

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0016|log24

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS XV: 167—174, 1980

ASYMPTOTIC AND OSCILLATION PROPERTIES OF THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS

DRAHOSLAVA RADOCHOVÁ, Brno VÁCLAV TRYHUK, Brno

(Received September 11, 1978)

1. INTRODUCTION

We investigate a linear differential equation of the third order of the form

(S)
$$y''' + p(t)y'' + 2A(t)y' + (A'(t) + b(t))y = 0,$$

where p(t), A(t), A'(t) + b(t) are continuous on interval of definition $[a, \infty)$. Some new results for this equation in the case that $A(t) \ge 0$ were obtained by REGENDA [3] and ŠOLTÉS [6].

A new canonical form was derived by F. Neuman [1], [2] for linear differential equations of the n-th order of the form

(T)
$$y^{(n)} + a_1(t) y^{(n-1)} + ... + a_n(t) y = 0,$$

 $a_i \in C^0(I)$ for $i=1,2,\ldots,n$; I is an open interval (bounded or unbounded). Here $C^n(I)$ denotes for $n \ge 0$ the class of all continuous functions on I having here continuous derivative up and including the n-th order. This canonical form is global, i.e. each linear differential equation of the n-th order can be transformed into the form on the whole interval of definition, on the contrary to local canonical forms due to Laguerre—Forsyth characterized by $a_1 \equiv 0$ and $a_2 \equiv 0$.

This general canonical form depends on an interval of definition and n-2 positive functions $\alpha_i \in C^{n-1}(J)$, i=1,2,...,n-1.

For n = 3 the canonical form (see [1]) is

(U)
$$u''' - \alpha'(x)/\alpha(x) u'' + (1 + \alpha^2(x)) u' - \alpha'(x)/\alpha(x) u = 0,$$

 $\alpha \in C^1(J)$ and $\alpha(x) > 0$ for all $x \in J$.

In this paper oscillation properties and boundedness of solutions of the linear differential equation of the form (S) or (U) are studied as a continuation of [7].

We use the same methods as that by Švec, Singh [4], [5], Šoltés [6] and REGENDA [3].

2. BASIC RELATIONS

It can be verified through differentiation that for (S) on $J = [a, \infty)$ the following identity is satisfied. If we denote $L(t, a) = \exp\{\int_a^t p(s) \, ds\}$ and $F(y(t)) = y'^2(t) - 2y(t)y''(t) - 2A(t)y^2(t)$ then

(F)
$$F(y) L(t, a) = F(y(a)) + \int_{a}^{t} (py'^{2} + 2(b - Ap) y^{2}) L(s, a) ds.$$

In the proofs of some theorems in the papers [3], [5], [6], [7] there is used the procedure given in the form of the following

Lemma 1. Let $u_i(t) \in C^r[a, \infty)$ be functions, c_{in} constants, i = 1, 2, ..., s. Let the sequence $\{y_n\}$ be defined by the relations

$$y_n = \sum_{i=1}^{s} c_{in}u_i, \qquad \sum_{i=1}^{s} c_{in}^2 = 1.$$

Then there exists a subsequence $\{n_j\}$ such that $c_{in_j} \to c_i$ and $\{y_{n_j}\}$ converges on every finite subinterval of $[a, \infty)$ uniformly to the function

$$y = \sum_{i=1}^{s} c_i u_i, \qquad \sum_{i=1}^{s} c_i^2 = 1,$$

as $n_j \to \infty$ such that

$$y^{(z)} = \sum_{i=1}^{s} c_i u_i^{(z)}, \qquad z = 0, 1, 2, ..., m \le r.$$

In this paper we use the following results given in [3] and [5].

Lemma 2. ([5]) Let a function y = y(t) be a solution of the equation $y^{(n)} + p_1 y^{(n-1)} + \dots + p_n y = p_0$ with bounded continuous coefficients $p_k(t)$, k = 0, 1, ..., n, on $[a, \infty)$. If the solution y is bounded on $[a, \infty)$, then the derivatives $y^{(s)}(t)$, s = 1, 2, ..., n of the solution y are bounded on $[a, \infty)$.

