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COMPARISON THEOREMS ‘
FOR STURM—LIOUVILLE EQUATIONS

E. MULLER-PFEIFFER
(Received September 19, 1984)

Abstract. Concerning the fferential equations —(P(x) 4”) + Q(x) u = 0 and —(p(x) ¥')’ +
4+ g(x)u =0, a £ x < b, Sturm-type comparison theorems are proved where the co. ditions
on the coefficients in question are, for instance, p < P and mean value conditions for ¢ and Q
on certain subintervals of [a, b]. The results are closely related to well-known theorems of Levin
and Fink.

Key words. Sturm-Liouville equation, comparison of solutions.
MS Classification. 34 C 10.

Consider the differential equations

€)) Llul = —(P(x)u') + Q(x)u =0, P>0,PeC',QeC, .
—ww<asx<bh< oo,

and

(2) IMu] = —(p(x)w) + g(x)u=0, p>0,peClgeC.

In the special case P = p = 1 a well-known comparison theorem of Levin [2]
states the following (see [5]).

Theorem 1 (Levin): Let P = p =1 be fulfilled and suppose that there exists
a nontrivial solution u of (1) with u(a) = u(b) = u'(c) =0, a<c <b. If the
inequality

3) Ta()dx < -1 ] Q(x)dx|

holds for all pairs of numbers x,, x, witha < x; £ ¢ £ x, < b, then every solution
of (2) has at least one zero on [a, b].

Condition (3) implies that all mean values of g(x) on intervals [x,, x,], x; <
< ¢ £ x,, are non-positive. In the following we shall prove a corresponding
comparison theorem where mean values of g(x) can also be positive. We give the
following preparation.

Let u(x) be a nontrivial solution of the boundary problem
L[u] =0. u(a) =0 = ub),
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with fixed sign on (a, b); assume that u is positive on (a, b). Choose a positive
function f belonging to C?[a, b]. Then because of

.oou . u'
lim — = oo, llm — = — o0,
xla U xtb U
it is easily seen that there exist points #,, #, with @ < t; £ t, < b such that

(4) f’(tl) — u'(ti) =1, 2, f'(X) < u'(x)

f(t) - u(t;) ’ W=_u(—x)—’ a<x=sSty,
f'(x) _ u'(x)
ng(x—)’ t, < x<b.

Note that there can exist several points ¢, or ¢, with the properties (4), respectively.
Set

&) ¢ = ft) u= (1), i=12,
and define the function
cu(x), a £ x<t,

(©) u(x) ={f(x), t; Sx <1y,
cu(x), t, <x < b.

It follows from (4) and (5) that v(x) is a continuously differentiable function on
[a, b]. Seting

v(x) = p(x) f(x), a=<x<=b,
we have
ﬂlu—l — vrv—l _flf—l
and (4) implies that
peC'la,b]; p(x)20,axx=1y;

ux) =1, t; £ x S ty; W) 20,1, £x<b.

)

v will be used as a test function to estimate the quadratic form of equation (2).
Supposing

(3) p(x) £P(x), as<x<b
we have

b b b
J[p(@')* + qv*]dx = [[(p — P)(¢')* + (g — Q)v*]dx + [ [P(v')* + Qv*]dx <

9) < (g - Q)vidx + f [P(v')* + Qv*] dx.

8 o

(7) shows that the function u?(x) is monotone increasing on [a, t,] from p*(a) = 0
to u*(t;) = 1 and monotone decreasing on [t,, b] from u?(t,) = 1 to u?(b) = 0.
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Therefore, be a mean value theorem of integral calculus, there exist points 7,, @ <
<1, =t,and1,,t, £1, <b, such that

b T2
(10) [(@-Qvidx=[(g—-0) fdx, astst, HSH<b

The second integral on the right-hand side of (9) is handlzd by integration by parts
as follows.

