

Werk

Label: Article **Jahr:** 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0014|log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS XIV: 193—200, 1978

METRICS AND TOLERANCES

IVAN CHAJDA, Přerov and BOHDAN ZELINKA, Liberec (Received June 30, 1977)

§ 1

A reflexive and symmetric binary relation T on a non-empty set A is called a tolerance relation (or shortly tolerance) on A and the ordered pair (A, T) is called a tolerance space. By the symbol I we denote the identity relation on A, i.e. such a relation that xIy if and only if x = y for any x and y from A. Denote $T^0 = I, T^1 = T$, $T^{n+1} = T \cdot T^n$ for each positive integer n.

Definition 1. Let (A, T) be § 1. a tolerance space. A non-empty subset B of A is called T-connected in A, if for any $x \in B$, $y \in B$ there exists a positive integer p such that xT^py . If A is T-connected in (A, T), then (A, T) is called a *connected tolerance space*.

Proposition 1. Let (A, T) be a tolerance space, let B be a T-connected set in A and let $\delta_T(x, y)$ be an integer-valued function on $B \times B$ given by the rule

(P)
$$\delta_T(x, y) = 0 \Leftrightarrow xT^0y,$$

$$\delta_T(x, y) = p \Leftrightarrow xT^py \quad and \quad \neg xT^qy \quad for \ q < p.$$

Then $\delta_T(x, y)$ is an integer-valued metric on B.

Proposition 2. Let (A, μ) be a quasimetric space and ε a positive real number. The relation $T_{\mu(\varepsilon)}$ defined on A by the rule

(Q)
$$xT_{\mu(\varepsilon)}y \Leftrightarrow \mu(x,y) \leq \varepsilon$$

is a tolerance on A and the tolerance space $(A, T_{\mu(e)})$ is $T_{\mu(e)}$ -connected.

Definition 2. Let (A, T) be a tolerance space, let B be a T-connected set in A. The metric δ_T on B is called *induced by the tolerance* T. Let $\varepsilon > 0$ and let (A, μ) be a quasimetric space. Then the tolerance $T_{\mu(\varepsilon)}$ is called *induced by the quasimetric* μ with the unit ε .

Proposition 3. Let (A, T) be a connected tolerance space, δ_T a metric induced by the tolerance T and $T_{\delta_T(1)}$ the tolerance induced by the metric δ_T with the unit $\varepsilon = 1$. Then $T = T_{\delta_T(1)}$.

Proposition 4. Let (A, μ) be a quasimetric space, let $0 < \varepsilon \le 1$, let $T_{\mu(\varepsilon)}$ be the tolerance induced by the quasimetric μ with the unit ε and δ_T the metric induced by the tolerance $T_{\mu(\varepsilon)}$. Then $\delta_T(x, y) \ge \mu(x, y)$ for any $x \in A$, $y \in A$.

Proposition 5. Let (A, π) be a metric space with an integer-valued metric π , let $T_{\pi(1)}$ be a tolerance on A induced by the metric π with the unit $\varepsilon = 1$ and δ_T the metric induced by the tolerance $T_{\pi(1)}$. Then $\pi = \delta_T$.

Proposition 6. Let (A, μ) be a quasimetric space and $\varepsilon_1, \varepsilon_2$ positive real numbers. If $\varepsilon_1 < \varepsilon_2$, then $T_{\mu(\varepsilon_1)} \subseteq T_{\mu(\varepsilon_2)}$. If $x \in A$, $y \in A$ and $\varepsilon_1 < \mu(x, y) < \varepsilon_2$, then $T_{\mu(\varepsilon_1)} \neq T_{\mu(\varepsilon_2)}$, i.e.

$$\varepsilon_1 < \varepsilon_2 \Rightarrow T_{\mu(\varepsilon_1)} \subset T_{\mu(\varepsilon_2)}.$$

