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ON REPRESENTATIONS OF FUZZY QUANTUM POSETS

ANATOLIL] DVURECENSKIJ, LE BA LONG, Bratislava

1. Introduction

Recently, there have appeared some models of fuzzy set theory [7, 3, 6, 4]
wich can describe an axiomatic structure of, for example, quantum mechanics.
These models are based on the one-to-one correspondence between subsets and
their characteristic functions. If a quantum mechanical event, say a, is defined
only vaguely, then by a fuzzy event we mean a function a defined on a crisp set
£2 with the values in [0, 1].

The present paper will deal with fuzzy quantum posets as they have been
defined in [4], and which generalize ¢ — o-algebras, we give the representations
by an orthomodular, o-orthoposet, M, as well as by an appropriate ¢ — o-alge-
bra, which is an analogue of the Loomis-Sikorski representation of M.

2. Congruences on fuzzy quantum posets

We recall that according to [4], a fuzzy quantum poset is a couple (£2, M)
where £2is a nonempty set, and M is a family of fuzzy sets from £, ie, M < [0,
112, such that

(1) If 1(w) = 1 for any we £2, then 1€ M,
(ii) ae M implies a*: = 1 — ae M;

(iii) if 1/2(w) = 1/2 for any we (2, then 1/2¢M;

(iv) U a,: = supa,e M whenever min (q;, a)) < 1/2

n=1 n

In particular, if Q is a ¢ — o-algebra, i.e. Q is a nonvoid family of subsets of £,
which is closed with respect to complements and unions of countably many
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mutually disjoint sets of Q, then (£2, M), where M = {I,: AeQ}, is a fuzzy
quantum poset.

Operations U, L, and N, which is defined ﬂ a, = mf a;, are Zadeh’s fuzzy

union, fuzzy complement and fuzzy intersection, correspondmgly, of fuzzy sets.
We recall that U, N, L may be defined for all {a;} = [0, 1]?, if necessary. Two
fuzzy sets a and b are fuzzy orthogonal and we write a L b iffan b < 1/2. We
note that Mesiar [5] in the same way defined the F-disjointness of two fuzzy sets.
The structure M has been suggested in the paper [1]. In the models [7, 3, 6], the
orthogonality of @ and b, a L b, is defined via a L b iff a < b*. It is clear that if
a L b then a L b, but the converse does not hold in general. Ifau a* = b U b,
then a L b iff a L b. Moreover, according to the natural ordering <, M is a
poset with an orthogonality L : @+ a*, for which au a* < 1 for any ae M. We
denote by Wy(M) (W,;(M)) the set of a alall ae M such that a < 1/2, (a > 1/2).
Moreover, for any ae M, ana'e W,(M), ava‘e W;(M), and Wy (M) and
W, (M) consist only of elements of those forms.

A relation R € M x M is said to be a congruence relation on M if (i) R is
an equivalence relation on M; (ii) if aRb then a* Rb*, for any a, be M; (iii) if

a;Lra;, b, Lgb, for i # j, a,Rb;, i > 1 then UaRUb
Now we define a relation ~ € M x M via
a~biffalb*, a'L;b. 2.1

It is clear that (i) a ~ a for any ae M; (ii) if a ~ b, then a* ~ b*; (iii) if
a ~ b, then b ~ a. On the other hand, ~ is not transitive, in general, as we may
verify on simple examples. Let & be the transitive closure of ~, i.e., the smallest
equivalence relation on M containing ~. It is obvious that

a = b iff there are a,, ..., a,e M such that
2.2)

a~a,a ~a,..,a~hb
We recall that if {c;} = W, (M), then [4] ¢ = () c;e W;(M) and | {c; = 1/2} #
i=1 i=1

# £, where {c; = 1/2} = {we 2: c(w) = 1/2}. Indeed, we have | ) {¢,=1/2}
i=1

c{c=1/2} # 2
Let us define relations 6,, 6,and 6, on M as follows:

(i) a6yb iff there is an ce W;(M) such that
anbtnc,atnbnec<1)2; 2.3)
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(ii) a@b iff there are ¢y, ..., c,€ W/(M) such that

{anb* > 1/2}u{alnb>%}§ C){c,= 1/2}; (2.4)
(iii) a 6b iff there are {c,} = W;(M) such that .
{fanb* > 1/2}u{atnb>1/2} = O{c,,=l/2} (2.5)

. n=1
The following result generalizes that in [3].