(11) f[P(v')z + Qv*]dx = ¢? }'[P(u')’ + Qu*]dx + f[P(f’)’+ of*]dx +
b
+ 3 [[P(w)? + Qu]dx = ciP(ty) u'(t;) u(ty) + P(t,) f'(t,) f(t,) —

12 t2
= P(t) (1) f(t) + [ LLf] S dx — c3P(t;) u'(t;) u(ty) = [L[f] f dx.
1 81 1 51
Thus, we obtain
b 2 t2
(12) f[p(v)* + qv*]dx < [ (g — Q) f?dx + [ L[f] f dx,
a 1 3]
asT St S, S1,5Db,
where the numbers ¢, and ¢, are defined by (4).

Theorem 2: Let u be a nontrivial solution of equation (1) with ﬁked sign on (a, b)
and u(a) = 0 = u(b) and let f be a positive function belonging to C*[a, b]. If (8)
is fulfilled and the inequality

(13) T(a -0 fdx + [L[f]/ dx <0

holds for all pairs of numbers x,, x, with a £ x; < t, and t, £ x;, £ b where
t, and t, are defined by

S(t) _u'(t)
14 e = ! >
(14 f(t) u(t;)

a<x=st,

i=l,2,t1§t2,

f(x) o w(x)
) = utx)

then every solution v of equation (2) has a zero in (a, b) or v has the properties
i) v is a constant multiple of u on [a, t,],
ii) v is a constant multiple of f on [t,, t,],
iii) v is a constant multiple of u on [t,, b].
Proof: In view of (13) it follows from (12) that

') _ wx)
fx) = u(x)”

t2§x<b,

15 fDWf+wﬂuga
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where v is the test function (6). v belongs to the domain of the closure of the form

b
o, ¥) = [ (po'® + qop)dx,  o,¥eCg(a, b),

of equation (2). Because of (15) two cases are possible,

inf (g, 9) <0 or inf  l(g,9)=0,
¢eCP, llell=1 9=C¥., llell=1
where || ¢ || denotes the norm of ¢ in the Hilbert space L,(a, b). In the first case
equation (2) has a nontrivial solution with at least two zeros in (a, b) (cp. [3]).
Then by Sturm’s comparison theorem every solution of (2) has a zero in (a, b).
In the second case the infimum of the form is realized by the (normalized) function v.
Consequently, this function v is an eigenfunction of the Friedrichs extension 4
of the operator A4,,
Aop =1[0],  @eCZ(a,b),

in the Hilbert space L,(a, b). The corresponding eigenvalue is zero. Now it is
easily seen that v belongs to C*[a, b]. v is a classical solution of (2). This proves
Theorem 2.

Corollary 1: Let u be a nontrivial solution of (1) with fixed sign on (a, b) and
u(a@) = 0 = u(b) and let f be a positive function belonging to C*[a, b]. Assume that
there exists a point ¢, a < ¢ < b, such that

) _ v [f(x) o uE)
fle) — u(e) T fx) T u(x)’
If (8) is fulfilled and the inequality

S) o W)
&) = utx)

a<x=c,

,c<x<b.

X2 x2
faf?dx < Jof*dx
x1 x

holds for all pairs x,,x, with a £ x, £ ¢ £ x, < b, then every solution v of
equation (2) has a zero in (a, b), or v is a constant multiple of u.
Proof: Set t; = t, = c in Theorem 2.

Corollary 2: Let P = p = 1 and assume that u is a nontrivial solution of equation(1)
with fixed sign on (a, b) and u(a) = 0 = u(b). If the inequality
(16) f ax—x)?dxs | 0(x-xp)Pdx
[x1,x2] [x1, 2]\ [#1,72]
holds for a point x, ¢ [a, b] and all pairs x,, x, witha S x, St; St, S x, b
where t, and t, are defined by

1 u'(ty) .
1 = ~ i=12,
(17 5 — Xo u(t;)
1 u'(x) 1 u'(x)
< Sty 2 s < )
x—xo - ux)’ G R x—xo = u(x) fpsx<b

68



COMPARISON THEOREMS

then every solution v of equation (2) has a zero in (a, b), or v has the following pro-
perties:
i) v is a constant multiple of u on [a, t,],
ii) v is a constant multiple of x — x, on [t, t,],
iii) v is a constant multiple of u on [t,, b].
Proof: By choosing f(x) = x — x, in Theorem 2 it follows that

LIS dx = fOtx = x9)7d.

