

Werk

Label: Article **Jahr:** 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVIII—LIX

ON REPRESENTATIONS OF FUZZY QUANTUM POSETS

ANATOLIJ DVUREČENSKIJ, LE BA LONG, Bratislava

1. Introduction

Recently, there have appeared some models of fuzzy set theory [7, 3, 6, 4] wich can describe an axiomatic structure of, for example, quantum mechanics. These models are based on the one-to-one correspondence between subsets and their characteristic functions. If a quantum mechanical event, say a, is defined only vaguely, then by a fuzzy event we mean a function a defined on a crisp set Ω with the values in [0, 1].

The present paper will deal with fuzzy quantum posets as they have been defined in [4], and which generalize $q - \sigma$ -algebras, we give the representations by an orthomodular, σ -orthoposet, \bar{M} , as well as by an appropriate $q - \sigma$ -algebra, which is an analogue of the Loomis-Sikorski representation of \bar{M} .

2. Congruences on fuzzy quantum posets

We recall that according to [4], a fuzzy quantum poset is a couple (Ω, M) where Ω is a nonempty set, and M is a family of fuzzy sets from Ω , ie, $M \subseteq [0, 1]^{\Omega}$, such that

- (i) If $1(\omega) = 1$ for any $w \in \Omega$, then $1 \in M$;
- (ii) $a \in M$ implies $a^{\perp} := 1 a \in M$;
- (iii) if 1/2(w) = 1/2 for any $w \in \Omega$, then $1/2 \notin M$;
- (iv) $\bigcup_{n=1}^{\infty} a_n := \sup_n a_n \in M$ whenever min $(a_i, a_j) \le 1/2$

In particular, if Q is a $q - \sigma$ -algebra, i.e. Q is a nonvoid family of subsets of Ω , which is closed with respect to complements and unions of countably many

mutually disjoint sets of Q, then (Ω, M) , where $M = \{I_A : A \in Q\}$, is a fuzzy quantum poset.

Operations \cup , \bot , and \cap , which is defined $\bigcap_i a_i = \inf_i a_i$, are Zadeh's fuzzy union, fuzzy complement and fuzzy intersection, correspondingly, of fuzzy sets. We recall that \cup , \cap , \bot may be defined for all $\{a_i\} \subset [0, 1]^{\Omega}$, if necessary. Two fuzzy sets a and b are fuzzy orthogonal and we write $a \bot_F b$ iff $a \cap b \le 1/2$. We note that Mesiar [5] in the same way defined the F-disjointness of two fuzzy sets. The structure M has been suggested in the paper [1]. In the models [7, 3, 6], the orthogonality of a and b, $a \bot b$, is defined via $a \bot b$ iff $a \le b^{\bot}$. It is clear that if $a \bot b$ then $a \bot_F b$, but the converse does not hold in general. If $a \cup a^{\bot} = b \cup b^{\bot}$, then $a \bot_F b$ iff $a \bot b$. Moreover, according to the natural ordering \le , M is a poset with an orthogonality \bot : $a \mapsto a^{\bot}$, for which $a \cup a^{\bot} \le 1$ for any $a \in M$. We denote by $W_0(M)(W_1(M))$ the set of a alall $a \in M$ such that $a \le 1/2$, $(a \ge 1/2)$. Moreover, for any $a \in M$, $a \cap a^{\bot} \in W_0(M)$, $a \cup a^{\bot} \in W_1(M)$, and $W_0(M)$ and $W_1(M)$ consist only of elements of those forms.

A relation $R \subseteq M \times M$ is said to be a congruence relation on M if (i) R is an equivalence relation on M; (ii) if aRb then $a^{\perp}Rb^{\perp}$, for any $a, b \in M$; (iii) if

$$a_i \perp_F a_j$$
, $b_i \perp_F b_j$ for $i \neq j$, $a_i R b_i$, $i \geq 1$ then $\bigcup a_i R \bigcup b_i$.

