

# Werk

Label: Article **Jahr:** 1986

**PURL:** https://resolver.sub.uni-goettingen.de/purl?311067255\_0022|log12

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## ARCHIVUM MATHEMATICUM (BRNO) Vol. 22, No. 2 (1986), 65-74

# COMPARISON THEOREMS FOR STURM—LIOUVILLE EQUATIONS

## E. MÜLLER-PFEIFFER

(Received September 19, 1984)

Abstract. Concerning the flerential equations -(P(x) u'') + Q(x) u = 0 and -(p(x) u')' + q(x) u = 0,  $a \le x \le b$ , Sturm-type comparison theorems are proved where the co. ditions on the coefficients in question are, for instance,  $p \le P$  and mean value conditions for q and Q on certain subintervals of [a, b]. The results are closely related to well-known theorems of Levin and Fink.

Key words. Sturm-Liouville equation, comparison of solutions. MS Classification. 34 C 10.

Consider the differential equations

(1) 
$$L[u] \equiv -(P(x)u')' + Q(x)u = 0, P > 0, P \in C^1, Q \in C,$$
  
 $-\infty < a \le x \le b < \infty,$ 

and

(2) 
$$l[u] \equiv -(p(x)u')' + q(x)u = 0, \quad p > 0, p \in C^1, q \in C.$$

In the special case  $P \equiv p \equiv 1$  a well-known comparison theorem of Levin [2] states the following (see [5]).

**Theorem 1** (Levin): Let  $P \equiv p \equiv 1$  be fulfilled and suppose that there exists a nontrivial solution u of (1) with u(a) = u(b) = u'(c) = 0, a < c < b. If the inequality

(3) 
$$\int_{x_1}^{x_2} q(x) \, \mathrm{d}x \le -|\int_{x_1}^{x_2} Q(x) \, \mathrm{d}x|$$

holds for all pairs of numbers  $x_1, x_2$  with  $a \le x_1 \le c \le x_2 \le b$ , then every solution of (2) has at least one zero on [a, b].

Condition (3) implies that all mean values of q(x) on intervals  $[x_1, x_2]$ ,  $x_1 \le \le c \le x_2$ , are non-positive. In the following we shall prove a corresponding comparison theorem where mean values of q(x) can also be positive. We give the following preparation.

Let u(x) be a nontrivial solution of the boundary problem

$$L[u] = 0, u(a) = 0 = u(b),$$

## E. MÜLLER-PFEIFFER

with fixed sign on (a, b); assume that u is positive on (a, b). Choose a positive function f belonging to  $C^2[a, b]$ . Then because of

$$\lim_{x \downarrow a} \frac{u'}{u} = \infty, \qquad \lim_{x \uparrow b} \frac{u'}{u} = -\infty,$$

it is easily seen that there exist points  $t_1$ ,  $t_2$  with  $a < t_1 \le t_2 < b$  such that

(4) 
$$\frac{f'(t_i)}{f(t_i)} = \frac{u'(t_i)}{u(t_1)}, \qquad i = 1, 2, \quad \frac{f'(x)}{f(x)} \le \frac{u'(x)}{u(x)}, \qquad a < x \le t_1,$$
$$\frac{f'(x)}{f(x)} \ge \frac{u'(x)}{u(x)}, \qquad t_2 \le x < b.$$

Note that there can exist several points  $t_1$  or  $t_2$  with the properties (4), respectively. Set

(5) 
$$c_i = f(t_i) u^{-1}(t_i), \quad i = 1, 2,$$

and define the function

(6) 
$$v(x) = \begin{cases} c_1 u(x), & a \le x < t_1, \\ f(x), & t_1 \le x \le t_2, \\ c_2 u(x), & t_2 < x \le b. \end{cases}$$

It follows from (4) and (5) that v(x) is a continuously differentiable function on [a, b]. Seting

$$v(x) = \mu(x) f(x), \quad a \le x \le b,$$

we have

$$\mu'\mu^{-1} = v'v^{-1} - f'f^{-1}$$

and (4) implies that

(7) 
$$\mu \in C^{1}[a, b]; \qquad \mu'(x) \ge 0, \ a \le x \le t_{1}; \\ \mu(x) = 1, \ t_{1} \le x \le t_{2}; \qquad \mu'(x) \le 0, \ t_{2} \le x \le b.$$

v will be used as a test function to estimate the quadratic form of equation (2). Supposing

