#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1980
PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0016 | log24

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XV: 167—174, 1980

ASYMPTOTIC AND OSCILLATION
PROPERTIES OF THIRD ORDER LINEAR
DIFFERENTIAL EQUATIONS

DRAHOSLAVA RADOCHOVA, Brno
VACLAV TRYHUK, Brno

(Received September 11, 1978)

1. INTRODUCTION

We investigate a linear differential equation of the third order of the form

S y"+p)y" + 24(t)y" + (A'(t) + b)) y = 0,

where p(t), A(t), A'(t) + b(t) are continuous on interval of definition [a, ). Some
new results for this equation in the case that A(f) 2 0 were obtained by REGENDA [3]
and SoLt#s [6].

A new canonical form was derived by F. NEUMAN [1], [2] for linear differential
equations of the n-th order of the form

(T) ¥ 4+ a) () y® D + .+ a(t)y =0,

a,eC%I) for i = 1,2,...,n; Iis an open interval (bounded or unbounded). Here
C"(I) denotes for n 2 0 the class of all continuous functions on I having here continu-
ous derivative up and including the n-th order. This canonical form is global, i.e.
each linear differential equation of the n-th order can be transformed into the form
on the whole interval of definition, on the contrary to local canonical forms due to
Laguerre — Forsyth characterized by @, = 0 and a; =0.

This general canonical form depends on an interval of definition and n — 2
positive functions ¢, € C*~¥(J), i = 1,2,...,n — 1.

For n = 3 the canonical form (see [1]) is

) u” — a'(X)a(x)u" + 1+ A(x) ' — a’(x)/a(x)u = 0,
ae C'(J) and a(x) > O for all xe J.
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In this paper oscillation properties and boundedness of solutions of the linear
differential equation of the form (S) or (U) are studied as a continuation of [7].

We use the same methods as that by Svec, SinGH [4], [5], SoLtés [6] and
REeGENDA [3].

2. BASIC RELATIONS

It can be verified through differentiation that for (S) on J = [a, o) the following
identity is satisfied. If we denote L(t, a) = exp {f p(s)ds} and F(y(t)) = y'*(t) —
— 29(1)y"(t) = 24() y*(¢) then "
®) FO) LG, a) = FOG@) + [ (05 + 26 = 4p)y') Lis a) .

In the proofs of some theorems in the papers [3], [5], [6], [7] there is used the
procedure given in the form of the following

Lemma 1. Let u(t) € C'[a, ) be functions, c,, constants, i = 1,2, ...,s. Let the
sequence {y,} be defined by the relations

s s
2
Ya = z Cinthis Z Cin = 48
i=1 i=1
Then there exists a subsequence {n;} such that c,,,— c; and {y, } converges on every
finite subinterval of [a, ) uniformly to the function
3

s
Y=Z‘-'¢“i, th2=1:
i=1 i=1 ,

as n; — oo such that

YO =Ycu® z=01,2..,m<sr.
i=1
. In this paper we use the following results given in [3] and [5].
Lemma 2. ([5]) Let a function y = y(t) be a solution of the equation y™ + p,y®~1 +
+ ... + P,y = po with bounded continuous coefficients p(t), k =0,1,...,n, on
[a, o0). If the solution y is bounded on [a, ), then the derivatives y®(t),s = 1,2, ...,n
of the solution y are bounded on [a, ).

Lemma 3. ([5]) If a function y has a finite limit as t — oo and y™(t) is bounded for
all t = ty, then y*®(t) >0 as t— oo for 0 <k <n.

Lemma 4. ([5]) Let f(t) € C'[a, ). If 3? f*(t)dt < oo and f’ is bounded on [a, ),

then f(t) - 0 ast — oo.

168



Lemma 5. ([3]) Zf p(t) = 0 and b(t) — A(t) p(t) = O being not identically zero
in any interval, and (S) has one oscillatory solution, then a necessary and sufficient
condition for a solution y # 0 to be nonoscillatory is that F(y(t)) < O for all t € [a, ).

Lemma 6. ([3]) If p(t) = 0 and b(t) — A(t) p(t) = O being not identically zero
in any interval, then (S) has a solution for which F(y(t)) is always negative. Consequently
y(t) is nonoscillatory.

Lemma 7. ([7]) Let A(t) 2 0, p(t) S 0, A'(t) + b(t) S O not identically zero on
any subinterval of [a, ) and y(t) # 0 be nonoscillatory solution of (S) satisfying the
inequality F(y(t)) > O for all t Z a. Then c € [a, ©) exists such that for all t & c
there holds y(t) y'(t) > 0.