Thus, (16) implies (13), and Corollary 2 follows from Theorem 2. The geometrical
meaning of (17) is that there exist tangents y,(x) = 1,(x — x,), i = 1, 2, touching
the curve of u at t;, respectively.

The special case f = 1 leads to the following corollaries.

Corollary 3: Let u be a nontrivial solution of (1) with fixed sign on (a, b) and
u(a) = 0 = u(b) and assume that

W) =0=u'(ty), a<t, £t,<b; WXx)z20, asx=t; ux) =0,

’

t, £x <6
If (8) is fulfilled and the inequality
(18) [ gdx < ] Qdx

[x1,x2] [x1, %21\ [t1,12]

holds for all pairs of numbers x,, x, witha < x;, £t £t £ x, £ b, then v has
a zero in (a, b) or v has the following properties:

i) v is a constant multiple of u on [a, t,],

ii) v = const on [1y, t,],

iii) v is a constant multiple of u on [t,, b].

Proof: Set f = 1 in Theorem 2. .

A special case of Corollary 3 is the case #; = ¢, = ¢, a < ¢ < b. Then inequality
(18) has the form

X2 X2
fgdx<[Qdx, asx;<c<x,5b.
x1 X1

In this special case Corollary 3 is closely related to a result of Fink [1] concerning
the smallest positive eigenvalues A, and A, of the problems

(p(x) ') + Aq;(x)u =0,  u(a) =0 = u(d),
and
(P(X)u') + 229,(x)u =0,  u(a) =0 = ub).

Concerning the importance of the quantity of these eigenvalues for oscillation
or disconjugacy of the corresponding equations compare [4, p. 53].
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In the following the restriction x, ¢ [, b] supposed in Corollary 2 is to be
omitted. Assume that there exist points x, € (a, b) and ¢ with x, < t < b such
that
1 u'(1) 1 u'(x)
— = >
t— X u(t) = X —xo — u(x)’

t<x<b,

where u is the solution of equation (1) from above. Then, the function
0,a £ x < xq,

(19) v(x) = {X — Xo, Xg S X =0,
(t = xo)u ' ux), t <x < b,

belongs to the Sobolev space Wai(a, b)!) which is identical with the domain of the
closure of the form of equation (2). By using this function » the estimate (12)
gets the form

b T t
(200  J[p(v)* + q(x)v*1dx < [(g — @) (x — xo)* dx + [ Q(x — xo)*dx,
a<xo<t=tZbh

Of course, an analogous estimate holds when the point ¢ is situated to the left
of x,. Finally, the point x, can be identical with one of the endpoints of the
interval (a, b). The following corollary corresponds to the case a < x, < t < b.

Corollary 4: Let P = p = 1 and assume that u is a nontrivial solution of equa-
tion (1) with fixed sign on (a, b) and u(a) = 0 = u(b). Let further xy, a < Xy < b,
and t, x, < t < b, be points with the properties

———1—=—u—(2 and : g“(x), t<x<b.
t— X, u(t) X — X u(x) '
If the inequality
. ¢ ' 4
@1 Ja(x — x0)* dx < [ Q(x — x0)* dx
X0 t

holds for all points & with t £ & < b, then every solution v of equation (2) has a zero
on [xq, b).
Proof: It follows from (20) and (21) that

b
J[p(v')* + qv*]dx <0,
X0 E

where v is defined by (19). In the case

1) Wi(a, b) is the completion of C§&(a, b) by using the norm

b
lelh=d¢ 2+ |e®dH
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b .
inf J®19'1* + glel*)dx <0,
@eCy (x0,b), |l@ll=1 xo0
there exists a nontrivial solution of (2) on [x,, b] with at least two zeros in (x,, b)
and, consequently, every solution of (2) has a zero in (x,, b) (compare the proof
of Theorem 2). Assuming the case

b
inf Jle' 1> +4qlel)dx=0
@eCP (x0,b), lloll =1 xo
the (normalized) function v(x), x, < x < b, of (19) realizes the infimum. Hence v
is a nontrivial solution of (2) on [x,, b] which has the zero x,. This proves Corol-
lary 4.
In the case x, = a we obtain the following result.