Now we define a relation $\sim \subseteq M \times M$ via

$$a \sim b \text{ iff } a \perp_F b^\perp, \qquad a^\perp \perp_F b.$$
 (2.1)

It is clear that (i) $a \sim a$ for any $a \in M$; (ii) if $a \sim b$, then $a^{\perp} \sim b^{\perp}$; (iii) if $a \sim b$, then $b \sim a$. On the other hand, \sim is not transitive, in general, as we may verify on simple examples. Let \approx be the transitive closure of \sim , i.e., the smallest equivalence relation on M containing \sim . It is obvious that

$$a \approx b$$
 iff there are $a_1, \ldots, a_n \in M$ such that
$$a \sim a_1, a_1 \sim a_2, \ldots, a_n \sim b$$
 (2.2)

We recall that if
$$\{c_i\} \subset W_1(M)$$
, then [4] $c = \bigcap_{i=1}^{\infty} c_i \in W_1(M)$ and $\bigcup_{i=1}^{\infty} \{c_i = 1/2\} \neq \mathcal{Q}$, where $\{c_i = 1/2\} = \{w \in \Omega: c_i(w) = 1/2\}$. Indeed, we have $\bigcup_{i=1}^{\infty} \{c_i = 1/2\} \subseteq \{c = 1/2\} \neq \mathcal{Q}$.

Let us define relations θ_0 , θ_f and θ_{∞} on M as follows:

(i) $a \theta_0 b$ iff there is an $c \in W_1(M)$ such that

$$a \cap b^{\perp} \cap c, a^{\perp} \cap b \cap c \leq 1/2;$$
 (2.3)

(ii) $a\theta_1 b$ iff there are $c_1, \ldots, c_n \in W_1(M)$ such that

$${a \cap b^{\perp} > 1/2} \cup {a^{\perp} \cap b > \frac{1}{2}} \subseteq \bigcup_{i=1}^{n} {c_i = 1/2};$$
 (2.4)

(iii) $a \theta b$ iff there are $\{c_n\} \subset W_1(M)$ such that

$${a \cap b^{\perp} > 1/2} \cup {a^{\perp} \cap b > 1/2} \subseteq \bigcup_{n=1}^{\infty} {c_n = 1/2}$$
 (2.5)

The following result generalizes that in [3].

Lemma 2.1. The transitive closure \approx is a proper congruence relation on M and, moreover, $\approx \theta_0 = \theta_f = \theta_\infty$.

Proof: Since (2.3) is equivalent to the assertion $\{a \cap b^{\perp} > 1/2\} \cup \{a^{\perp} \cap b > 1/2\}$

$$>\frac{1}{2}$$
 $\subseteq \{c=1/2\}$, we conclude that $\theta_0 \subset \theta_f \subset \theta_\infty$. Suppose $a \theta_\infty$ b, then we define

a sequence
$$\{c_n\} \subset W_1(M)$$
 with (2.5). Let us put $c = \bigcap_{n=1}^{\infty} c_n \in W_1(M)$, then

 $\bigcup_{n=1}^{\infty} \{c_n = 1/2\} \subseteq \{c = 1/2\} \text{ which yields } \theta_{\infty} \subseteq \theta_0. \text{ Moreover, } \theta_0 \text{ is a congruence relation on } M. \text{ It suffices to verify the transitivity of } \theta_0. \text{ Let } a \theta_0 b, b \theta_0 c. \text{ We can find } c_1, c_2 \in W_1(M) \text{ such that } a \cap b^{\perp} \cap c_1, a^{\perp} \cap b \cap c_1, b \cap c^{\perp} \cap c_2, b^{\perp} \cap c \cap c_2 \leq 1/2. \text{ It is obvious that.}$

$$a \cap c^{\perp} \cap (c_1 \cap c_2), \qquad a^{\perp} \cap c \cap (c_1 \cap c_2) \leq 1/2,$$

which entails $a \theta_0 c$.