Lemma 3. ([5]) If a function y has a finite limit as $t \to \infty$ and $y^{(n)}(t)$ is bounded for all $t \ge t_0$, then $y^{(k)}(t) \to 0$ as $t \to \infty$ for 0 < k < n.

Lemma 4. ([5]) Let $f(t) \in C^1[a, \infty)$. If $\int_a^\infty f^2(t) dt < \infty$ and f' is bounded on $[a, \infty)$, then $f(t) \to 0$ as $t \to \infty$.

Lemma 5. ([3]) If $p(t) \ge 0$ and $b(t) - A(t)p(t) \ge 0$ being not identically zero in any interval, and (S) has one oscillatory solution, then a necessary and sufficient condition for a solution $y \ne 0$ to be nonoscillatory is that F(y(t)) < 0 for all $t \in [a, \infty)$.

Lemma 6. ([3]) If $p(t) \ge 0$ and $b(t) - A(t)p(t) \ge 0$ being not identically zero in any interval, then (S) has a solution for which F(y(t)) is always negative. Consequently y(t) is nonoscillatory.

Lemma 7. ([7]) Let $A(t) \ge 0$, $p(t) \le 0$, $A'(t) + b(t) \le 0$ not identically zero on any subinterval of $[a, \infty)$ and $y(t) \ne 0$ be nonoscillatory solution of (S) satisfying the inequality F(y(t)) > 0 for all $t \ge a$. Then $c \in [a, \infty)$ exists such that for all $t \ge c$ there holds y(t) y'(t) > 0.

3. FURTHER RELATIONS

Theorem 1. Let $A(t) \ge 0$, $p(t) \le 0$ and $b(t) - A(t)p(t) \le 0$ be not identically zero on any subinterval of $[a, \infty)$. Then the equation (S) has two linearly independent nontrivial solutions v(t), w(t) with the property that F(y(t)), F(w(t)) are positive for all $t \ge a$.

Proof: Let the solutions y_1, y_2, y_3 of the equation (S) be determined by the initial conditions

$$y_i^{(j)}(a) = \delta_{i,j+1} = \begin{cases} 0 & i \neq j+1 \\ 1 & i = j+1 \end{cases}$$
 $i = 1, 2, 3,$ $j = 0, 1, 2.$

Let n > a be positive integers, b_{1n} , b_{3n} and c_{2n} , c_{3n} constants such that the solutions v_n and w_n of the equation (S) defined by

$$v_n(t) = b_{1n}y_1(t) + b_{3n}y_3(t),$$
 $b_{1n}^2 + b_{3n}^2 = 1,$
 $w_n(t) = c_{2n}y_2(t) + c_{3n}y_3(t),$ $c_{2n}^2 + c_{3n}^2 = 1,$

satisfy $v_n(n) = w_n(n) = 0$. Then $F(v_n(n)) \ge 0$, $F(w_n(n)) \ge 0$ and since F(y(t)) L(t, a) is a decreasing function, there holds

(1)
$$F(v_n(t)) > 0, F(w_n(t)) > 0$$
 on $[a, n)$ for $L(t, a) > 0$.