Remark. Evidently each equivalence on A is a tolerance on A. By Definition 1 it is evident that for an equivalence E on A a set B such that $\emptyset \neq B \subseteq A$ is E-connected in A if and only if there exists a partition class $[a] \in A/E$ such that $B \subseteq [a]$. Therefore if x, y, z are elements of [a], then for δ_E the triangle inequality holds. Further, if x = y, evidently $\delta_E(x, y) = 0$ and for $x \in [a]$, $y \in [a]$, $x \neq y$ we have $\delta_E(x, y) = 1$, because the transitivity of E implies $T_k \subseteq T$ for k = 0, 1, 2, ... This implies that if T is an equivalence on A, xTy, yTz, $x \neq y$, $y \neq z$, then the sharp triangle inequality

(T)
$$\delta_T(x, z) < \delta_T(x, y) + \delta_T(y, z)$$

holds, because $\delta_T(x, z) \le 1$ and $\delta_T(x, y) + \delta_T(y, z) = 2$. We shall show that also the converse assertion holds.

Proposition 7. Let (A, T) be a connected tolerance space with at least three elements and let δ_T be the metric induced by the tolerance T. If for any three elements (pairwise distinct) x, y, z of A the sharp triangle inequality (T) holds, then T is an equivalence on A.

Proof. Let x, y, z be pairwise distinct elements of A and let xTy, yTz. Then by (P) we have $\delta_T(x, y) = 1$, $\delta_T(y, z) = 1$ and (T) implies $\delta_T(x, z) < 2$, i.e. $\delta_T(x, z) \le 1$. As $x \ne z$, we have $\delta_T(x, z) \ne 0$, because δ_T is a metric (by Proposition 1), therefore $\delta_T(x, z) = 1$ and (P) implies xTz. As x, y, z were chosen arbitrarily, T is transitive, i.e. it is an equivalence.

§ 2

Definition 3. Let (A, μ) be a quasimetric space and $\{\varepsilon_i\}_{i=1}^{\infty}$ a decreasing sequence of positive real numbers. Denote

$$T_{\lim} = \bigcap_{i=1}^{\infty} T_{\mu(\tau_i)},$$

where $T_{\mu(\varepsilon_i)}$ is a tolerance on A induced by the quasimetric μ with the unit ε_i .

Proposition 8. Let (A, μ) be a quasimetric space, let $\{\varepsilon_i\}_{i=1}^{\infty}$ be a decreasing sequence of positive real numbers and $\varepsilon = \lim_{i \to \infty} \varepsilon_i$. Then $T_{\mu(\varepsilon)} = T_{\lim}$ and T_{\lim} is a tolerance on A.

Proof. Evidently T_{\lim} is a reflexive and symmetric relation on A, i.e. it is a tolerance. If $xT_{\mu(\varepsilon)}y$, then $\mu(x,y) \leq \varepsilon$, therefore $\mu(x,y) \leq \varepsilon_i$ for each i. Hence $xT_{\mu(\varepsilon_i)}y$ for each i and $xT_{\lim}y$. We have proved $T_{\mu(\varepsilon)} \subseteq T_{\lim}$. Conversely, if $xT_{\lim}y$, then $xT_{\mu(\varepsilon_i)}y$ for each i and thus $\mu(x,y) \leq \varepsilon_i$ and $\mu(x,y) \leq \varepsilon = \lim_{i \to \infty} \varepsilon_i$, which means $xT_{\mu(\varepsilon)}y$. Hence $T_{\lim} \subseteq T_{\mu(\varepsilon)}$.