(8) 
$$p(x) \le P(x), \qquad a \le x \le b,$$

we have

$$\int_{a}^{b} [p(v')^{2} + qv^{2}] dx = \int_{a}^{b} [(p - P)(v')^{2} + (q - Q)v^{2}] dx + \int_{a}^{b} [P(v')^{2} + Qv^{2}] dx \le$$

$$\leq \int_{a}^{b} (q - Q)v^{2} dx + \int_{a}^{b} [P(v')^{2} + Qv^{2}] dx.$$

(7) shows that the function  $\mu^2(x)$  is monotone increasing on  $[a, t_1]$  from  $\mu^2(a) = 0$  to  $\mu^2(t_1) = 1$  and monotone decreasing on  $[t_2, b]$  from  $\mu^2(t_2) = 1$  to  $\mu^2(b) = 0$ .

#### COMPARISON THEOREMS

Therefore, be a mean value theorem of integral calculus, there exist points  $\tau_1$ ,  $a \le \tau_1 \le t_1$ , and  $\tau_2$ ,  $t_2 \le \tau_2 \le b$ , such that

(10) 
$$\int_{a}^{b} (q - Q) v^{2} dx = \int_{\tau_{1}}^{\tau_{2}} (q - Q) f^{2} dx, \quad a \le \tau_{1} \le t_{1}, \quad t_{2} \le \tau_{2} \le b.$$

The second integral on the right-hand side of (9) is handled by integration by parts as follows.

(11) 
$$\int_{a}^{b} \left[ P(v')^{2} + Qv^{2} \right] dx = c_{1}^{2} \int_{a}^{t_{1}} \left[ P(u')^{2} + Qu^{2} \right] dx + \int_{t_{1}}^{t_{2}} \left[ P(f')^{2} + Qf^{2} \right] dx + c_{2}^{2} \int_{t_{2}}^{b} \left[ P(u')^{2} + Qu^{2} \right] dx = c_{1}^{2} P(t_{1}) u'(t_{1}) u(t_{1}) + P(t_{2}) f'(t_{2}) f(t_{2}) - P(t_{1}) f'(t_{1}) f(t_{1}) + \int_{t_{1}}^{t_{2}} L[f] f dx - c_{2}^{2} P(t_{2}) u'(t_{2}) u(t_{2}) = \int_{t_{1}}^{t_{2}} L[f] f dx.$$

Thus, we obtain

(12) 
$$\int_{a}^{b} \left[ p(v')^{2} + qv^{2} \right] dx \leq \int_{\tau_{1}}^{\tau_{2}} (q - Q) f^{2} dx + \int_{t_{1}}^{t_{2}} L[f] f dx,$$

$$a \leq \tau_{1} \leq t_{1} \leq t_{2} \leq \tau_{2} \leq b,$$

where the numbers  $t_1$  and  $t_2$  are defined by (4).

**Theorem 2:** Let u be a nontrivial solution of equation (1) with fixed sign on (a, b) and u(a) = 0 = u(b) and let f be a positive function belonging to  $C^2[a, b]$ . If (8) is fulfilled and the inequality

(13) 
$$\int_{t_1}^{x_2} (q - Q) f^2 dx + \int_{t_2}^{t_2} L[f] f dx \le 0$$

holds for all pairs of numbers  $x_1, x_2$  with  $a \le x_1 \le t_1$  and  $t_2 \le x_2 \le b$  where  $t_1$  and  $t_2$  are defined by

(14) 
$$\frac{f'(t_i)}{f(t_i)} = \frac{u'(t_i)}{u(t_i)}, \qquad i = 1, 2, t_1 \le t_2,$$

$$\frac{f'(x)}{f(x)} \le \frac{u'(x)}{u(x)}, \qquad a < x \le t_1, \qquad \frac{f'(x)}{f(x)} \ge \frac{u'(x)}{u(x)}, \qquad t_2 \le x < b,$$

then every solution v of equation (2) has a zero in (a, b) or v has the properties

- i) v is a constant multiple of u on  $[a, t_1]$ ,
- ii) v is a constant multiple of f on  $[t_1, t_2]$ ,
- iii) v is a constant multiple of u on  $[t_2, b]$ .