Lemma 2.1. The transitive closure = is a proper congruence relation on M
and, moreover, & = 6, = 6,= 0,

Proof: Since (2.3) is equivalent to the assertion {a n b* > 1/2} U {al Nnb>

> %} < {c = 1/2}, we conclude that 6, < 6, < 6,,. Suppose a6, i), then we define
a sequence {c,} = W;(M) with (2.5). Let us put ¢ = () c,e Wi(M), then
n=1

() {¢, = 1/2} = {c = 1/2} which yields 6,, < 6,. Moreover, 6, is a congruence

n=1
relation on M. It suffices to verify the transitivity of 6,. Let a6,b, b6,c. We can
find ¢,, c,e W;(M) such thatanb* nc,, a* nbne,bnctne,btnene <
< 1/2. It is obvious that.

anctn(ne), atnen(gne)<l/2,

which entails a §,c. :

Therefore, &~ < 6,. On the other hand, let a 6,b. Then, for some ce W,(M),
(2.3) holds, and it is evident that a ~ an ¢ ~ b~ ¢ ~ b which gives us a ~ b and
00 = X.

To finish our proof, assume that a,6,b, for a; L ra;, b; L b, whenever i # j.
There exists a sequence {c,;} = W, (M) such thata,n b} N ¢;,a nb;n¢, < 1/2.1If

© 1 4
we put ¢ = (") ¢;, then ) a,-n(U b,-) Nec, (U a,-) r\(U b,)nc <1/2, so
i=1 i i i i
that & is a congruence on M. The fact that ~ is proper follows from obvious
fact 0 & 1. Q.E.D.

3. Quotient of a fuzzy quantum poset

A nonvoid subset I, = M is said to be an F — o-ideal of (2, M) if

(i) ana*el for any ae M;
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(i) ifa< b, aeM, bel, then a€el,
(iii) if @; Lra, for i # j, {a} = I, then | ) g, 1

(iv) ifancel for a ce W;(M), then ael.

By an F-state on (£2, M) we mean any function m: M — [0, 1] such that

(i) m(aUal)= 1 for any ae M;

0

(i) m (U a,.) = Y m(a), if &, Lpa, for i # j.

i=1 i=1

Then I,,: = {ae M: m(a) = 0} is a proper F — o-ideal of (2, M), (see [4]).
Moreover, M is an F — o-ideal, too.
Proposition 3.1. Put

I,={aeM: thereisa ce W,(M),anc < 1/2} 3.1

Then I, is a proper F — o-ideal of (£2, M) containing W,(M) such that
I, = {ae M: a6,0}. Moreover, if I is any F — o-ideal of (£2, M), then I, = I
Proof. It follows from Lemma 2.1 and from the definition of F — o-ideals.

Q.E.D.
Lemma 3.2: For any ae M, we put
a={beM: bb,a} 3.2)
and
M= M/I, = {a: ac M) (3.3)
If in M we define a relation < via
a < b iff there is a ce W;(M) with anb* nc < 1/2, 3.4

then < is a well-defined partial ordering on M. In addition, if au be M, then
a<bifaub=Ab.

Proof. To show that the relation < defined via (3.4) is correct, it is sufficient
to prove that if @ < b then a, < b, whenever afya,, bb,. Supposing this, we
find ¢, ¢;, e Wi(M) such thatanb* nc,anai ne,a na,ne, bnbine,,
b*nb,nc,<1/2. Hence a,nbin(cnenegn(@ava)n(bubt)<1/2. 1t
is simple that @ < 4, and @ < b, b < dentail @ = b. The transitivity of < follows
from the following. Let @ < b, b < ¢, we can find c,, c,e W;(M) such that
anb*ne,bnctne,<1/2. Hence anct n(c,ne,n (bubt)) < 1/2.

The last property may be proved in the same way. Q.E.D.
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Remark. With respect to the partial ordering <, we define in the poset M
the join V and the meet A, if they exist in it.
Lemma 2.1 proves that the mapping L: M — M defined via

ar>at, aeM, (3.5)

is defined well. In accordance with quantum logic theory, two elements d, b of
M are orthogonal, and we write @ L b, iff @ < 6*.

Theorem 3.3. Let (£2, M) be a fuzzy quantum poset. Then the quotient poset
M = M| I,is, with respect to the partial ordering < and L which are defined via
(3.4) and (3.5), respectively, an orthomodular o-orthoposet with the minimal
and maximal elements 0 and T, correspondingly. Moreover, the canonical
mapping @: arad, ae M, is a surjective 6-homomorphism from Monto M, ie.,
it preserves the maximal elements, fuzzy orthogonal elements and joins of
mutually orthogonal sequences.

Proof. It is evident that, for any ae M, 0<a < T. If'aLl,b then a_LE
indeed, anb < 1/2 entailsanbn 1 < 1/2, so that @ < b*.