Proposition 9. Let (A, μ) be a quasimetric space and $\{\varepsilon_i\}_{i=1}^{\infty}$ a decreasing sequence of positive real numbers such that $\lim_{i \to \infty} \varepsilon_i = 0$. Then the following two assertiens are equivalent:

- (1) μ is a metric.
- $(2) T_{\lim} = I.$

Proof. Let μ be a metric and $xT_{\lim}y$ for some $x \in A$, $y \in A$. Then $xT_{\mu(\epsilon_i)}y$ for each ϵ_i , thus $\mu(x,y) \leq \lim_{i \to \infty} \epsilon_i = 0$. As μ is a metric, $\mu(x,y) = 0$ implies x = y and hence $T_{\lim} \subseteq I$. Evidently $I \subseteq T_{\lim}$, therefore $T_{\lim} = I$. Now let $T_{\lim} = I$ and $\mu(x,y) = 0$ for some $x \in A$, $y \in A$. Then $\mu(x,y) = \lim_{i \to \infty} \epsilon_i$, i.e. $xT_{\lim}y$, hence by (2) we have x = y and μ is a metric.

Proposition 10. Let (A, μ) be a quasimetric space and $T_{\mu(\varepsilon)}$ a tolerance induced by the quasimetric μ with the unit ε . Then for $\varepsilon = 0$ the relation $T_{\mu(0)}$ is an equivalence on A and $A/T_{\mu(0)}$ is a metric space.

Proof. If $xT_{\mu(0)}y$, $yT_{\mu(0)}z$, then $\mu(x,y)=0$, $\mu(y,z)=0$ and this implies $0 \le \mu(x,z) \le \mu(x,y) + \mu(y,z) = 0$, hence $\mu(x,z)=0$ and $xT_{\mu(0)}z$. The second assertion is evident.

§ 3

Lemma 1. Let L be a lattice with the least element 0, let T be a compatible tolerance on L (see for example [3]). If $a \in L$, $b \in L$ and $aT^r \setminus 0$, $bT^s \cdot 0$ for some non-negative integers r, s, then $(a \lor b) T^{\max(r,s)} \setminus 0$, $(a \land b) T^{\min(r,s)} \setminus 0$.

Proof. If T is a compatible relation on L, then (by Theorem 3 in [1]) T^k is also a compatible relation on L for each non-negative integer k. If $aT^r 0$, $bT^s 0$, then by Corollary 5 in [1] we have $aT^q 0$, $bT^q 0$ for $q = \max(r, s)$ and the compatibility of T^q implies $(a \lor b) T^q 0$. Further let $p = \min(r, s)$; without less of generality let p = r. Then $aT^r 0 \Rightarrow (a \land b) T^r (0 \land b) = 0$ and thus $(a \land b) T^p 0$.

Definition 3. Let L be a lattice with the least element 0. A tolerance T on L is called *disjunctive*, if $(a \wedge b) T^k 0$ implies $aT^k 0$ or $bT^k 0$.

In [2] the concept of a valuation on a lattice is introduced. A real-valued function v on L is called a *valuation*, if for any two elements a, b of L

$$v(a) + v(b) = v(a \land b) + v(a \lor b).$$

A valuation is called *order-preserving*, if $a \le b$ implies $v(a) \le v(b)$ and *positive*, if a < b implies v(a) < v(b) for any a and b. If there exists an order-preserving (or positive) valuation on L, then L is called a *quasimetric* (or *metric* respectively) lattice. (see [2], p. 108).

Theorem 1. Let L be a lattice with the least element 0 and let T be a compatible disjunctive tolerance on L such that (L, T) is a connected tolerance space. Then L is a quasimetric lattice.

