

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0018 | log29

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS XVIII: 177—182, 1982

INFINITESIMAL AFFINE DEFORMATIONS OF SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD*

S. T. HINEVA

(Received November 17, 1981)

0. Let M^m be an m-dimensional submanifold of an n-dimensional Riemannian manifold M^n .

In the present paper we study the infinitesimal affine deformations of submanifolds of a Riemannian manifold.

In Theorem 1 and Theorem 3 we answer the following question: when an infinitesimal affine deformation of a submanifold M^m is infinitesimal isometric or infinitesimal volume preserving.

In Theorem 4 and Theorem 5, conditions have been found in which a hypersurface M^m does not allow non-trivial infinitesimal affine deformations.

All manifolds, tensors and maps are assumed to be C^{∞} .

All manifolds are assumed connected.

1. Let M^n be an n-dimensional Riemannian manifold covered by a system of coordinate neighbourhoods $\{U, x^h\}$. Let means g_{ij} , Γ^k_{ij} , ∇_i , R^h_{ijk} and R_{ij} , the metric tensor, the Christoffel symbols formed with g_{ij} , the operator of covariant differentiation with respect to Γ^l_{kj} , the curvature tensor and the Ricci tensor of M^n respectively. The indices i, j, k, \ldots assume the values $1, 2, \ldots, n$.

Let M^m be an m-dimensional Riemannian manifold, covered by a system of coordinate neighbourhoods $\{V, u^a\}$ and let by $g_{\alpha\beta}$, $\Gamma^a_{\delta\beta}$, ∇_a , $R^{\delta}_{\alpha\beta\gamma}$ and $R_{\alpha\beta}$ the corresponding quantities of M^m be denoted. The indices α , β , γ , δ , ... run over the range 1, 2, ..., m.

We suppose that the manifold M^m is isometrically immersed in M^n by the immersion $r: M^m \to M^n$ and we identify $r(M^m)$ with M^m .

We represent the immersion r by

$$(1.1) x^h = x^h(u^a)$$

^{* (}Delivered at the Joint Czech-Polish-G.D.R. Conference on Differential Geometry and its Applications, September 1980, Nové Město na Moravě, Czechoslovakia.)

and denote

$$B_{\alpha}^{i} = \frac{\partial x^{i}}{\partial x^{\alpha}},$$

 B_a^i are m linearly independent vectors of M^n tangent to M^m . Since the immersion is isometric, we have

$$g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}.$$

We denote by N_{λ}^{h} ($\lambda = m + 1, m + 2, ..., n$) n - m mutually orthogonal unit normals to M^m , and by $D: I \times M^m \to M^n$, $I = (-\varepsilon, \varepsilon) \varepsilon > 0$ an arbitrary deformation of M^m . Then the field z^h of the deformation D can be represented as:

$$z^h = \zeta^\alpha B^h_\alpha + \zeta^\lambda N^h_\lambda,$$

where $\zeta^{\alpha}(\alpha = 1, 2, ..., m)$ and $\zeta^{\lambda}(\lambda = m + 1, ..., n)$ are tangential and normal components of the field of deformation z^h , respectively.

We call a deformation D of the submanifold M^m trivial, when the field of the deformation z^h is identically equal to zero.

If the deformation vector zh is tangent to the submanifold, we say that the deformation is tangential (i.e. $\zeta^{\lambda} = 0$).

If the deformation vector z^h is normal to the submanifold, we say that the deformation is normal (i.e. $\zeta^{\alpha} = 0$).

A deformation D of M^m is then and only then [2]

a) infinitesimal isometric, when the components ζ^a and ζ^{λ} of the field of deformation z^h satisfy the following system of equations:

(1.5)
$$\nabla_{\alpha}\zeta_{\beta} + \nabla_{\beta}\zeta_{\alpha} - 2h_{\alpha\beta\lambda}\zeta^{\lambda} = 0,$$

where $h_{\alpha\beta}^{\lambda}$ are the second fundamental tensors of M^{m} with respect to the normals N_{λ}^{h} ; $h_{\alpha\lambda}^{\beta} = g^{\beta\delta}h_{\alpha\delta\lambda}; \ h_{\lambda} = h_{\alpha\lambda}^{\alpha} = g^{\alpha\beta}h_{\alpha\beta\lambda}.$ b) infinitesimal affine, when ξ^{α} and ξ^{λ} satisfy the system of equations:

$$(1.6) \qquad \nabla_{\gamma} \nabla_{\beta} \zeta_{\alpha} + R_{\epsilon \gamma \beta \alpha} \zeta^{\epsilon} = \nabla_{\gamma} (h_{\beta \alpha \lambda} \zeta^{\lambda}) + \nabla_{\beta} (h_{\alpha \gamma \lambda} \zeta^{\lambda}) - \nabla_{\alpha} (h_{\beta \gamma \lambda} \zeta^{\lambda}).$$

c) infinitesimal volume preserving, if ζ^{α} and ζ^{λ} satisfy:

$$\nabla_{\alpha}\zeta^{\alpha} = h_1\zeta^{\lambda}.$$

2. Theorem 1. If an infinitesimal affine deformation of a submanifold M^m of a Riemannian manifold Mⁿ is infinitesimal isometric at least at one point of M^m. then this affine deformation is isometric on the whole M^m.