Proof: In view of (13) it follows from (12) that

(15) 
$$\int_{a}^{b} [p(v')^{2} + qv^{2}] dx \leq 0,$$

where v is the test function (6). v belongs to the domain of the closure of the form

$$l(\varphi,\psi)=\int_a^b(p\varphi'\bar{\psi}'+q\varphi\bar{\psi})\,\mathrm{d}x,\qquad \varphi,\psi\in C_0^\infty(a,b),$$

of equation (2). Because of (15) two cases are possible,

$$\inf_{\varphi \in C_0^{\infty}, \ \|\varphi\| = 1} l(\varphi, \varphi) < 0 \qquad \text{or} \qquad \inf_{\varphi \in C_0^{\infty}, \ \|\varphi\| = 1} l(\varphi, \varphi) = 0,$$

where  $|| \varphi ||$  denotes the norm of  $\varphi$  in the Hilbert space  $L_2(a, b)$ . In the first case equation (2) has a nontrivial solution with at least two zeros in (a, b) (cp. [3]). Then by Sturm's comparison theorem every solution of (2) has a zero in (a, b). In the second case the infimum of the form is realized by the (normalized) function v. Consequently, this function v is an eigenfunction of the Friedrichs extension A of the operator  $A_0$ ,

$$A_0\varphi = l[\varphi], \qquad \varphi \in C_0^\infty(a, b),$$

in the Hilbert space  $L_2(a, b)$ . The corresponding eigenvalue is zero. Now it is easily seen that v belongs to  $C^2[a, b]$ . v is a classical solution of (2). This proves Theorem 2.

**Corollary 1:** Let u be a nontrivial solution of (1) with fixed sign on (a, b) and u(a) = 0 = u(b) and let f be a positive function belonging to  $C^2[a, b]$ . Assume that there exists a point c, a < c < b, such that

$$\frac{f'(c)}{f(c)} = \frac{u'(c)}{u(c)}, \ \frac{f'(x)}{f(x)} \le \frac{u'(x)}{u(x)}, \ a < x \le c, \ \frac{f'(x)}{f(x)} \ge \frac{u'(x)}{u(x)}, \ c \le x < b.$$

If (8) is fulfilled and the inequality

$$\int_{x_1}^{x_2} q f^2 dx \le \int_{x_1}^{x_2} Q f^2 dx$$

holds for all pairs  $x_1, x_2$  with  $a \le x_1 \le c \le x_2 \le b$ , then every solution v of equation (2) has a zero in (a, b), or v is a constant multiple of u.

Proof: Set  $t_1 = t_2 = c$  in Theorem 2.

**Corollary 2:** Let  $P \equiv p \equiv 1$  and assume that u is a nontrivial solution of equation (1) with fixed sign on (a, b) and u(a) = 0 = u(b). If the inequality

(16) 
$$\int_{[x_1,x_2]} q(x-x_0)^2 dx \leq \int_{[x_1,x_2] \setminus [t_1,t_2]} Q(x-x_0)^2 dx$$

holds for a point  $x_0 \notin [a, b]$  and all pairs  $x_1, x_2$  with  $a \le x_1 \le t_1 \le t_2 \le x_2 \le b$  where  $t_1$  and  $t_2$  are defined by

(17) 
$$\frac{1}{t_{i} - x_{0}} = \frac{u'(t_{i})}{u(t_{i})}, \quad i = 1, 2,$$

$$\frac{1}{x - x_{0}} \le \frac{u'(x)}{u(x)}, \quad a < x \le t_{1}, \quad \frac{1}{x - x_{0}} \ge \frac{u'(x)}{u(x)}, \quad t_{2} \le x < b,$$

#### COMPARISON THEOREMS

then every solution v of equation (2) has a zero in (a, b), or v has the following properties:

- i) v is a constant multiple of u on  $[a, t_1]$ ,
- ii) v is a constant multiple of  $x x_0$  on  $[t_1, t_2]$ ,
- iii) v is a constant multiple of u on  $[t_2, b]$ .