Proof. Let v be an integer-valued function on L defined so that v(a)=0 for each $a \in L$ such that aT0 and v(a)=p for each $a \in L$ such that $aT^{p+1}0$ and $\neg aT^q0$ for all $q \leq p$. As (L,T) is connected, v is defined for all elements of L. If $a \leq b$, then $a \vee b = b$, $a \wedge b = a$ and thus $v(a \wedge b) + v(a \vee b) = v(a) + v(b)$. Now let a, b be two incomparable elements of L, let v(a)=p, v(b)=q; without loss of generality let $q \leq p$. Then $aT^{p+1}0$, $bT^{q+1}0$ and by Lemma 1 we have $a \vee bT^{p+1}0$. Suppose $a \vee bT^p0$. From this and from aT^pa we obtain $a=a \wedge (a \vee b) T^p0 \wedge a=0$ and v(a) < p, which is a contradiction. Therefore $v(a \vee b)=p$. Further from Lemma 1 we have $(a \wedge b) T^{q+1}0$. Let $j \leq q$; then $\neg aT^j0$, $\neg bT^j0$ and the disjunctivity of T implies $\neg (a \wedge b) T^j0$, therefore $v(a \wedge b)=q$. We have $v(a \wedge b)+v(a \vee b)=p+q=v(a)+v(b)$. We have proved that v is a valuation on L. Now let $x \leq y$, v(y)=q. Then $yT^{q+1}0$ and $\neg yT^r0$ for $r \leq q$. We have $x \wedge y=x$ and from the compatibility of T^{q+1} we obtain

$$xT^{q+1}x$$
, $yT^{q+1} 0 \Rightarrow x = (x \land y) T^{q+1} (x \land 0) = 0$

and thus $v(x) \le q = v(y)$ and v is order-preserving. This means that L is quasimetric.

Remark. We shall show that in the case when T is not disjunctive the function v defined in this proof is not a valuation. If T is not disjunctive, then there exist elements a, b of L and a non-negative integer s such that $\neg aT^{s+1}$ 0, $\neg bT^{s+1}$ 0, $a \land bT^{s+1}$ 0. Then $v(a \land b) \leq s$. Let v(a) = p, v(b) = q; then $p \geq s + 1$, $q \geq s + 1$. Without loss of generality let $p \geq q$. We have aT^{p+1} 0, bT^{q+1} 0, thus by Lemma 1 $(a \lor b)$ T^{p+1} 0 and $v(a \lor b) \leq p$. Then

$$v(a) + v(b) = p + q > p + s + 1,$$

$$v(a \land b) + v(a \lor b) \le p + s$$

and thus $v(a) + v(b) \neq v(a \land b) + v(a \lor b)$.

We have proved that the valuation v defined in the proof of Theorem 1 is order-preserving. The following proposition shows, when it is positive.

Proposition 11. Let L and T be given as in Theorem 1, let v be the valuation defined in the proof of Theorem 1. The valuation v is positive, only if L is a chain embeddable into the chain of all non-negative integers (naturally ordered).

Proof. Suppose that L is not a chain. Then there exist two elements x, y of L which are incomparable. Let v(x) = p, v(y) = q and without loss of generality $p \ge q$. In the proof of Theorem 1 it is proved that then $v(x \land y) = q$, $v(x \lor y) = p$. But then $x \land y < y$, $v(x \land y) = v(y)$ and v is not positive. Therefore L is a chain. If v is a positive valuation on a chain, it is evidently an embedding of this chain into the chain of all non-negative integers.

Now it seems to be reasonable to consider the valuation in which v(a) = 0 only for a = 0.

Theorem 2. Let L be a lattice with the least element 0 and with the property that $a \wedge b = 0$ in L if and only if a = 0 or b = 0. Let T be a compatible disjunctive tolerance on L such that (L, T) is a connected tolerance space. Then there exists an order-preserving valuation v on L such that v(a) = 0 only for a = 0.

Proof. Let v be the valuation from the proof of Theorem 1. Put v'(0) = 0, v'(a) = v(a) + 1 for each $a \neq 0$. Let x, y be two elements of L. If $x \neq 0$, $y \neq 0$, then also $x \land y \neq 0$, $x \lor y \neq 0$ and we have

$$v'(x \wedge y) + v'(x \vee y) = v(x \wedge y) + v(x \vee y) + 2 = v(x) + v(y) + 2 = v'(x) + v'(y).$$

If x = 0, $y \ne 0$, then $x \land y = 0$, $x \lor y \ne 0$ and

$$v'(x \land y) + v'(x \lor y) = v(x \land y) + v(x \lor y) + 1 = v(x) + v(y) + 1 = v'(x) + v'(y).$$

Analogously for $x \neq 0$, y = 0. For x = y = 0 the equality is evident. Therefore v' is the required valuation.

