#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1978
PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0014|log28

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XIV: 193—200, 1978

METRICS AND TOLERANCES
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§1

A reflexive and symmetric binary relation 7 on a non-empty set 4 is called
a tolerance relation (or shortly tolerance) on A and the ordered pair (4, T)
is called a tolerance space. By the symbol I we denote the identity relation on A,
i.e. such a relation that xIy if and only if x = y for any x and y from A4. De-
note T° = I,T* = T, T"*! = T. T" for each positive integer 7.

Definition 1. Let (4, T) be § 1. a tolerance space. A non-empty subset B of 4 is
called T-connected in A, if for any x € B, y € B there exists a positive integer p such
that xT?y. If A is T-connected in (A4, T), then (4, T) is called a connected tolerance
space.

Proposition 1. Let (4, T) be a tolerance space, let B be a T-connected set in A
and let 61(x, y) be an integer-valued function on B x B given by the rule

(P) 6T(x’ y) = O®XT0y:
or(x,y) = p<= xT?y and «xT%  for q < p.

Then 61(x, y) is an integer-valued metric on B.

Proposition 2. Let (A4, p) be a quasimetric space and ¢ a positive real number. The
relation T, defined on A by the rule

(Q) XTu(c)y <= ﬂ(x’ y) é &

is a tolerance on A and the tolerance space (A, T, is T, -connected.
Definition 2. Let (4, T') be a tolerance space, let B be a T-connected set in A.
The metric 6 on B is called induced by the tolerance T. Let ¢ > 0 and let (4, u) be

a quasimetric space. Then the tolerance T, is called induced by the quasimetric p
with the unit &.
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Proposition 3. Let (4, T) be a connected tolerance space, 31 a metric induced by
the tolerance T and Ty, the tolerance induced by the metric 61 with the unit ¢ = 1.
Thell T = TI’T(I)'

Proposition 4. Let (A, u) be a quasimetric space, let 0 < ¢ < 1, let T, be the
tolerance induced by the quasimetric u with the unit ¢ and 61 the metric induced by the
tolerance T,,,. Then é1(x,y) = p(x, y) for any xe A, y € A.

Proposition 5. Let (A, ) be a metric space with an integer-valued metric m, let
Ty be a tolerance on A induced by the metric n with the unit ¢ = 1 and 61 the metric
induced by the tolerance T,,. Then n = dy.

Proposition 6. Let (A, p) be a quasimetric space and €, , €, positive real numbers.
If e, <&y, then Ty S Tyeyy- If x€ A, ye A and &, < p(x,y) < &y, then Ty, #
# Ty, 1.

& <& = Tu(sx) < Tu(ﬂz)'

Remark. Evidently each equivalence on A is a tolerance on 4. By Definition 1
it is evident that for an equivalence E on A4 a set B such that@ # B < A is E-connected
in A if and only if there exists a partition class [«] € 4/E such that B < [a]. There-
fore if x, y, z are elements of [a], then for 6, the triangle inequality holds. Further,
if x = y, evidently dz(x, ») = 0 and for x € [a], y € [a], x # y we have 6g(x,y) =1,
because the transitivity of E implies T, = T for k =0, 1, 2, ... This implies that
if T'is an equivalence on A4, xTy, yTz, x # y, y # z, then the sharp triangle inequality

(T) 57(.’(, :) < 6T(x9 }') *+ 51(}’, 2)

holds, because 5;(x,z) <1 and 6:(x, y) + or(y,z) = 2. We shall show that also
the converse assertion holds.

Proposition 7. Let (A, T) be a connected tolerance space with at least three elements
and let 81 be the metric induced by the tolerance T. If for any three elements (pairwise
distinct) x, y, z of A the sharp triangle inequality (T) holds, then T'is an equivalence on A.

Proof. Let x, y, z be pairwise distinct elements of 4 and let xTy, yTz. Then by (P)
we have d;(x,y) = 1, 67(»,2) = 1 and (T) implies o1(x,2) < 2, i.e. o7(x,2) = 1.
As x # z, we have 61(x, z) # 0, because dr is a metric (by Proposition 1), therefore
57(x,z) = 1 and (P) implies x7z. As x, y, z were chosen arbitrarily, T is transitive,
i.e. it is an equivalence.

§2

Definition 3. Let (4, p) be a quasimetric space and {g;};2, a decreasing sequence
of positive real numbers. Denote
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xn
’Tlim = n T;a(r,)s
i=1

where T, is a tolerance on A induced by the quasimetric p with the unit ¢;.