Therefore, $\approx \subseteq \theta_0$. On the other hand, let $a \theta_0 b$. Then, for some $c \in W_1(M)$, (2.3) holds, and it is evident that $a \sim a \cap c \sim b \cap c \sim b$ which gives us $a \approx b$ and $\theta_0 = \approx$.

To finish our proof, assume that $a_i \theta_0 b_i$ for $a_i \perp_F a_j$, $b_i \perp_F b_j$ whenever $i \neq j$. There exists a sequence $\{c_i\} \subset W_1(M)$ such that $a_i \cap b_i^{\perp} \cap c_i$, $a_i^{\perp} \cap b_i \cap c_i \leq 1/2$. If we put $c = \bigcap_{i=1}^{\infty} c_i$, then $\bigcup_i a_i \cap \left(\bigcup_i b_i\right)^{\perp} \cap c$, $\left(\bigcup_i a_i\right)^{\perp} \cap \left(\bigcup_i b_i\right) \cap c \leq 1/2$, so that \approx is a congruence on M. The fact that \approx is proper follows from obvious fact $0 \approx 1$.

3. Quotient of a fuzzy quantum poset

A nonvoid subset $I_0 \subseteq M$ is said to be an $F - \sigma$ -ideal of (Ω, M) if (i) $a \cap a^{\perp} \in I$ for any $a \in M$;

- (ii) if $a \le b$, $a \in M$, $b \in I$, then $a \in I$;
- (iii) if $a_i \perp_F a_j$ for $i \neq j$, $\{a_i\} \subset I$, then $\bigcup_{i=1}^{\infty} a_i \in I$
- (iv) if $a \cap c \in I$ for a $c \in W_1(M)$, then $a \in I$.

By an F-state on (Ω, M) we mean any function $m: M \to [0, 1]$ such that

(i)
$$m\left(a\bigcup_{\infty}a^{\perp}\right)=1$$
 for any $a\in M$;

(ii)
$$m\left(\bigcup_{i=1}^{\infty} a_i\right) = \sum_{i=1}^{\infty} m(a_i)$$
, if $a_i \perp_F a_j$ for $i \neq j$.

Then I_m : = $\{a \in M : m(a) = 0\}$ is a proper $F - \sigma$ -ideal of (Ω, M) , (see [4]). Moreover, M is an $F - \sigma$ -ideal, too.

Proposition 3.1. Put

$$I_0 = \{a \in M : \text{ there is a } c \in W_1(M), \ a \cap c \le 1/2\}$$
 (3.1)

Then I_0 is a proper $F - \sigma$ -ideal of (Ω, M) containing $W_0(M)$ such that $I_0 = \{a \in M : a\theta_0 0\}$. Moreover, if I is any $F - \sigma$ -ideal of (Ω, M) , then $I_0 \subseteq I$.

Proof. It follows from Lemma 2.1 and from the definition of $F - \sigma$ -ideals.

Q.E.D.

Lemma 3.2: For any $a \in M$, we put

$$\bar{a} = \{b \in M \colon b \theta_0 a\} \tag{3.2}$$

and

$$\bar{M} = M/I_0 = \{\bar{a} \colon a \in M\} \tag{3.3}$$

If in \bar{M} we define a relation \leq via

$$\bar{a} \le \bar{b}$$
 iff there is a $c \in W_1(M)$ with $a \cap b^{\perp} \cap c \le 1/2$, (3.4)

then \leq is a well-defined partial ordering on \overline{M} . In addition, if $a \cup b \in M$, then $\overline{a} \leq \overline{b}$ if $\overline{a \cup b} = \overline{b}$.

