

Werk

Label: Abstract

Jahr: 1957

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0082|log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

всякий другой подбор α , γ может вести к менее выгодному результату. Если дополнительно предположить существование ограниченной M'''(x) в некоторой окрестности Θ , то лучшим является подбор $\alpha=1$, $\gamma=\frac{1}{6}$, дающий $\mathsf{E}[(x_n-\Theta)^2]=O(n^{-\frac{2}{3}});$ если в некоторой окрестности Θ функция M(x) — аналитическая и симметричная относительно Θ , то $\mathsf{E}[(x_n-\Theta)^2]==O(n^{-(1-\epsilon)})$ для $\alpha=1$, $\gamma=\frac{1}{2}\epsilon$ и для произвольного $\epsilon>0$. При дополнительном условии, что $\sigma^2(x)=\int\limits_{-\infty}^{\infty}(y-M(x))^2\,\mathrm{d}H(y|x)$ непрерывна и положительна в некоторой окрестности Θ , и при ограничении значений α , γ доказано, что случайные величины $n^{\frac{1}{2}(\alpha-2\gamma)}$ $(x_n-\Theta)$ асимптотически нормальны.

В варианте, рассматриваемом в § 2-ом, на функции распределения H(y|x) наложены только два условия, а именно (2.2) и выполнение неравенства $K_0|x-\Theta| \leq |M'(x)| \leq K_1|x-\Theta|$ для всех $x \in (-\infty, +\infty)$. С небольшими изменениями в дополнительных предположениях справедливы и в этом случае все выше упомянутые теоремы.

§ 1-ый является реферирующим.

Примечание. В статье С. Derman, An application of Chung's lemma to the Kiefer-Wolfowitz stochastic approximation procedure, Annals Math. Stat. 27 (1956), 532—536 доказаны две теоремы, похожие на теоремы 5 и 7 (случай 3°) нашей статьи.

Summary

ON THE KIEFER-WOLFOWITZ APPROXIMATION METHOD

VÁCLAV DUPAČ, Praha. (Received January 20, 1956.)

Asymptotic properties are established for the Kiefer-Wolfowitz [9] procedure of finding the value $x = \theta$, for which the regression function $M(x) = \int_{-\infty}^{\infty} y \, \mathrm{d}H(y|x)$ achieves its maximum. The original assumptions are modified in such a way that it is possible to use the mathematical tools due to Chung [7]. Two different cases are treated. In the case considered in Sec. 3, all assumptions from [9] are accepted, some of them being strengthened: instead of (2.8) — from [9] — it is supposed that the inequality

$$|K_0|x - \Theta| \le |M'(x)| \le K_1|x - \Theta|, \quad K_0 > 0, \quad K_1 > 0$$

holds in some neighbourhood of Θ ; instead of (2.2) it is assumed, that a finite interval (A, B), containing Θ , is known, together with some lower estimates of M(A), M(B), and that $\int\limits_{M(x)-C}^{M(x)+C} \mathrm{d}H(y|x) = 1$ holds for all $x \in \langle A, B \rangle$ (C being a constant).

The sequences $\{a_n\}$, $\{c_n\}$, occurring in the approximation scheme, are supposed to be of the type $a_n = \frac{a}{n^{\alpha}}$, $c_n = \frac{c}{n^{\gamma}}$; then the choice $\alpha = 1$, $\gamma = \frac{1}{4}$ (c being positive and α greater than a specific constant) is proved to be optimal. This choice ensures that $\mathsf{E}[(x_n - \Theta)^2] = O(n^{-\frac{1}{2}})$ — every other choice can actually lead to a worse result. If in addition the existence of bounded M'''(x) is supposed in some neighbourhood of Θ , then the best choice is $\alpha = 1$, $\gamma = \frac{1}{6}$, giving $\mathsf{E}[x_n - \Theta)^2] = O(n^{-\frac{2}{3}})$; if in some neighbourhood of Θ the function M(x) is analytical and symmetrical about Θ , then for an arbitrary $\varepsilon > 0$ we can reach that $\mathsf{E}[(x_n - \Theta)^2] = O(n^{-(1-\varepsilon)})$ by a suitable choice of α , γ . Under the additional hypothesis that $\sigma^2(x) = \int\limits_{-\infty}^{\infty} (y - M(x))^2 \; \mathrm{d}H(y|x)$ is continuous and positive in a neighbourhood of Θ and with a restriction on the range of α , γ , the asymptotic normality of the random variables $n^{\frac{1}{2}(\alpha-2\gamma)}(x_n - \Theta)$ is proved.

In the case considered in Sec. 2, only two conditions are set upon the distribution functions H(y|x), namely, the (2.2) and the inequality $K_0|x-\Theta| \le |M'(x)| \le K_1|x-\Theta|$, holding for all $x \in (-\infty, +\infty)$. With some changes in additional conditions, all the theorems mentioned in the above case hold.

The Sec. 1 is an expository one.

Added in proof. C. Derman, An application of Chung's lemma to the Kiefer-Wolfowitz stochastic approximation procedure, AMS 27 (1956), pp. 532—536, has proved two theorems, which are similar to our Theorem 5 and Theorem 7 (case 3°).