Proof: By choosing  $f(x) = x - x_0$  in Theorem 2 it follows that

$$\int_{t_1}^{t_2} L[f] f dx = \int_{t_1}^{t_2} Q(x - x_0)^2 dx.$$

Thus, (16) implies (13), and Corollary 2 follows from Theorem 2. The geometrical meaning of (17) is that there exist tangents  $y_i(x) = \lambda_i(x - x_0)$ , i = 1, 2, touching the curve of u at  $t_i$ , respectively.

The special case  $f \equiv 1$  leads to the following corollaries.

**Corollary 3:** Let u be a nontrivial solution of (1) with fixed sign on (a, b) and u(a) = 0 = u(b) and assume that

$$u'(t_1) = 0 = u'(t_2), \quad a < t_1 \le t_2 < b; \quad u'(x) \ge 0, \quad a \le x \le t_1; \quad u'(x) \le 0,$$
  
 $t_2 \le x \le b.$ 

If (8) is fulfilled and the inequality

(18) 
$$\int_{[x_1,x_2]} q \, \mathrm{d}x \leq \int_{[x_1,x_2] \setminus [t_1,t_2]} Q \, \mathrm{d}x$$

holds for all pairs of numbers  $x_1, x_2$  with  $a \le x_1 \le t_1 \le t_2 \le x_2 \le b$ , then v has a zero in (a, b) or v has the following properties:

- i) v is a constant multiple of u on  $[a, t_1]$ ,
- ii)  $v = \text{const } on [t_1, t_2],$
- iii) v is a constant multiple of u on  $[t_2, b]$ .

Proof: Set  $f \equiv 1$  in Theorem 2...

A special case of Corollary 3 is the case  $t_1 = t_2 = c$ , a < c < b. Then inequality (18) has the form

$$\int_{x_1}^{x_2} q \, \mathrm{d}x \le \int_{x_1}^{x_2} Q \, \mathrm{d}x, \qquad a \le x_1 \le c \le x_2 \le b.$$

In this special case Corollary 3 is closely related to a result of Fink [1] concerning the smallest positive eigenvalues  $\lambda_1$  and  $\lambda_2$  of the problems

$$(p(x) u')' + \lambda_1 q_1(x) u = 0, \quad u(a) = 0 = u(b),$$

and

$$(p(x) u')' + \lambda_2 q_2(x) u = 0, \quad u(a) = 0 = u(b).$$

Concerning the importance of the quantity of these eigenvalues for oscillation or disconjugacy of the corresponding equations compare [4, p. 53].

### E. MÜLLER-PFEIFFER

In the following the restriction  $x_0 \notin [a, b]$  supposed in Corollary 2 is to be omitted. Assume that there exist points  $x_0 \in (a, b)$  and t with  $x_0 < t < b$  such that

$$\frac{1}{t - x_0} = \frac{u'(t)}{u(t)} \quad \text{and} \quad \frac{1}{x - x_0} \ge \frac{u'(x)}{u(x)}, \quad t \le x < b,$$

where u is the solution of equation (1) from above. Then, the function

(19) 
$$v(x) = \begin{cases} 0, & a \le x < x_0, \\ x - x_0, & x_0 \le x \le t, \\ (t - x_0) u^{-1}(t) u(x), & t \le x \le b, \end{cases}$$

belongs to the Sobolev space  $\mathring{W}_{2}^{1}(a,b)^{1}$ ) which is identical with the domain of the closure of the form of equation (2). By using this function v the estimate (12) gets the form

(20) 
$$\int_{a}^{b} \left[ p(v')^{2} + q(x) v^{2} \right] dx \le \int_{x_{0}}^{\tau} (q - Q) (x - x_{0})^{2} dx + \int_{x_{0}}^{t} Q(x - x_{0})^{2} dx,$$
$$a < x_{0} < t \le \tau \le b.$$

Of course, an analogous estimate holds when the point t is situated to the left of  $x_0$ . Finally, the point  $x_0$  can be identical with one of the endpoints of the interval (a, b). The following corollary corresponds to the case  $a < x_0 < t < b$ .