Proof: From equation (1.6) and

$$(2.1) \qquad \nabla_{\gamma} \nabla_{\alpha} \zeta_{\beta} + R_{z \gamma \alpha \beta} \zeta^{z} = \nabla_{\gamma} (h_{\alpha \beta \lambda} \zeta^{\lambda}) + \nabla_{\alpha} (h_{\gamma \beta \lambda} \zeta^{\lambda}) - \nabla_{\beta} (h_{\alpha \gamma \lambda} \zeta^{\lambda})$$

in view of $-R_{\epsilon\gamma\beta\alpha} = R_{\epsilon\gamma\alpha\beta}$ we obtain

(2.2)
$$\nabla_{\gamma}(\nabla_{\beta}\zeta_{\alpha} + \nabla_{\alpha}\zeta_{\beta} - 2h_{\alpha\beta\lambda}\zeta^{\lambda}) = 0.$$

If we denote

$$(2.3) T_{\alpha\beta} = \nabla_{\beta}\zeta_{\alpha} + \nabla_{\alpha}\zeta_{\beta} - 2h_{\alpha\beta\lambda}\zeta^{\lambda},$$

then

(2.4)
$$\nabla_{y}T_{\alpha\beta} = 0, \qquad T_{\alpha\beta} = T_{\beta\alpha} \quad \text{and} \quad T^{\alpha\beta} = T_{\alpha\beta}g^{\alpha\beta}.$$

We multiply (1.6) by $T^{\alpha\beta}$

$$(2.5) T^{x\beta} \nabla_{y} (\nabla_{\beta} \zeta_{\alpha} - h_{\alpha\beta\lambda} \zeta^{\lambda}) = 0.$$

From (2.4) and (2.5) we have

$$(2.6.) T^{\alpha\beta}(\nabla_{\beta}\zeta_{\alpha} - h_{\alpha\beta\lambda}\zeta^{\lambda}) = C_{1},$$

where C_1 is a global constant, since M^m is connected. Since $T^{\alpha\beta} = T^{\beta\alpha}$, we can write (2.6) in the form

$$(2.7) T^{\alpha\beta}T_{\alpha\beta}=2C_1.$$

The rest of the proof follows easily from the assumptions.

From this theorem we obtain some corollaries.

Corollary 1. If $\zeta^h = \zeta^\alpha B_\alpha^h + \zeta^\lambda N_\lambda^h$ is a deformation vector field of an infinitesimal affine deformation, then the tensor $T_{\alpha\beta}$ has a constant length.

Corollary 2. If $z^h = \zeta^x B_\alpha^h + \zeta^\lambda N_\lambda^h$ is a deformation vector field of an infinitesimal affine deformation, then

$$(2.8) \qquad \frac{1}{2} \left(\nabla_{\alpha} \zeta_{\beta} + \nabla_{\beta} \zeta_{\alpha} \right) \left(\nabla^{\alpha} \zeta^{\beta} + \nabla^{\beta} \zeta^{\alpha} \right) \ge 4 h_{\alpha\beta\lambda} \zeta^{\lambda} \nabla^{\alpha} \zeta^{\beta} - 2 h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \zeta^{\lambda} \zeta^{\mu}_{\bullet}$$

The equality is valid only if the deformation is infinitesimally isometric.

Theorem 2. If $z^h = \zeta^\alpha B_\alpha^h + \zeta^\lambda N_\lambda^h$ is a deformation vector of an infinitesimal affine, deformation of a non-totally geodesic compact orientable submanifold M^m of an orientable Riemannian manifold M^n , then

(2.9)
$$\int_{M_n} h_{\alpha\beta\lambda} h_m^{\alpha\beta} \zeta^{\lambda} \zeta^m dV \ge \int_{M_n} h_{\alpha\beta\lambda} \zeta^{\lambda} \nabla^{\alpha} \zeta^{\beta} dV.$$

The equality is fulfilled only if the deformation is infinitesimally isometric.