By Lemma 1 the sequence $\{n_k\}$ exists such that $\{v_{n_k}(t)\}$ converges for $n_k \to \infty$ on every finite subinterval from $[a, \infty)$ uniformly to a function v(t) and there holds

$$v^{(s)}(t) = b_1 y_1^{(s)}(t) + b_3 y_3^{(s)}(t), \quad s = 0, 1, 2 \quad \text{and} \quad b_1^2 + b_3^2 = 1.$$

From (1) it follows that $F(v(t)) \ge 0$ on $[a, \infty)$. As F(y(t)) L(t, s) is a decreasing function, there must be F(v(t)) > 0 on $[a, \infty)$. Otherwise F(v) obtains negative values which is a contradiction. We can prove similarly that F(w(t)) > 0 and $c_2^2 + c_3^2 = 0$ on $[a, \infty)$. Let the solutions v(t), w(t) be dependent. As $b_1^2 + b_3^2 = c_2^2 + c_3^2 = 0$

is satisfied, there holds $v(t) = Ky_3(t)$ for some $K \neq 0$. Then $F(v(a)) = F(y_3(a)) = 0$ by the definition of y_3 , which is a contradiction to F(v(t)) > 0 on $[a, \infty)$. We have proved that v(t), w(t) are linearly independent solutions. This completes the proof.

Lemma 8. Let $A(t) \ge 0$, $p(t) \le 0$, $A'(t) + b(t) \le 0$ not identically zero on any subinterval of $[a, \infty)$ and y(t) be a nontrivial solution of (S) satisfying the inequality F(y(t)) > 0 for all $t \ge a$. If $\int_a^\infty A(t) dt = \infty$, then y(t) is oscillatory.

Proof: For $y(t) \not\equiv 0$ nonoscillatory solution of the equation (S) there exists $c \in [a, \infty)$ such that for all $t \ge c$ there holds y(t) y'(t) > 0 by Lemma 7. If the inequality F(y(t)) > 0 on $[c, \infty)$ is satisfied then $F(y) = y'^2 - 2yy'' - 2Ay^2 > 0$ i and only if (y'(t)/y(t))' < -A(t) on this interval. By integration of the last inequality from c to t we obtain

$$y'(t)/y(t) < y'(c)/y(c) - \int_{a}^{t} A(s) ds \to -\infty$$
 as $t \to \infty$,

which is a contradiction to y(t) y'(t) > 0 on $[c, \infty)$ and y(t) cannot be nonoscillatory.

Theorem 2. Let $A(t) \ge 0$, $p(t) \le 0$ and $A'(t) + b(t) \le 0$ and $b(t) - A(t)p(t) \le 0$, being not identically zero on any subinterval of $[a, \infty)$. If $\int_a^{\infty} A(t) dt = \infty$ then the equation (S) has two linearly independent oscillatory solutions.

Proof: Under our suppositions the equation (S) has two nontrivial linearly independent solutions v(t), w(t) with the property F(v(t)) > 0 and F(w(t)) > 0 for all $t \ge a$ by Theorem 1. Solutions v(t), w(t) are oscillatory by Lemma 8.

Lemma 9. Let $A(t) \ge 0$, $p(t) \le 0$ and $A'(t) + b(t) \le 0$ and $b(t) - A(t)p(t) \le 0$, being not identically zero on any subinterval of $[a, \infty)$. If $\int_a^\infty A(t) dt = \infty$ then a nontrivial solution of the equation (S) is nonoscillatory if and only if $c \in [a, \infty)$ exists such that $F(y(c)) \le 0$.

Proof: The necessity follows from Lemma 8. Under the given suppositions the function F(y(t)) L(t, a) is strictly decreasing, thus F(y(t)) < 0 on $[d, \infty)$, $d \ge c$. Let $y(t_0) = 0$ for $t_0 \in [d, \infty)$. Then $F(y(t_0)) = y'^2(t_0) \ge 0$ which is a contradiction and the solution y(t) must be nonoscillatory.

Theorem 3. Let $p(t) \ge 0$, $A(t) \ge 0$, $b(t) - A(t) p(t) \ge m > 0$ and coefficients of the equation (S) are bounded. If

$$\int_{a}^{\infty} A(t) dt = \infty \quad \text{and} \quad \int_{a}^{\infty} p(t) dt = \infty,$$

then for a nontrivial nonoscillatory solution y(t) of the equation (S) there holds $y^{(k)}(t) \to 0$ as $t \to \infty$, k = 0, 1, 2, 3.