**Corollary 4:** Let  $P \equiv p \equiv 1$  and assume that u is a nontrivial solution of equation (1) with fixed sign on (a, b) and u(a) = 0 = u(b). Let further  $x_0$ ,  $a < x_0 < b$ , and t,  $x_0 < t < b$ , be points with the properties

$$\frac{1}{t - x_0} = \frac{u'(t)}{u(t)} \quad \text{and} \quad \frac{1}{x - x_0} \ge \frac{u'(x)}{u(x)}, \quad t \le x < b.$$

If the inequality

(21) 
$$\int_{x_0}^{\xi} q(x - x_0)^2 dx \le \int_{\xi}^{\xi} Q(x - x_0)^2 dx$$

holds for all points  $\xi$  with  $t \leq \xi \leq b$ , then every solution v of equation (2) has a zero on  $[x_0, b)$ .

Proof: It follows from (20) and (21) that

$$\int_{r_0}^b \left[ p(v')^2 + qv^2 \right] \mathrm{d}x \le 0,$$

where v is defined by (19). In the case

$$||\varphi||_1 = (\int_a^b (|\varphi'|^2 + |\varphi|^2) dx)^{1/2}.$$

<sup>1)</sup>  $\mathcal{W}_{2}^{1}(a, b)$  is the completion of  $C_{0}^{\infty}(a, b)$  by using the norm

$$\inf_{\varphi \in C_0^{\infty}(x_0,b), \|\varphi\|=1} \int_{x_0}^{b} (p |\varphi'|^2 + q |\varphi|^2) dx < 0,$$

there exists a nontrivial solution of (2) on  $[x_0, b]$  with at least two zeros in  $(x_0, b)$  and, consequently, every solution of (2) has a zero in  $(x_0, b)$  (compare the proof of Theorem 2). Assuming the case

$$\inf_{\varphi \in C_0^{\infty}(x_0,b), \|\varphi\| = 1} \int_{x_0}^{b} (p |\varphi'|^2 + q |\varphi|^2) dx = 0$$

the (normalized) function v(x),  $x_0 \le x \le b$ , of (19) realizes the infimum. Hence v is a nontrivial solution of (2) on  $[x_0, b]$  which has the zero  $x_0$ . This proves Corollary 4.

In the case  $x_0 = a$  we obtain the following result.

**Corollary 5:** Let the suppositions of Corollary 4 be fulfilled for  $x_0 = a$ . Then every solution v of equation (2) has a zero in (a, b), or v has the following properties:

- i) v is a constant multiple of x a on [a, t],
- ii) v is a constant multiple of u on [t, b]. t = a: If

(22) 
$$\frac{1}{x-a} \ge \frac{u'(x)}{u(x)}, \quad a < x < b,$$

and the inequality

(23) 
$$\int_{a}^{\xi} q(x-a)^{2} dx \leq \int_{a}^{\xi} Q(x-a)^{2} dx$$

holds for all  $\xi$ ,  $a < \xi < b$ , then every solution v of (2) has a zero in (a, b) or v is a constant multiple of u.

The proof of Corollary 5 is analogous to the proof of Corollary 4.

Example: Every solution of the equation

(24) 
$$-u'' + q(x) u = 0, q \neq -1, -\frac{\pi}{2} \leq x \leq \frac{\pi}{2},$$

has a zero in  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$  if there exists a point  $c, -\frac{\pi}{2} \le c \le \frac{\pi}{2}$ ,  $c \ne 0$ , such that

(25) 
$$\max_{-\frac{\pi}{2} \le x_1 \le c \le x_2 \le \frac{\pi}{2}} \int_{x_1}^{x_2} (q+1)(x-c-\cot c)^2 dx \le 0$$

or if

(26) 
$$\sup_{-\frac{\pi}{2} \le x_1 < 0 < x_2 \le \frac{\pi}{2}} \left( \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} q \, \mathrm{d}x \right) \le -1.$$

Proof: Compare equation (24) with the equation

## E. MÜLLER-PFEIFFER

$$-u''-u=0, \qquad u\left(-\frac{\pi}{2}\right)=0=u\left(\frac{\pi}{2}\right),$$

and take  $u=\cos x$ . In the case where  $|c|<\frac{\pi}{2}$ ,  $c\neq 0$ , apply Corollary 2. Condition (17) is fulfilled for  $t_1=t_2=c$  and  $x_0=c+\cot c$ . Then (25) corresponds to (16) with  $Q\equiv -1$ . In the case where  $c=-\frac{\pi}{2}$  apply Corollary 5 under the supposition t=a. In this case the condition (25) has the form

$$\max_{-\frac{\pi}{2} \le \xi \le \frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\xi} (q+1) \left(x + \frac{\pi}{2}\right)^2 \mathrm{d}x \le 0.$$

An analogous condition is valid in the case  $c = \frac{\pi}{2}$ . Inequality (26) corresponds to (18) of Corollary 3.