3. FURTHER RELATIONS

Theorem 1. Let A(t) 2 0, p(t) < 0 and b(t) — A(t) p(t) < O be not identically zero
on any subinterval of [a, 0). Then the equation (S) has two linearly independent non-
trivial solutions v(t), w(t) with the property that F(y(t)), F(w(t)) are positive for all
tZa. '

Proof: Let the solutions y,, y,, y; of the equation (S) be determined by the
initial conditions

0i%j+1 i=1,2,3,
D) = = ?
Yi@) = By “{1 i=j+ 1} j=0,1,2

. Letn > abe positive integers, b,,, b,, and c,,, c;, constants such that the solutions v,
and w, of the equation (S) defined by '

vn(t) = blnyl(t) + b3ny3(t): bfn + b;a =
W,,(I) = C2y,(t) + 03,}’3(0, cgn + cgn =1,

satisfy v,(n) = w,(n) = 0. Then F(v,(n)) 2 0, F(w,(n)) = 0 and since F(y(t))L(t, a)
is a decreasing function, there holds .

() - " F,t)>0,Fw,(t)) >0 on [a,n) for L(t,a) > 0.

By Lemma 1 the sequence {n} exists such that {v, (t)} converges for n, — oo on
every finite subinterval from [a, ) uniformly to a function v(f) and there holds

vO@) = by®(t) + b3y$(t), s=0,1,2 and b} +b3=1.

From (1) it follows that F(v(t)) = 0 on [a, ). As F(y(t)) L(t,s) is a decreasing
function, there must be F(v(t)) >0 on [a, ©). Otherwise F(v) obtains negative
values which is a contradiction. We can prove similarly that F(w(t)) > Oand ¢? + ¢? =
= 1 on [a, ). Let the solutions v(t), w(t) be dependent. As b? + b = c2 + c3 =1
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is satisfied, there holds v(t) = Ky;(t) for some K # 0. Then F(v(a)) = F(y;(a)) =
by the definition of y;, which is a contradiction to F(v(t)) > 0 on [a, c0). We have
proved that v(f), w(z) are linearly independent solutions. This completes the proof.

Lemma 8. Let A(t) = 0, p(t) £ 0, A'(t) + b(t) £ 0 not identically zero on any
subinterval of [a, ) and y(t) be a nontrivial solution of (S) satisfying the inequality

F(y(t)) >0 forallt 2 a. If _[ A(t)dt = oo, then y(t) is osczllatory

Proof: For y(t) £ 0 nonoscnllatory solution of the equation (S) there exists
c € [a, o) such that for all ¢ = ¢ there holds y(t) y'(f) > 0 by Lemma 7. If the in-
equality F(y(t)) > 0 on [c, o) is satisfied then F(y) = y'> — 2py" — 24y* >0 i
and only if (’(t)/y(t))’ < — A(t) on this interval. By integration of the last inequality
from c to ¢ we obtain

YOIy < y'(@©/y(c) — [ A(s)ds > —0  as  t— oo,

which is a contradiction to y(t) y'(r) > 0 on [¢, c0) and y(t) cannot be nonoscillatory.
Theorem 2. Let A(t) = 0, p(t) < 0 and A'(t) + b(t) < 0 and b(t) — A(t) p(t) £ 0,
being not identically zero on any subinterval of [a, ). If | A()dt = o then the

equation (S) has two linearly independent oscillatory solutions.

Proof: Under our suppositions the equation (S) has two nontrivial linearly
independent solutions v(z), w(t) with the property F(v(t)) > 0 and F(w(t)) > O for
all ¢ = a by Theorem 1. Solutions v(z), w(t) are oscillatory by Lemma 8.

Lemma 9. Let A(t) = 0, p(t) £ 0 and A'(t) + b(t) £ 0 and b(t) — A(t) p(t) < O,
being not identically zero on any subinterval of [a, ). If | A(t)dt = co then a non-

trivial solution of the equation (S) is nonoscillatory if and only if c € [a, ) exists
such that F(y(c)) £ 0.

Proof: The necessity follows from Lemma 8. Under the given suppositions the
function F(y(t)) L(t, a) is strictly decreasing, thus F(y(t)) < 0 on [d, ®), d 2 c.
Let y(t,) = O for 5 € [d, 0). Then F(y(t,)) = y'*(t,) = 0 which is a contradiction
and the solution y(¢) must be nonoscillatory.

Theorem 3. Let p(t) 2 0, A(t) = 0, b(t) — A(t) p(t) Z m > 0 and coefficients of the
equation (S) are bounded. If

?4(:) dt=o00  and }o p()dt =

then for a nontrivial nonoscillatory solution y(t) of the equation (S) there holds y®(t) - 0
ast—= o,k=0,1,2,3.
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Proof: Let y(t) be a nontrivial nonoscillatory solution of the equation (S). We
can suppose without loss of generality that y(¢) > O for all # = ¢, = a. The function
F(y(t)) L(t, a) is increasing, thus F(y(¢)) < 0 on [¢,, c0) or there exists ¢; € [#, » ©)
such that F(y(t,)) = 0 and F(y(t)) > O for all ¢ = ¢,.