Proof: Let y(t) be a nontrivial nonoscillatory solution of the equation (S). We can suppose without loss of generality that y(t) > 0 for all $t \ge t_0 \ge a$. The function F(y(t)) L(t, a) is increasing, thus F(y(t)) < 0 on $[t_0, \infty)$ or there exists $t_1 \in [t_0, \infty)$ such that $F(y(t_1)) \ge 0$ and F(y(t)) > 0 for all $t \ge t_1$.

In the first case

$$0 > F(y(t)) L(t, t_0) = F(y(t_0)) + \int_{t_0}^{t} p y'^2 L(s, t_0) ds +$$

$$+ 2 \int_{t_0}^{t} (b - Ap) y^2 L(s, t_0) ds > F(y(t_0)) +$$

$$+ 2m \int_{t_0}^{t} y^2(s) ds \quad \text{because} \quad L(t, t_0) \ge 1.$$

We have $\int_{t_0}^{\infty} y^2(s) \, \mathrm{d}s < -F(y(t_0))/2m$ and $F(y(t_0)) < 0$, thus $\int_{t_0}^{\infty} y^2(t) \, \mathrm{d}t < \infty$. We assert that y'(t) is a bounded function on $[a, \infty)$. Indeed if there exists a constant $K_1 > 0$ such that $|y'| \ge K_1$ on some interval $[t_2, \infty)$, $t_2 \ge t_0 \ge a$, then from identity (F) we have for $L(t, t_2) \ge 1$

$$F(y(t))L(t, t_2) > F(y(t_2)) + K_1^2 \int_{t_2}^t p(s) ds \to \infty,$$

as $t \to \infty$ which is a contradiction to F(y(t)) < 0 on $[t_0, \infty)$. Since $\int_{t_0}^{\infty} y^2(y) dt < \infty$ and y' is a bounded function, thus $y(t) \to 0$ as $t \to \infty$ by Lemma 4.

In the second case F(y(t)) > 0 on (t_1, ∞) and $\int_{t_0}^{\infty} A(t) dt = \infty$ and y(t) > 0 on (t_1, ∞) . Hence $y'^2 - 2yy'' - 2Ay^2 > 0$ if and only if (y'/y)' < -A on $[d, \infty)$, $d > t_1$. By integration of this inequality from d to t we obtain

$$y'(t)/y(t) < y'(d)/y(d) - \int_{t}^{t} A(s) ds \to -\infty$$
 as $t \to \infty$.

There exists a positive constants K_2 such that $y'(t) < -K_2y(t)$ on $[d, \infty)$ and $\lim y(t) = k \ge 0$ as $t \to \infty$. If k > 0 then $y' < -K_2k$ which is a contradiction to y > 0 on $[d, \infty)$. We have $\lim y(t) = 0$ as $t \to \infty$.

The function y''' is bounded by Lemma 2, $y' \to 0$ and $y'' \to 0$ as $t \to \infty$ by Lemma 3 and $y''' = -py'' - 2Ay' - (A' + b) y \to 0$ as $t \to \infty$ under our suppositions. The assertion is proved.

Remark 1. Under the suppositions of Theorem 3 there exists a nontrivial solution for which F(y(t)) is always negative by Lemma 6. This solution y(t) is nonoscillatory. Otherwise F(y) obtains positive values which is a contradiction.

Remark 2. In the oscillation criterion of Soltés [6] there is the supposition $\int_{a}^{\infty} p(t) dt < \infty$, whereas we have $\int_{a}^{\infty} p(t) dt = \infty$.

4. APPLICATIONS TO THE CANONICAL FORM

Now we consider a global canonical form (U) on $J = [a, \infty)$

$$u''' - \alpha'(t)/\alpha(t) u'' + (1 + \alpha^{2}(t)) u' - \alpha'(t)/\alpha(t) u = 0,$$

 $\alpha \in C^1(J)$ and $\alpha(t) > 0$ for all $t \in J$.