**Corollary 6:** Let  $P \equiv p \equiv 1$  and consider the solution u of equation (1) determined by the initial values  $u(c) = \alpha > 0$ ,  $u'(c) = \beta > 0$ , a < c < b. If the inequalities

(27) 
$$-\frac{\pi^2}{(b-a)^2} \le \frac{\int_{x_1}^{x_2} Q(x-c+\alpha\beta^{-1})^2 dx}{\int_{x_1}^{x_2} (x-c+\alpha\beta^{-1})^2 dx} \le 0$$

hold for all numbers  $x_1, x_2$  with

$$\max (a, c - \alpha \beta^{-1}) \le x_1 < c < x_2 \le b$$

then the solution u does not vanish in at least one of the intervals (a,c) or (c,b). In the case where  $u(c) = \alpha > 0$ , u'(c) = 0, the same conclusion is true when

(28) 
$$-\frac{\pi^2}{(b-a)^2} \le \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} Q \, dx \le 0$$

for all  $x_1, x_2$  with  $a \leq x_1 < c < x_2 \leq b$ .

Proof: Assume that u has a zero a' in (a, c) and a zero b' in (c, b). We may assume that u is positive on (a', b'). Now apply the Corollaries 2-5. First let u'(c) > 0. It follows from

$$\frac{1}{c-x_0}=\frac{u'(c)}{u(c)}=\frac{\beta}{\alpha}$$

that  $x_0 = c - \alpha \beta^{-1}$ . Thus, replacing a by a' and b by b', Corollary 2 can be applied when  $c - \alpha \beta^{-1} < a'$ . The points  $t_1$  and  $t_2$  can be determined such that (17) is fulfilled with a = a' and b = b'. Now it follows from (27) that (16) is fulfilled by setting

$$q(x) = -\frac{\pi^2}{(b-a)^2}.$$

## COMPARISON THEOREMS

The solution  $v = \sin\left(\pi \frac{x-a}{b-a}\right)$  of equation (2), however, does not vanish on [a', b'] contradictory to the conclusion of Corollary 2. Assume now  $a' < c - \alpha \beta^{-1}$  and apply Corollary 4 with a = a' and b = b'. The point  $t, c \le t < b'$ , can be determined and (27) implies (21) with

$$q(x) = -\frac{\pi^2}{(b-a)^2}.$$

Thus, considering the solution  $v = \sin\left(\pi \frac{x-a}{b-a}\right)$  of equation (2) we again obtain a contradiction. Finally, in the case  $a' = c - \alpha \beta^{-1}$  apply Corollary 5 with a = a' and b = b'. Analogously, the assertion of Corollary 6 under the supposition  $\beta = 0$  follows from Corollary 3. This completes the proof of Corollary 6.

The case  $u(c) = \alpha > 0$ ,  $u'(c) = \beta < 0$  can be handled analogously.

## REFERENCES

- [1] A. M. Fink, Comparison Theorems for Eigenvalues, Quart. Appl. Math. 28 (1970), 289-292.
- [2] A. Ju. Levin, A comparison principle for second-order differential equations, Soviet. Math. Dokl. 1 (1960), 1313-1316.
- [3] E. Müller-Pfeiffer, On the existence of nodal domains for elliptic differential operators, Proc. Roy. Soc. Edinburgh 94A (1983), 287-299.
- [4] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31 (1980), Springer-Verlag New York—Heidelberg—Berlin.
- [5] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York and London, 1968.

E. Müller-Pfeiffer

Pädagogische Hochschule "Dr. Theodor Neubauer"

5064 Erfurt

G.D.R.

•