

Werk

Label: Abstract

Jahr: 1957

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0082 | log106

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Равенство card $S_k^{(n)} = n + k - 3$ справедливо тогда и только тогда, кагда никакие две точки пересечения из $S_k^{(n)}$ не лежат на той же диагонали.

Zusammenfassung

EINE BEMERKUNG ÜBER DAS KONVEXE POLYGON

JIŘÍ SEDLÁČEK, Praha.

(Eingelangt am 30. VII. 1956.)

Diese Bemerkung befasst sich mit offenen Fragen der Arbeit des Verfassers "O soustavách úhlopříček v konvexním n-úhelníku" (Über Systeme der Diagonalen im konvexen n-Eck), Časopis pro pěstování matematiky, 81 (1956), 157—161.

Wir betrachten nur so ein konvexes n-Eck, dessen keine drei Diagonalen einen gemeinsamen Schnittpunkt haben. Wir bezeichnen mit $S_k^{(n)}$ so eine Menge der Diagonalen im n-Eck, die folgende zwei Eigenschaften hat: 1. $S_k^{(n)}$ enthält gerade k Schnittpunkte der Diagonalen; 2. durch Hinzufügen jeder weiteren Diagonalen des n-Ecks zu $S_k^{(n)}$ entstehen mindestens k+1 Schnittpunkte. Es sei card $S_k^{(n)}$ die Elementanzahl der Menge $S_k^{(n)}$. In unserem Beitrag wird die Abschätzung von card $S_k^{(n)}$ unter der Voraussetzung durchgeführt, dass k eine "verhältnismässig kleine" Zahl in Bezug auf n ist. Es werden diese Sätze bewiesen:

- **1.** Wenn $n \ge 2k + 2 \ge 4$ und c eine weitere ganze Zahl aus dem Interval (n-k-1; n+k-3) ist, dann existiert $S_k^{(n)}$ so, dass card $S_k^{(n)} = c$ ist.
 - **2.** Wenn $S_k^{(n)}$ (für $k \ge 1$) existiert, dann ist

$$n-k-1 \leq \operatorname{card} S_k^{(n)} \leq n+k-3$$
.

Die Gleichung card $S_k^{(n)} = n + k - 3$ gilt dann und nur dann, wenn keine zwei Schnittpunkte von $S_k^{(n)}$ auf der gleichen Diagonalen liegen.