Proof: By Green's theorem and equality (2.4) it follows

(2.10)
$$0 = \int_{M_m} \nabla^{\beta} (T_{\alpha\beta} \zeta^{\alpha}) \, dV = \int_{M_m} T_{\alpha\beta} \nabla^{\alpha} \zeta^{\beta} \, dV.$$

From this equality in view of (2.6) and (2.7) we have

(2.11)
$$\int_{M_m} \frac{1}{2} T_{\alpha\beta} T^{\alpha\beta} dV = \int_{M_m} \{2h_{\alpha\beta\lambda}h_m^{\alpha\beta}\zeta^{\lambda}\zeta^m - 2h_{\alpha\beta\lambda}^{\mu\nu}\zeta^{\lambda}\nabla^{\alpha}\zeta^{\beta}\} dV.$$

From (2.11) it follows that

$$\int\limits_{M^m} 2h_{\alpha\beta\lambda}h_m^{\alpha\beta}\zeta^\lambda\zeta^m\,\mathrm{d}V \geqq \int\limits_{M^n} 2h_{\alpha\beta\lambda}\zeta^\lambda\,\nabla^\alpha\zeta^\beta\,\mathrm{d}V.$$

The theorem is proved.

If we take into consideration

$$(2.12) \ \frac{1}{2} T_{\alpha\beta} T^{\alpha\beta} = \frac{1}{2} \left(\nabla_{\alpha} \zeta_{\beta} + \nabla_{\beta} \zeta_{\alpha} \right) \left(\nabla^{\alpha} \zeta^{\beta} + \nabla^{\beta} \zeta^{\alpha} \right) - 4 h_{\alpha\beta\lambda} \zeta^{\lambda} \nabla^{\alpha} \zeta^{\beta} + 2 h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \zeta^{\lambda} \zeta^{\mu},$$

then from (2.11) we have

Corollary 1. If z^h is deformation vector of an infinitesimal affine deformation of a compact orientable submanifold M^m of an orientable Riemannian manifold M^n , then

(2.13)
$$\int_{M^n} h_{\alpha\beta\lambda} \zeta^{\lambda} \nabla^{\alpha} \zeta^{\beta} \, \mathrm{d}V \ge 0.$$

Theorem 3. An infinitesimal affine deformation of a minimal compact orientable submanifold M^m of an orientable Riemannian manifold M^n is necessarily infinitesimal volume preserving.

Proof: If a submanifold is minimal, then

$$(2.14) h_{\pi_1}^a = h_1 = 0.$$

From equation (1.6) we can get the following equalities:

(2.15)
$$\nabla^{\beta} \nabla_{\beta} \zeta_{\alpha} + R_{\beta \alpha} \zeta^{\beta} = 2 \nabla^{\beta} (h_{\alpha \beta \lambda} \zeta^{\lambda}) - \nabla_{\alpha} (h_{\lambda} \zeta^{\lambda}),$$

$$\nabla_{\alpha}\zeta^{\alpha} = h_{\lambda}\zeta^{\lambda} + C,$$

where C is a global constant, since M^m is connected.

From (2.14) and (2.16) it follows

$$\nabla_{\alpha}\zeta^{\alpha}=C.$$

Since the submanifold M^m is compact and orientable, then

(2.18)
$$\int_{\mathbf{M}^m} \nabla_{\alpha} \zeta^{\alpha} \, \mathrm{d}V = 0.$$

From (2.17) and (2.18) we obtain that $C \equiv 0$.

Theorem 4. Let M^m be a non-minimal compact orientable hypersurface of an orientable Riemannian manifold M^n . If the submanifold M^m satisfies the conditions a) the second fundamental tensor $h_{\alpha\beta}$ is parallel, i.e.

$$\nabla_{\nu}h_{\alpha\beta}=0,$$

b) the quadratic form with the components $R_{\alpha\beta}$ of the Ricci tensor as coefficients is negatively definite, then M^m does not allow non-trivial infinitesimal affine deforma-

tion for which the divergence of the tangential component of the deformation vector is equal to zero and the deformation vector is tangent to M^m at least at one point of M^m .

Proof: Let us suppose that M^m allows non-trivial infinitesimal affine deformations. Then ξ^a and ψ do not vanish at the same time and satisfy the equation (1.6).

The equation (1.6) in view of condition $\nabla_{\nu}h_{\alpha\beta}=0$ becomes

$$(2.19) \nabla_{y} \nabla_{\beta} \zeta_{\alpha} + R_{\epsilon y \beta \alpha} \zeta^{\epsilon} = h_{\beta \alpha} \nabla_{y} \psi + h_{y \alpha} \nabla_{\beta} \psi - h_{\beta y} \nabla_{\alpha} \psi.$$

From (2.19) we can get the following equations:

$$\nabla^{\beta} \nabla_{\beta} \zeta_{\alpha} + R_{\alpha \alpha} \zeta^{\alpha} = 2h_{\alpha}^{\beta} \nabla_{\beta} \psi - h \nabla_{\alpha} \psi,$$

$$\nabla_{\alpha}\zeta^{\alpha} = h\psi + C,$$

where C is a global constant.