Proposition 8. Let (4, p) be a quasimetric space, let {¢;};2 | be a decreasing sequence
of positive real numbers and ¢ = lim ¢;. Then T,y = T\, and T, is a tolerance on A.

Proof. Evidently T, is a reflexive and symmetric relation on 4, i.e. it is a tolerance.
If xT,,,», then u(x, y) < &, therefore u(x, y) < ¢, for each i. Hence xT,,,y for each
i and xT,y. We have proved T, S Tj,. Conversely, if xT},p, then xT.,y
for each i and thus u(x,») <¢; and p(x, y) < ¢ = lime;, which means xT,».

i—» o
Hence Ty, © T,()-

Proposition 9. Let (A, u) be a quasimetric space and {&;}{>., a decreasing sequence
of positive real numbers such that lim g; = 0. Then the following two assertiens are

i- o
equivalent:
(1) pis a metric.
2 Ty = 1.

Proof. Let u be a metric and xT};,y for some x € 4, y€ A. Then xT,,y for
each ¢;, thus u(x, y) < lime; = 0. As p is a metric, pu(x, y) = 0 implies x = y and

i»w

hence T, < I. Evidently I< T,, therefore Ty, =1 Now let T, =TI and
u(x,y) = 0 for some xe 4, ye A. Then u(x,y) = limeg,, i.e. xT};,,y, hence by (2)

i— o

we have x = y and p is a metric.

Proposition 10. Let (A4, u) be a quasimetric space and T, a tolerance induced
by the quasimetric p with the unit e. Then for ¢ = 0 the relation T, is an equivalence
on A and A|T,q, is a metric space.

Proof. If xT,0)», ¥Tyo0y2> then p(x,y) =0, u(y,z) =0 and this implies 0 <
< u(x,z) £ u(x,y) + u(y,z) =0, hence u(x,z) =0 and xT,z. The second
assertion is evident.

§3

Lemma 1. Let L be a lattice with the least element 0, let T be a compatible tolerance
on L (see for example [3]). If ae L, be L and aT" 0, bT*. 0 for some non-negative
integers r, s, then (a Vv b) T™ 90, (a A b) T™""2 0.

Proof. If T is a compatible relation on L, then (by Theorem 3 in [1]) T* is also
a compatible relation on L for each non-negative integer k. If a7 0, 5T°0, then by
Corollary 5 in [1] we have a790, bT?0 for ¢ = max (r, s) and the compatibility
of T implies (a v b) T?0. Further let p = min (r, s); without less of generality let
p=r.Then aT"0= (@A b) T"(0 A b) = 0 and thus (@ Ab) T 0.
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Definition 3. Let L be a lattice with the least element 0. A tolerance T on L is
called disjunctive, if (a A b) T*0 implies aT*0 or 4T*0.

In [2] the concept of a valuation on a lattice is introduced. A real-valued function v
on L is called a valuation, if for any two elements a, b of L ’

v(a@) + v(b) = v(a A b) + v(aV b).

A valuation is called order-preserving, if -a < b implies v(a) < v(b) and positive,
if a < b implies v(a) < v(b) for any a and b. If there exists an order-preserving (or
positive) valuation on L, then L is called a quasimetric (or metric respectively)
lattice. (see [2], p. 108).

Theorem 1. Let L be a lattice with the least element 0 and let T be a compatible
disjunctive tolerance on L such that (L, T) is a connected tolerance space. Then L is
a quasimetric lattice.

Proof. Let v be an integer-valued function on L defined so that v(a) = 0 for each
a e L such that aT 0 and v(a) = p for each a e L such that a7?*! 0 and a7 0 for
all ¢ < p. As (L, T) is connected, v is defined for all elements of L. If a < b, then
avVb=b>b,aAb =a and thus v(a A b) + v(aV b) = v(a) + v(b). Now let a, b be
two incomparable elements of L, let v(a) = p, v(b) = g; without loss of generality
let ¢ £ p. Then aT?*! 0, bT**! 0 and by Lemma 1 we have a v bT7*! 0. Suppose
aV bT?0. From this and from a7T”a we obtain a =a A (@aVb)T°0Aa =0 and
v(a) < p, which is a contradiction. Therefore v(a vV b) = p. Further from Lemma 1
we have (a A b) T 0. Let j < g; then @77 0, 71677 0 and the disjunctivity of T
implies (@ A b) T 0, therefore v(a Ab) =gq. We have v(@aAb) + v(aVvb) =
= p + q = v(a) + v(b). We have proved that v is a valuation on L. Now let x < y,
v(y) = q. Then yT9*1 0 and ~JyT"0 for r < q. We have x A y = x and from the
compatibility of 7?*! we obtain

xT'%lx, YT 0=>x=(xAY) T (xA0) =0
and thus v(x) < ¢ = v(y) and v is order-preserving. This means that L is quasi-
metric.