In the first case

0 > F(y(1) L(t, to) = F(y(to)) + j Py LAs, o) ds +
+ 2'[(b — Ap) y>L(s, to) ds > F(¥(to)) +
+2m f y¥(s)ds  because  L(t,t,) = 1. )

We have oj? y¥(s)ds < —F(y(t,))/2m and F(y(ty)) <0, thus }, Yy¥(t)dt < 0. We

assert that y'(¢) is a bounded function on [a, ). Indeed if there exists a constant
K, > 0 such that |y'| = K, on some interval [¢,, ©), ¢, = ¢, = a, then from
identity (F) we have for L(z,¢,) = 1

F(y(1)) L(t, ;) > F(y(t;)) + Kfj p(s)ds — oo,

as t - oo which is a contradiction to F(y(t)) < 0 on [¢,, o). Since Fy’(y) dt < ©
and y’ is a bounded function, thus y(t) - 0 as ¢t = oo by Lemma~4.'°

In the second case F(y(t)) > 0 on (¢;, ©) and }oA(t) dt = o and y(t) > 0 on
(ty, ©). Hence y'? — 2yy" — 24y* > 0 if and onlloy if ('/y) < —4 on [d, ),

d > t,. By integration of this inequality from d to ¢ we obtain

Y@y < y'(@d)/yd) - !A(S) ds— —c0 a5 - o0

There exists a positive constants K, such that y'(f) < —K,y(t) on [d, ©) and
limy(t) = k=0 as t—> oo. If £ > 0 then y’ < —K,k which is a contradiction to
y > 0 on [d, ). We have lim y(t) = 0 as ¢t = 0. '

The function y” is bounded by Lemma 2, y’ -+ 0 and y” — 0 as ¢ - o0 by Lemma 3
and y" = —py" — 24y’ — (A’ + b) y - 0 as t » oo under our suppositions. The
assertion is proved.

Remark 1. Under the suppositions of Theorem 3 there exists a nontrivial solution
for which F(y(¢)) is always negative by Lemma 6. This solution y(t) is nonoscillatory.
Otherwise F(y) obtains positive values which is a contradiction.

Remark 2. In the oscillation criterion of Soltés [6] there is the supposition

«© o0
§ p(t) dt < oo, whereas we have [ p(r) dt = co.
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4. APPLICATIONS TO THE CANONICAL FORM

Now we consider a global canonical form (U) on J = [a, o)
u" —aOfat)u” + (1 + a?@))u’ — o' ()/a(t)u =0,
ae C!(J)and a(t) > O forall te J.

Remark 3. Let f(1) e C'(J) and 0 < k < f'(t) < K be satisfied for some positive
constants k, K. If we put a(z) = exp {—(¢)} then the coefficients of the equation (U)
are bounded, the function a(#) is negative and bounded and it is evident that the
following three conditions are equivalent

1° —d'(Dfalt) = f'() 2 k;
2° f(t) > 0 ast— ;
3° a(t) » 0 for t - oo.

For example functions f of the form

f(t) = asin™(bt + ¢) + nt on (0, 00), where m > 0 and n > | mab | > 0;
f(t) = log, (t + ¢) + kt on (—c, o©0) where k > 0;
" f(0) = t(k + arctgf) — In (1 + £)/2 on (0, ) where k > p[2;
f(2) = £3/(1 + £?) on (0, 0);
f(t) = exp {—t} on [a, 0], a be arbitrary;
e.t.c.
can be considered.

Theorem 4. Let a(t) = exp {—f(t)}, f(t)e C'(J) and 0 < k £ f' £ K be satisfied

Jor some positive constants k, K on J. If y(t) is a nontrivial nonoscillatory solution
of the equation (U) then y®(t) > 0 ast— 0, s =0,1,2,3.

Proof: According to Remark 3 we have p(t) = —a'(t)/a(t) = f'(t) = k and

“A@) = (1 4+ a*@)/2 > 1/2, thus [A(f)dt = o0 and [p(f)dt = o and b(¢) -

— A@t) p(t) = A(t) p(t) > k[2 > 0 if and only if a(t) - 0 as t - 0. The assertion

follows from Theorem 3.

Theorem S. If &'(t) = 0 being not identically zero on any interval, then
(i) anontrivial solution of the equation (U) is nonoscillatory if and only if c € [a, o)
exists such that F(y(c)) < 0;
(ii) the equation (U) has two linearly independent oscillatory solutions.

Proof: (i) follows from Lemma 9 and (ii) from Theorem 2.
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