

Werk

Label: Abstract

Jahr: 1956

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0081 | log23

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen 3,1481). Этот результат является небольшим улучшением результата, приведенного в работе Мантела [6]. Выводы §§ 2-ого и 4-ого иллюстрированы двумя численными примерами.

Summary

STOCHASTIC NUMERICAL METHODS

VÁCLAV DUPAČ, Praha. (Received February 14, 1955.)

The paper reports about the application of the so-called Monte Carlo methods in numerical calculation. The nature of this application is enlightened in § 1 by the example of the empirical determination of π . In § 2 the statistic $I = (b - a) n^{-1} \sum_{k=1}^{n} f(x_k)$ — where x_k are independent, uniformly distributed in $\langle a,b\rangle$ — is studied, as an estimator of the integral $\int f(x) dx$. (Cf. Kitagawa [2].) A numerical example is given. In § 3 an idea due to Tocher [3] is developed concerning the Monte Carlo evaluation of volumes of multidimensional bodies which are defined by complicated implicit relations between coordinates. A method is deduced which is a combination of the mathematical method and the Monte Carlo one, and which gives (in certain sense) the best accuracy. A result is given which can be called the stochastic modification of the lattice points problem. In § 4, matrix inversion by a Monte Carlo method is described, according to Forsythe-Leibler [5]. New are the formulae (3)—(6), i. e. the upper estimates of σ^2 and $E(\tau)$ in which the elements of the unknown inverse matrix do not occur. In § 5, the assertion $\pi \in (3,1380; 3,1481)$ is proved in a purely probabilistic way. This result is a slight improvement of an analogous result contained in a paper of Mantel [6].