Corollary 5: Let the suppositions of Corollary 4 be fulfilled for x, = a. Then
every solution v of equation (2) has a zero in (a, b), or v has the following properties:

i) v is a constant multiple of x — a on [a, t],

ii) v is a constant multiple of u on [, b].

t=a:lf

(22) IR 1. S I
xX—a u(x)

and the inequality
4 4

(23) fa(x — a)*dx < [ Q(x — a)*dx

holds for all &, a < & < b, then every solution v of (2) has a zero in (a, b) or v is
a constant multiple of u.
The proof of Corollary 5 is analogous to the proof of Corollary 4.

Example: Every solution of the equation

(24) —W' +q()u=0, g#-1, -—<xso,
has a zero in (—;, %—) if there exists a point ¢, —% Sc < —g— , ¢ + 0, such that *
(25) max f(@+1)(x —c—cotc)*dx <0
-jsmscsms ™

or if

; . 1 x2
26 P N )< —1.
(26) sup (xz_xlx:[qu)= 1

n n
2 Sx1<0<x35 3

Proof: Compare equation (24) with the equation
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@ = -—l = —] _E..
—u" —u=0, u( 2) 0 u(z),

=
2
tion (17) is fulfilled for ¢, = t, = ¢ and x, = ¢ + cot c. Then (25) corresponds

and take u = cos x. In the case where | ¢ | < =, ¢ % 0, apply Corollary 2. Condi-

to (16) with Q = —1. In the case where ¢ = __72z_ apply Corollary 5 under the

supposition ¢ = a. In this case the condition (25) has the form
g 2
max | (g + 1)(x +%> dx £0.

T

An analogous condition is valid in the case ¢ = 3

. Inequality (26) corresponds
to (18) of Corollary 3.

Corollary 6: Let P = p = 1 and consider the solution u of equation (1) determined
by the initial values u(c) = o >0, u'(c)=p>0,a<c<b. If the inequalities

2 sz(x —c+aft)dx
27 - , S -
(h=.a) f(x—c+ap™) dx

X1

0

IIA

hold for all numbers x,, x, with
max(a,c —af N < x;, <c<x, £bh,

then the solution u does not vanish in at least one of the intervals (a,.c) or (c, b).
In the case where u(c) = a > 0, u'(c) = 0, the same conclusion is true when
2
1 2
- = fQdx<0
(b_a) xl_xl x1
for all x,,x, witha < x; <c<x, <b.
Proof: Assume that ¥ has a zero @’ in (a, ¢) and a zero b’ in (¢, b). We may
. assume that u is positive on (a’, b"). Now apply the Corollaries 2—5. First let
u'(c) > 0. It follows from

(28)

1 v _ B

c—x, ulc) «

that x, = ¢ — af~'. Thus, replacing a by a’ and b by &', Corollary 2 can be
applied when ¢ — af~* < a’. The points ¢, and 7, can be determined such that 17
is fulfilled with @ = a’ and b = b’. Now it follows from (27) that (16) is fulfilled
by setting

7!2

q(x) = —m .

72



COMPARISON THEOREMS

x—a
b—a
[a’, b"] contradictory to the conclusion of Corollary 2. Assume now @’ < ¢ — af ™!
and apply Corollary 4 with a = a’ and b = b’. The point ¢, ¢ < ¢t < b’, can be
determined and (27) implies (21) with

The solution v = sin (1: )of equation (2), however, does not vanish on

7t2

q(x) = —m-

b—a
a contradiction. Finally, in the case a’ = ¢ — af~! apply Corollary 5 with a = @’
and b = b'. Analogously, the assertion of Corollary 6 under the supposition f = 0
follows from Corollary 3. This completes the proof of Corollary 6.

The case u(c) = a > 0, u'(c) = B < 0 can be handled analogously.

. . . xX—a ; : .
Thus, considering the solution v = sin (n )of equation (2) we again obtain
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