Proof. To show that the relation \leq defined via (3.4) is correct, it is sufficient to prove that if $\bar{a} \leq \bar{b}$ then $\bar{a}_1 \leq \bar{b}_1$ whenever $a\theta_0 a_1$, $b\theta_0 b_1$. Supposing this, we find $c, c_1, c_2 \in W_1(M)$ such that $a \cap b^{\perp} \cap c$, $a \cap a_1^{\perp} \cap c_1$, $a^{\perp} \cap a_1 \cap c_1$, $b \cap b_1^{\perp} \cap c_2$, $b^{\perp} \cap b_1 \cap c_2 \leq 1/2$. Hence $a_1 \cap b_1^{\perp} \cap (c \cap c_1 \cap c_2 \cap (a \cup a^{\perp}) \cap (b \cup b^{\perp})) \leq 1/2$. It is simple that $\bar{a} \leq \bar{a}$, and $\bar{a} \leq \bar{b}$, $\bar{b} \leq \bar{a}$ entail $\bar{a} = \bar{b}$. The transitivity of \leq follows from the following. Let $\bar{a} \leq \bar{b}$, $\bar{b} \leq \bar{c}$, we can find $c_1, c_2 \in W_1(M)$ such that $a \cap b^{\perp} \cap c_1$, $b \cap c^{\perp} \cap c_2 \leq 1/2$. Hence $a \cap c^{\perp} \cap (c_1 \cap c_2 \cap (b \cup b^{\perp})) \leq 1/2$.

The last property may be proved in the same way.

Q.E.D.

Remark. With respect to the partial ordering \leq , we define in the poset \overline{M} the join V and the meet \wedge , if they exist in it.

Lemma 2.1 proves that the mapping $\perp : \overline{M} \to \overline{M}$ defined via

$$\bar{a} \mapsto \bar{a}^{\perp}, \quad a \in M,$$
 (3.5)

is defined well. In accordance with quantum logic theory, two elements \bar{a} , \bar{b} of \bar{M} are orthogonal, and we write $\bar{a} \perp \bar{b}$, iff $\bar{a} \leq \bar{b}^{\perp}$.

Theorem 3.3. Let (Ω, M) be a fuzzy quantum poset. Then the quotient poset $\overline{M} = M/I_0$ is, with respect to the partial ordering \leq and \perp which are defined via (3.4) and (3.5), respectively, an orthomodular σ -orthoposet with the minimal and maximal elements $\overline{0}$ and $\overline{1}$, correspondingly. Moreover, the canonical mapping $\varphi: a \mapsto \overline{a}, a \in M$, is a surjective σ -homomorphism from Monto \overline{M} , ie., it preserves the maximal elements, fuzzy orthogonal elements and joins of mutually orthogonal sequences.

Proof. It is evident that, for any $a \in M$, $\bar{0} \le \bar{a} \le \bar{1}$. If $a \perp_F b$ then $\bar{a} \perp \bar{b}$, indeed, $a \cap b \le 1/2$ entails $a \cap b \cap 1 \le 1/2$, so that $\bar{a} \le \bar{b}^{\perp}$.

Let $\{\bar{a}_i\}$ be any sequence of mutually orthogonal elements of \bar{M} . Then we can find a sequence $\{a_i'\}$ of mutually fuzzy orthogonal elements from M such that $\bar{a}_i' = \bar{a}_i$ for any i. For this, it suffices to find a sequence $\{c_{ij}\}\subseteq W_1(M)$ such that

$$a_i \cap a_j \cap c_{ij} \le 1/2$$
. Putting $c = \bigcup_{i,j} c_{i,j} \in W_1(M)$ and $a'_i = a_i \cap c$, $i \ge 1$, we obtain the

elements in question. Moreover, we assert $\bigvee_i \bar{a}_i = \bigvee_i \bar{a}'_i = \bar{a}$ where $a = \bigcup_i a'_i$. It is evident that $\bar{a}'_i \leq \bar{a}$ for any $i \geq 1$. If $\bar{a}'_i \leq \bar{b}$, $i \geq 1$, for some $\bar{b} \in \bar{M}$, then there exists an $c_0 \in W_1(M)$ such that $a'_i \cap b^{\perp} \cap c_0 \leq 1/2$ for any $i \geq 1$. This yields $(\cup a'_i) \cap b^{\perp} \cap c_0 \leq 1/2$, $a \cap b^{\perp} \cap c_0 \leq 1/2$, and $\bar{a} \leq \bar{b}$.