Remark 3. Let $f(t) \in C^1(J)$ and $0 < k \le f'(t) \le K$ be satisfied for some positive constants k, K. If we put $\alpha(t) = \exp\{-f(t)\}$ then the coefficients of the equation (U) are bounded, the function $\alpha'(t)$ is negative and bounded and it is evident that the following three conditions are equivalent

$$1^{\circ} -\alpha'(t)/\alpha(t) = f'(t) \ge k;$$

$$2^{\circ} f(t) \to \infty \text{ as } t \to \infty$$
;

$$3^{\circ} \alpha(t) \to 0 \text{ for } t \to \infty.$$

For example functions f of the form

$$f(t) = a \sin^m(bt + c) + nt$$
 on $(0, \infty)$, where $m > 0$ and $n > |mab| > 0$;

$$f(t) = \log_{x}(t+c) + kt$$
 on $(-c, \infty)$ where $k > 0$;

$$f(t) = t(k \pm \arctan t) - \ln(1 + t^2)/2 \text{ on } (0, \infty) \text{ where } k > p/2;$$

$$f(t) = t^3/(1 + t^2)$$
 on $(0, \infty)$;

$$f(t) = \exp\{-t\}$$
 on $[a, \infty]$, a be arbitrary;

e.t.c.

can be considered.

Theorem 4. Let $\alpha(t) = \exp\{-f(t)\}$, $f(t) \in C^1(J)$ and $0 < k \le f' \le K$ be satisfied for some positive constants k, K on J. If y(t) is a nontrivial nonoscillatory solution of the equation (U) then $y^{(s)}(t) \to 0$ as $t \to \infty$, s = 0, 1, 2, 3.

Proof: According to Remark 3 we have $p(t) = -\alpha'(t)/\alpha(t) = f'(t) \ge k$ and $A(t) = (1 + \alpha^2(t))/2 > 1/2$, thus $\int_a^\infty A(t) dt = \infty$ and $\int_a^\infty p(t) dt = \infty$ and b(t) - A(t)p(t) = A(t)p(t) > k/2 > 0 if and only if $\alpha(t) \to 0$ as $t \to \infty$. The assertion follows from Theorem 3.

Theorem 5. If $\alpha'(t) \ge 0$ being not identically zero on any interval, then

- (i) a nontrivial solution of the equation (U) is nonoscillatory if and only if $c \in [a, \infty)$ exists such that $F(y(c)) \leq 0$;
 - (ii) the equation (U) has two linearly independent oscillatory solutions.

Proof: (i) follows from Lemma 9 and (ii) from Theorem 2.

REFERENCES

- [1] Neuman, F.: Geometrical approach to linear differential equations of the n-th order, Rend. di Matem., 5 (1972), 579—602.
- [2] Neuman, F.: Oscillation in linear differential equations, Proceedings of Equadiff III, Brno 1972, 119—125.
- [3] Regenda, J.: On some properties of third-order differential equation, Math. Slov., 26 (1976), 3-18.
- [4] Singh, Y. P.: Some oscillation theorems for third order non-linear differential equations, The Yokohama Math. J., 18 (1970), 77-86.
- [5] Singh, Y. P.: The asymptotic behavior of solutions of linear third order differential equations, Proceedings of the American Math. Society, 20 (1969), 309—314.
- [6] Soltés, V.: Oscillatory properties of the solutions of a third-order non-linear differential equation, Math. Slov., 26 (1976), 217—227. Russian.
- [7] Tryhuk, V.: An oscillation criterion for a canonical form of third order linear differential equations, Arch. Math. Brno, 13 (1977), 175—180.

D. Radochová 602 00 Brno, Provazníkova 32 Czechoslovakia V. Tryhuk 665 01 Rosice u Brna, Husova 1006 Czechoslovakia

*