathfrak{M}} f(X)$  is that the point  $X_0$  be minimal with respect to all vectors of some corresponding basis.

We are now in a position to formulate our iterative process. Let  $X_1$  be an arbitrary point of  $\mathfrak{M}$ ,  $u_1, \ldots, u_k$  the vectors of a corresponding basis. Let us put  $X_2 = X_1 + t_1 u_1$  where  $t_1$  is uniquely determined by the condition

$$f(X_1 + t_1 \mathbf{u}_1) = \min_{t \in \mathfrak{M}(u_1, X_1)} f(X + t \mathbf{u}_1)$$

 $(\mathfrak{M}(\mathbf{u}_1, X_1))$  is the set of all real t for which  $X_1 + t\mathbf{u}_1 \in \mathfrak{M}$ ). If the same basis corresponds also to  $X_2$  we put  $X_3 = X_2 + t_2\mathbf{u}_2$  determining  $t_2$  by the condition

$$f(X_2 + t_2 \mathbf{u}_2) = \min_{\mathbf{t} \in \mathfrak{M}(\mathbf{u}_2, \mathbf{X}_2)} f(X_2 + t\mathbf{u}_2).$$

If this is not the case we proceed for  $X_2$  with the first vector of a corresponding basis as for  $X_1$ .

Let us now suppose we have already constructed the  $X_n$ . Let  $\mathbf{v}_1^{(n-1)}$ , ... ...,  $\mathbf{v}_k^{(n-1)}$  be the basis corresponding to  $X_{n-1}$  and let  $X_n = X_{n-1} + t_{n-1}\mathbf{v}_r^{(n-1)}$  ( $1 \le r \le k$ ); if this basis corresponds also to  $X_n$  we put  $X_{n+1} = X_n + t_n\mathbf{v}_r^{(n-1)}$  where  $\overline{r} \equiv r+1 \pmod k$ ,  $1 \le \overline{r} \le k$  and determine  $t_n$  by the condition

$$f(X_n + t_n \mathbf{v}_{\tau}^{(n-1)}) = \min_{\substack{t \in \mathfrak{M}(\mathbf{v}_{\tau}^{(n-1)}, X_{n-1})}} f(X_n + t \mathbf{v}_{\tau}^{(n-1)}).$$

In the contrary case we find a basis corresponding to  $X_n$  and construct  $X_{n+1}$  from  $X_n$  as  $X_2$  from  $X_1$ .

**Theorem 4.** The sequence  $\{X_n\}_{n=1}^{\infty}$  constructed by the above described method is convergent. Denoting  $X_0 = \lim_{n \to \infty} X_n$  we have  $f(X_0) = \min_{x \in \mathfrak{M}} f(X)$ .

In sec. 4 the case is studied where f(X) is a sum of a linear form and a positive definite quadratic form.

In sec. 5 a numerical exemple is given.