The orthogonality $\perp : \bar{a} \mapsto \bar{a}^{\perp}, a \in M$, has the properties:

- (i) $(\bar{a}^{\perp})^{\perp} = \bar{a}$ for any $\bar{a} \in \bar{M}$:
- (ii) if $\bar{a} \leq \bar{b}$, then $\bar{b}^{\perp} \leq \bar{a}^{\perp}$;
- (iii) $\bar{a} \vee \bar{a}^{\perp} = \bar{1}$ for any $\bar{a} \in \bar{M}$;
- (iv) if $\bar{a} \leq \bar{b}$, then there is a $\bar{c} \in \bar{M}$ such that $\bar{a} \perp_0 \bar{c}$ and $\bar{a} \vee \bar{c} = \bar{b}$.

The first three properties are simple. To prove the fourth, suppose $\bar{a} \leq \bar{b}$. Then there is a $c_1 \in W_1(M)$ such that $a \cap b^{\perp} \cap c_1$, $a^{\perp} \cap b \cap c_1 \leq 1/2$. Put $a_1 = a \cap c_1 \in M$, then $a_1 \perp_F b^{\perp}$ and $c: = b \cap a_1^{\perp}$; $c \perp_F a_1$ calculate $\bar{a} \vee \bar{c} = \bar{a}_1 \vee \bar{c} = \bar{b}$. The last equality follows from the observations: $(a_1 \cup c) \cap \bar{c} = a_1 \cap b^{\perp} \cup c \cap b^{\perp} = a \cap c_1 \cap b^{\perp} \cup b \cap a_1^{\perp} \cap b^{\perp} \leq 1/2$ and $(a_1^{\perp} \cap c^{\perp}) \cap b = (a^{\perp} \cup c_1^{\perp}) \cap c^{\perp} \cap b \leq 1/2$.

The properties of the canonical mapping are now obvious.

4. The Loomis-Sikorski representation

From Theorem 3.3 we conclude that the quotient M/I_0 is a quantum logic [9] which is not necessary a lattice. If M is closed with respect to the fuzzy union of any sequence of fuzzy sets of M, then M is a σ -lattice; consequently, M/I_0 is a Boolean σ -algebra. In this case, due to the famous Loomis-Sikorski theorem [8], we find a measurable space (X, \mathcal{S}) and a σ -homomorphism h from \mathcal{S} onto M/I_0 .

In this section we show that for any fuzzy quantum poset (Ω, M) we can find a $q - \sigma$ -algebra Q of some $X \neq \emptyset$ which can be surjectively embedded onto M/I_0 , moreover $X = \Omega$.

According to [4], we introduce the following system of subsets of Ω :

$$K(M) = \{A \subseteq \Omega : \text{ there is an } a \in M \text{ such that}$$

$$\left\{ a > \frac{1}{2} \right\} \subseteq A \subseteq \{a \ge 1/2\}$$
(4.1)

then K(M) is a $q - \sigma$ -algebra as it has been proved in [4]. The K(M) has the following simple properties:

(i) if for
$$\{a_i\} \subset M$$
, $\cap a_i \in M$, then $\bigcap A_i \in K(M)$,
where $\{a_i > 1/2\} \subseteq A_i \subseteq \{a_i \ge 1/2\}$;

(ii)
$$\{a > 1/2\} \subseteq A_t \subseteq \{a \ge 1/2\}$$
, then $\bigcup A_t \in K(M)$.