Since the divergence of the vector ζ^{α} is equal to zero we have

$$\nabla_{\alpha}\zeta^{\alpha} = 0.$$

From (2.21) by virtue of (2.22) and $\nabla_{\gamma} h_{\alpha\beta} = 0$ we obtain

$$(2.23) h \nabla_{\alpha} \psi = 0.$$

The hypersurface M^m is not minimal, i.e. $h \neq 0$. Then from (2.23) it follows that

$$(2.24) \psi = \overline{C},$$

where C is a constant.

The equality (2.19) in view of (2.24) becomes

$$(2.25) \nabla_{\nu} \nabla_{\beta} \zeta_{\alpha} + R_{\nu\nu\beta\alpha} \zeta^{\epsilon} = 0,$$

which shows that ζ^{α} is an affine Killing vector. Since M^{m} is compact and orientable, ζ^{α} is also a Killing vector:

$$\nabla_{\alpha}\zeta_{\beta} + \nabla_{\beta}\zeta_{\alpha} = 0.$$

For a compact orientable submanifold M^m the following integral formula is valid

(2.27)
$$\int_{M^{m}} \left\{ R_{\alpha\beta} \zeta^{\alpha} \zeta^{\beta} + \nabla^{\alpha} \zeta^{\beta} \nabla_{\beta} \zeta_{\alpha} - (\nabla_{\alpha} \zeta^{\alpha})^{2} \right\} dV = 0,$$

for any vector ζ^{α} in M^m [3].

From (2.26), (2.22) and (2.27) we have

(2.28)
$$\int_{\mathbf{M}^m} R_{\alpha\beta} \zeta^{\alpha} \zeta^{\beta} \, dV = \int_{\mathbf{M}^m} \nabla^{\alpha} \zeta^{\beta} \, \nabla_{\alpha} \zeta_{\beta} \, dV.$$

This equality, considering condition b) of the theorem, is fulfilled only if ζ^{α} is identically equal to zero. The theorem is proved.

Corollary 1. If a hypersurface M^m satisfies the conditions of the theorem, then M^m does not allow non-trivial infinitesimal affine deformations for which the tangential component of the deformation vector is a harmonic vector and the deformation vector is tangent to M^m at least at one point.

Corollary 2. A compact orientable hypersurface M^m of an orientable Riemannian manifold M^n does not allow non-trivial tangential infinitesimal affine deformation if the Ricci form $R_{\alpha\beta}$ is negatively definite.

Theorem 5. Let M^m be a non-minimal compact orientable hypersurface of an orientable Riemannian manifold M^n with negative (or equal to zero) constant scalar curvature. If M^m has a parallel second fundamental tensor $(\nabla_{\gamma}h_{\alpha\beta}=0)$, and the quadratic form with coefficients $h_{\gamma}h_{\alpha\beta}^{\lambda}-h_{\beta\lambda}^{\epsilon}h_{\alpha\epsilon}^{\lambda}$, is negatively definite, then M^m does not allow non-trivial infinitesimal affine deformation for which the divergence of the tangential component of the deformation vector is equal to zero and the deformation vector is tangent to M^m at least at one point.

Proof: The Gauss equation of a submanifold of M^n is:

$$(2.29) R_{\alpha\beta\gamma\delta} = R_{ijkh} B^i_{\alpha} B^j_{\beta} B^k_{\delta} + h_{\alpha\delta\lambda} h^{\lambda}_{\beta\gamma} - h_{\beta\delta\lambda} h^{\lambda}_{\alpha\gamma}.$$

The curvature tensor of a manifold M^n with constant scalar curvature K is:

(2.30)
$$R_{ijkh} = \frac{K}{n(n-1)} (g_{ih}g_{jk} - g_{ik}g_{jh}).$$

From (2.29), (2.30) and $g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}$ we obtain

(2.31)
$$R_{\beta\gamma} = \frac{m(m-1)}{n(n-1)} K g_{\beta\gamma} + h_{\lambda} h_{\beta\gamma}^{\lambda} - h_{\beta\lambda}^{\alpha} h_{\alpha\gamma}^{\lambda}.$$

Further the proof is analogous to that of Theorem 4.

REFERENCES

- [1] S. I. Tachibana: On the Isometric Deformation Vector of the Hypersurface in Riemannian manifolds, Natur. Sci. Rep. Ochanomiz Univ., 27, 1, 1976.
- [2] K. Yano: Infinitesimal variations of submanifolds, Kodai Math. Journal, Vol. 1, No. 1, pp. 30—44, March 1978.
- [3] K. Yano: Differential geometry on Complex and Almost Complex Spaces, 1965.
- [4] S. T. Hineva: On the infinitesimal deformations of submanifolds of a Riemannian manifold (to appear).

S. T. Hineva Sofia 1000, Stamboliski 14 Bulgaria