Before proving the last theorem, we shall prove a lemma.

Lemma 2. Let m_1, m_2, n_1, n_2 be four non-negative integers, let $|m_1 - n_1| \le 1$, $|m_2 - n_2| \le 1$. Then

$$|\max (m_1, m_2) - \max (n_1, n_2)| \le 1,$$

 $|\min (m_1, m_2) - \min (n_1, n_2)| \le 1.$

Proof. If $m_1 \ge m_2$, $n_1 \ge n_2$, then $|\max(m_1, m_2) - \max(n_1, n_2)| = |m_1 - n_1| \le \le 1$. If $m_1 \ge m_2$, $n_1 \le n_2$, then $|\max(m_1, m_2) - \max(n_1, n_2)| = |m_1 - n_2|$. If $m_1 \ge n_2$, then $|m_1 - n_2| = m_1 - n_2 \le m_1 - n_1 = |m_1 - n_1| \le 1$; if $m_1 \le n_2$,

then $|m_1 - n_2| = n_2 - m_1 \le n_2 - m_2 = |m_2 - n_2| \le 1$. Analogously we do the proof for $m_1 \le m_2$, $n_1 \ge n_2$ and $m_1 \le m_2$, $n_1 \le n_2$. The proof for the minimum is dual.

Theorem 3. Let L be a quasimetric lattice with the valuation v satisfying $v(x \vee y) = \max (v(x), v(y)), v(x \wedge y) = \min (v(x), v(y)),$ for any two elements x, y of L. Let T be the tolerance on L defined so that xTy if and only if $v(x \vee y) - v(x \wedge y) \leq 1$. Then T is a compatible tolerance on L.

Proof. Let a, b be two elements of L. Let aTb. This means $v(a \lor b) - v(a \land b) \le 1$ and according the assumption max $(v(a), v(b)) - \min(v(a)), v(b)) \le 1$. But one of the numbers v(a), v(b) is the maximum and the other is the minimum of these two numbers, therefore $|v(a) - v(b)| \le 1$. On the other hand, if $|v(a) - v(b)| \le 1$, then max $(v(a), v(b)) - \min(v(a), v(b)) \le 1$ and aTb. We have proved that aTb if and only if $|v(a) - v(b)| \le 1$. Now let x_1, x_2, y_1, y_2 be four elements of L such

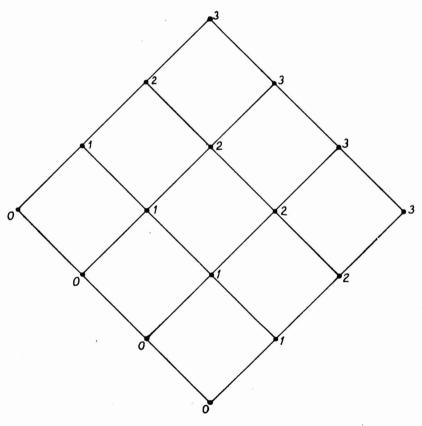


Fig. 1

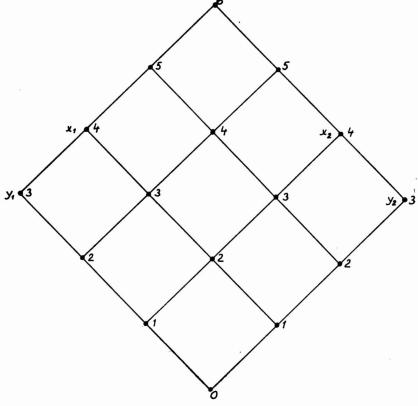


Fig. 2