Theorem 4.1. Let (Ω, M) be any fuzzy quantum poset. Then there is a surjective σ -homomorphism h from K(M) onto M/I_0 which preserves maximal elements, complements and transmits unions of countably many mutually disjoint subsets to joins of mutually orthogonal elements.

Proof. We define a mapping $h: K(M) \to \overline{M}$ via $h(A) = \overline{a}$ iff $\{a > 1/2\} \subseteq \subseteq A \subseteq \{a \ge 1/2\}$. We show that h is defined well. If $\{b > 1/2\} \subseteq A \subseteq \{b \ge 1/2\}$, then $\{b^{\perp} > 1/2\} \subseteq A' \subseteq \{b^{\perp} \ge 1/2\}$ which gives $\{a > 1/2\} \cap \{b^{\perp} > 1/2\} \subseteq A \cap A' = \emptyset$, so that $a \cap b^{\perp} \le 1/2$, similarly $a^{\perp} \cap b \le 1/2$, which proves $\overline{a} = \overline{b}$.

Therefore,
$$h(\Omega) = 1$$
, $h(A^c) = h(A)^{\perp}$ for any $A \in K(M)$; and $h\left(\bigcup_i A_i\right) = \bigvee_i h(A_i)$ if $A_i \cap A_j = \emptyset$, $i \neq j$, $\{A_i\} \subset K(M)$. Q.E.D.

REFERENCES

 Dvurečenskij, A.: Modely fuzzy kvantových priestorov in Zborník Probastat '89, 1989, 96-96.

- 2. Dvurečenskij, A.-Riečan, B.: On joint distribution of observables for F-quantum spaces, Fuzzy sets and systems, appears.
- 3. Dvurečenskij, A.-Chovanec, F.: Fuzzy quantum spaces and compatibility, Inter J. Theor. Phys. 27, 1988, 1069—1082.
- 4. Long, Le Ba: Fuzzy quantum posets and their states, submitted.
- 5. Mesiar, R.: Fuzzy Bayes formula and the ill defined elements, in: Proc. First Winter School Meas. Theory. Lipt. Ján, 1988, 82—87.
- 6. Pykacz, J.: Quantum logics and soft fuzzy probability spaces, Busefal 32, 1987, 150-157.
- 7. Riečan, B.: A new approach to some notions of statistical quantum mechanics. Busefal 35, 1988, 4—6.
- 8. Sikorski, R.: Boolean Algebras, Springer-Verlag, 1964.
- 9. Varadarajan, V. S.: Probability in physics and a theorem on simultanious observability. Commun. Pure Appl. Math., 15, 1962, 189—217 (Errata, ibidem 8, 1965).

Author's addresses:

Anatolij Dvurečenskij Matematický ústav SAV

Štefánikova 49 81473 Bratislava

Le ba Long Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK Mlynská dolina 842 15 Bratislava

Permanent address:

Lê ba Long Khoa Toán DHSP Huê Hue Vietnam

SÚHRN

O REPREZENTÁCIÁCH FUZZY KVANTOVÝCH POSETOV

Anatolij Dvurečenskij, Le Ba Long, Bratislava

V práci sú predstavené dve reprezentácie fuzzy kvantových posetov pomocou kvantovej logiky a $q-\sigma$ -algebry, ktorá je Loomisov-Sikorského analóg danej logiky.

Received: 28. 2. 1990

РЕЗЮМЕ

ОБ ПРЕДСТАВЛЕНИЯХ НЕЧЕТНИХ КВАНТОВЫХ ЧАСТИЛНО УПОРЯДОЧЕННЫХ ПРОСТРАНСТВ

Анатолий Двуреченский, Ле Ба Лонг, Братислава

В работе представлены две представления нечетких квантовых частилно упорядоченных пространств с помощью квантовой логики и q- σ -алгебры, которая является аналогом Лумиса-Сикорского данной логики.