

Werk

Label: Article Jahr: 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0014|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS XIV: 181—182, 1978

A UNIFORM STRUCTURE FOR TOPOLOGICAL SPACES

ALEXANDER ABIAN

(Received February 2, 1977)

We introduce below a uniform structure for topological spaces in order to make it possible to state and prove the classical theorem concerning the fact that a continuous function on a compact space is uniformly continuous.

It is believed that the present notion of a uniform structure is less restrictive than the one introduced in [1] and which was further studied in [2], [3], [4].

Let X be a topological space and I an index set. Let $(\mathscr{A}_i)_{i \in I}$ be a family of open covers \mathscr{A}_i of X. We call an element of \mathscr{A}_i an i-neighborhood. Let S be a subset of X. We call $E_i(S)$ the i-extended neighborhood of S if and only if:

$$E_i(S) = U\{A \mid A \in \mathcal{A}_i \text{ and } A \cap S \neq \emptyset\}$$

i.e., $E_i(S)$ is the union of all the i-neighborhoods of every element of S. Based on the above notions, we introduce:

Definition. A family $(\mathcal{A}_i)_{i \in I}$ of open covers \mathcal{A}_i of a topological space X is called a uniform structure for X if and only if:

- (1) For every open set V of X and every $x \in V$ there exists an i-neighborhood A_i such that $x \in A_i$ and $E_i(A_i) \subseteq V$ and
 - (2) For every $i \in I$ and $h \in I$ there exists a $k \in I$ such that \mathcal{A}_k refines both \mathcal{A}_i and \mathcal{A}_h . Next, we prove:

Theorem. Let f be a continuous mapping from a compact topological space X with a uniform structure $(\mathcal{A}_i)_{i\in I}$ into a topological space Y with a uniform structure $(\mathcal{B}_j)_{j\in J}$. Then for every $j\in J$ there exists a $k\in I$ such that every k-neighborhood is mapped by f into some j-neighborhood (i.e., f is uniformly continuous).

Proof. Let $j \in J$ be given. Since f is continuous, clearly, for every $x \in X$ there exists an open set V of X such that $x \in V$ and V is mapped by f into a j-neighborhood. But then, from (1) it follows that there exists an i(x)-neighborhood $A_{i(x)}$ such that

(3) $i(x) \in I$ and $x \in A_{i(x)}$ and $E_{i(x)}(A_{i(x)}) \subseteq V$.

Clearly, $(A_{i(x)})_{x \in X}$ is an open cover of X and since X is compact, X is covered by finetely many members, say, $A_{i(x_1)}$, $A_{i(x_2)}$, ..., $A_{i(x_n)}$ of the cover. But then by (2)

there exists a $k \in I$ such that \mathscr{A}_k refines $\mathscr{A}_{i(x_1)}, \mathscr{A}_{i(x_2)}, \ldots, \mathscr{A}_{i(x_n)}$. To complete the proof, we show that every k-neighborhood is mapped by f into some j-neighborhood. Indeed, let A_k be a k-neighborhood and $x \in A_k$. Clearly, x is covered by one of the abovementioned finitely many open sets, say, $A_{i(x_m)}$. Thus, $x \in A_{i(x_m)}$ and in view of the refinement mentioned above $A_k \subseteq E_{i(x_m)}(A_{i(x_m)})$. But then from (3) it follows that $E_{i(x_m)}(A_{i(x_m)}) \subseteq V$. Consequently, $E_{i(x_m)}(A_{i(x_m)})$ as well as A_k is mapped by f into a j-neighborhood, as desired.

Remark. We observe that condition (II) of [1] could be replaced by (2) above.

REFERENCES

- [1] A. Abian, On uniform structures, Rend. Circ. Mat. Palermo, 14 (1965) 202-206.
- [2] R. Fox and I. L. Reilly, Regular spaces and Abian structures, Rend. Circ. Mat. Palermo, 23 (1974) 267—270.
- [3], Topological spaces and Abian structures (to appear).
- [4] H. W. Pu, Concerning a certain uniform structure, Rend. Circ. Mat. Palermo, 21 (1972) 98-102.

Department of Mathematics Iowa State University Ames, Iowa 50011