Let {a@} be any sequence of mutually orthogonal elements of M. Then we
can find a sequence {a} of mutually fuzzy orthogonal elements from M such that
a; = a; for any i. For this, it suffices to find a sequence {c;} = W,(M) such that

a;na;nc; < 1/2.Putting ¢ = Uc e W,(M)and a, = a,nc,i > 1, we obtain the

j =

elements in question. Moreover, we assert \/ @, = \/ a@; = awherea = ) a]. It

is evident that @/ < aforanyi> 1. If @/ < b, i > 1, for some be M, then there
exists an cye W;(M) such that a/nb* ncy < 1/2 for any i > 1. This yields
(va)nb*nce<1/2,anb*nc<1/2,and a<b.

The orthogonality L: a—a*, ae M, has the properties:

(i) (@*)* = a for any ae M,
(i) if @a < b, then b+ < a*;
(iii) @ v @t = T for any ae M; ‘
(iv) if @ < 6, then there is a ée M such that @ L,é and a v & = b.

The first three properties are simple. To prove the fourth, suppose @ < b.
Then there is a c¢,e W;(M) such that anb*nc¢, a*tnbnc <1/2. Put
a,=anceM, then a, L;b* and c: =bnai; cLra, calculate av ¢=a, v
v ¢ =a,uc = b. The last equality follows from the observations: (a, U c) N
nbt=anbtucnb=ancnbtubnainb* <1/2 and (ainc)nb=
=@tue)nctnb< 12

The properties of the canonical mapping are now obvious.
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4. The Loomis-Sikorski representation

From Theorem 3.3 we conclude that the quotient M/[ is a quantum logic
[9] which is not necessary a lattice. If M is closed with respect to the fuzzy union
of any sequence of fuzzy sets of M, then M is a o-lattice; consequently, M/ is
a Boolean o-algebra. In this case, due to the famous Loomis-Sikorski theorem
[8], we find a measurable space (X, &) and a o-homomorphism 4 from & onto
M/I,.

In this section we show that for any fuzzy quantum poset (§2, M) we can
find a ¢ — o-algebra Q of some X # 0 which can be surjectively embedded onto
M/|I,, moreover X = £2.

According to [4], we introduce the following system of subsets of £2:

K(M) = {4 < £: there is an ae M such that
{a>%}gA c{a= 1/2}}

then K(M) is a ¢ — o-algebra as it has been proved in [4]. The K(M) has the
following simple properties:

4.1

(i) if for {a} = M, na,e M, then (") A4, K(M),
where {a,> 1/2} = A, < {a; > 1/2'};

(i) {a>1/2} < 4, < {a > 1/2}, then | ) 4,€ K(M).

Theorem 4.1. Let (£2, M) be any fuzzy quantum poset. Then there is a
surjective o-homomorphism 4 from K(M) onto M/I, which preserves maximal
elements, complements and transmits unions of countably many mutually
disjoint subsets to joins of mutually orthogonal elements.

Proof. We define a mapping h: K(M) — M via h(A) =a iff {a> 1/2} <
€ 4 < {a > 1/2}. We show that 4 is defined well. If {b > 1/2} = 4 = {b > 1/2},
then {b* > 1/2} < A° < {b* > 1/2} which gives {a> 1/2}n{p* > 1/2} = AN
NA =0, so that an b* < 1/2, similarly a* nb < 1/2, which proves a = b.

Therefore, h(£2) = T, h(A°) = h(A)* for any Ae K(M); and h (U A ,.) =\/h4)
if AN A, =0, i#j, {4} < K(M). ' Q.E.D.
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SUHRN

O REPREZENTACIACH FUZZY KVANTOVYCH POSETOV
Anatolij Dvurecenskij, Le Ba Long, Bratislava

V praci su predstavené dve reprezentacie fuzzy kvantovych posetov pomocou kvantovej logiky

a g — o-algebry, ktora je Loomisov-Sikorského analdg danej logiky.
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PE3IOME

OB MMPEACTABJIEHUAX HEYETHUX KBAHTOBBIX YACTHUJIHO
VYIOPAAOYEHHBIX ITPOCTPAHCTB

AmnaTtonuii JBypeuenckuit, Jle ba Jlonr, BpaTucnasa
B pabote npencrabieHbl OBe NpPEACTABICHHA HEYETKHX KBAHTOBBIX HYacCTHJIHO YNops-

JIOYEHHBIX TPOCTPAHCTB C NOMOLIbIO KBAHTOBOH JIOTMKH H ¢-0-airebGpbl, KOTOpas ABISETCA
anasnoroM Jlymuca-CHKOPCKOro JaHHOM JIOTHKH.
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