Remark. We shall show that in the case when T'is not disjunctive the function v defined
in this proof is not a valuation. If T is not disjunctive, then there exist elements a, b
of L and a non-negative integer s such that "jaT**! 0, 1pT°*1 0, a A bT**10. Then
v(@aAb) <s. Let v(a) =p, v(b) =¢q; then p =2 s + 1, ¢ = s + 1. Without loss of
generality let p = g. We have a7?*' 0, bT9*! 0, thus by Lemma 1 (a v ) 7?1 0
and v(a Vv b) < p. Then

v@+vb)=p+qg>p+s+1,
vi@Ab)+vl@avb)Z<p+s
and thus v(a) + v(b) # v(a A b) + v(a Vv b).
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We have proved that the valuation v defined in the proof of Theorem 1 is order-
preserving. The following proposition shows, when it is positive.

Proposition 11. Let L and T be given as in Theorem 1, let v be the valuation defined
in the proof of Theorem 1. The valuation v is positive, only if L is a chain embeddable
into the chain of all non-negative integers (naturally ordered).

Proof. Suppose that L is not a chain. Then there exist two elements x, y of L
which are incomparable. Let v(x) = p, v(y) = ¢ and without loss of generality
P 2 4. In the proof of Theorem 1 it is proved that then v(x A y) = g, v(x V y) = p.
But then x A y <y, v(x A y) = v(y) and v is not positive. Therefore L is a chain.
If v is a positive valuation on a chain, it is evidently an embedding of this chain into
the chain of all non-negative integers.

Now it seems to be reasonable to consider the valuation in which v(a) = 0 only
fora = 0.

Theorem 2. Let L be a lattice with the least element O and with the property that
aAb=0inLifandonlyifa = 0orb = 0. Let T be a compatible disjunctive tolerance
on L such that (L, T) is a connected tolerance space. Then there exists an order-
preserving valuation v on L such that v(a) = 0 only for a = 0.

Proof. Let v be the valuation from the proof of Theorem 1. Put v'(0) = 0, v'(a) =
= v(a) + 1 for each a # 0. Let x, y be two elements of L. If x # 0, y # 0, then also
XAy #0,xVy#0and we have

VXAY)+ 0 (xVy) =vxAy) +o(xVy) +2=0x)+0v()+2
=v'(x) + v'(y).
Ifx=0,y#0,then xAy =0,xVy+# 0 and

VXAY)+0(xVy)=vxApy)+e(xvy)+1 =0k +ov(p)+1
=0'(x) + ')
Analogously for x # 0, y = 0. For x = y = 0 the equality is evident. Therefore v’ is

the required valuation.
Before proving the last theorem, we shall prove a lemma.

Lemma 2. Let m,,m,, n,, n, be four non-negative integers, let |m; —n, | < 1,
|my —ny | £ 1. Then

l max (m11 mZ) — max (nl’ nZ) l § 15
| min (m, my) — min (24, n,) | S 1.

Proof.If my = m,,n; = n,,then|max (m,;,m,) — max (ny,n;)| =|m; —n | S

= 1L.Ifmy = my,n < ny,then | max (my, my) — max (ny,n,)| = |m; —ny|.
Ifmy 2 ny,then|my —ny | =my —ny <my —ny =|my —n;| < 1;ifm; S n,,
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then |m, —n,| =n, — my < n, —my, =|my —n, | < 1. Analogously we do the
proof for m; < m,, n; = n, and m; < m,, n; < n,. The proof for the minimum
is dual.

Theorem 3. Let L be a quasimetric lattice with the valuation v satisfying v(x V y) =
= max (v(x), v(»)), v(x A y) = min (v(x), v(»)), for any two elements x, y of L. Let T
be the tolerance on L defined so that xTy if and only if v(x V y) — v(x A y) < 1. Then
T is a compatible tolerance on L. '

Proof. Let a, b be two elements of L. Let aTh. This means v(a vV b) — v(@Ab) £ 1
and according the assumption max (v(a), v(b)) — min (v(@)), v(b)) < 1. But one of
the numbers v(a), v(b) is the maximum and the other is the minimum of these two
numbers, therefore | v(@) — v(b) | < 1. On the other hand, if | v(@) — v(®)| = 1,
then max (v(a), v(b)) — min (v(a), v(b)) < 1 and aTh. We have proved that aTb if
and only if | v(@) — v(b) | £ 1. Now let x,, x,, y;, v, be four elements of L such

198









	
	Article


