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AN OSCILLATION CRITERION FOR THIRD
ORDER LINEAR DIFFERENTIAL EQUATIONS

VACLAV TRYHUK, Cesky T&in
(Received June 17, 1974)

We investigate a linear differential equation of the third crder of the form

(L) y"+p@)y' +q(t)y =0.

We assume that the functions p(t), g(¢) are continuous and do not change sign on
[a, o). .

This equation (L) was studied by several authors, namely Gregu$, Hanan [1],
Rab, Svec, Zldmal [4], and the main results have been collected by Lazer [2]
giving the most important papers of the above mentioned authors in the list of
references. Some new results were obtained by Singh [3].

Let p(t) € C'[a, o0). Then investigating this equation (L), Mammana’s identity
written in the form

) F((0) = F(y(a) + f [24(5) = P'(5)] y(s) ds,

where F (y(t)) = y'2(t) — 2y(2) y"(t) — p(t) y*(t)
has a very important role.

A nontrivial solution of the equation (L) is called oscillatory if it has infinitely
many zeros on [a, o), otherwise nonoscillatory.

In the proofs of some theorems in the papers [2], [3] there is used the procedure
given in the form of the following.

Lemma 1. Let ut) € C'[a, 0) be functions, c,, constants, n > a positive integers,
i =1,2,..,s. Let the sequences {y\”} be defined by the relations

s s
2
WY, Y=l z=01.,msr
i=1 i=1

Then there exists the sequence {n;} such that c;,, — c; and {(»2} converge on every
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finite subinterval of [a, c0) uniformly to the functions
] s
y@ =Y cuf®, Yet=1 for n;— .
i=1 i=1
We shall consider the case of p(t) 2 0, g(t) < 0.

Lemma 2. Let p(t) = 0, q(t) < 0 and y(t) be a nontrivial solution of the equation L)
satisfying y(t) y'(t) + 0 on [a, 0). Then y(t) y'(t) > 0 holds on this interval.

Proof: Let y(f) y'(t) < 0. We can suppose without loss of generality that y(r) > 0-
Then on [a, o) there holds

—y"(t) = p(t) y'(t) + q(t) y(t) < 0.

The function y”(¢) is increasing and b = a exists such that on [b, c0) there holds
either y"(t) £ 0 or »"(¢) =2 0.

In the first case, y'(t) < 0 is a nonincreasing function and for ¢ = b there exists
a positive constant K, such that y'(t) < — K; on [c, ). By integrating this in-
equality from ¢ to ¢ we obtain

y@t) £ =K (t—c)+y(c)=» —o for t— 00

which is a contradiction for y(t) > 0 on [a, o).
Now let y"(t) = 0. Since y"(¢) is a strongly increasing function, there exists d = b
and a positive constant K, such that y"() > K, on [d, o). By integration from d to ¢,

y'(t) > Ky(t — d) + y'(d).

We see that y’(¢) has a zero on [d, c0); which is a contradiction.
Thus we have proved that y(t) y'(#) > 0 on [a, ).

Lemma 3. Let p(t) = 0, q(t) < 0, and y(t) be a nontrivial nonoscillatory solution of
the equation (L) satisfying F(y(t)) > O on [a, c0). Then c€ [a, ) exists such that
y(@)y'(t) >0 forallt = c.

Proof: Let y(¢) be any solution of (L) which is nonoscillatory. Let t, be its last
zero. If y(¢) is nonvanishing on [a, 0), let #, be arbitrary. We can suppose without
loss of generality that y(¢) > 0 for all £ > ¢,.

We assert that the function y’(¢) has at most one zero on (f,, o). Indeed, if ¢, €
€ (to, ) is a zero of y'(¢), F(y(t;)) > 0 and hence y"(t;) < 0. Consequently 7, is the
unique zero.

Let ¢ > t; > to. Then y(t) y'(t) # 0 holds on [c, ) and the assertion follows
from Lemma 2.
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Lemma 4. Let p(t) 2 0, q(t) < 0 and p'(t) — 2()20.If

[t 200101 =

and y(t) is a nontrivial solution of the equation (L) satisfying F(y(t)) > 0 on [a, ®),
then y(t) is an oscillatory solution.

Proof by contradiction: Let y(t) & 0 be a nonoscillatory solution of the equation
(L) and F(y(t)) > Oon [a, ). By Lemma 3 there exists ¢ € [a, 0) such that y(¢) y'(t)>
> 0on [¢, o). Without loss of generality we can suppose y(z) > 0. Then for arbitrary
d 2 c there exists a positive constant K such that we can put y(t) = K on [d, o).
From Mammana's identity (M) it follows

F(3(9) = F((d)) — f [2'(5) — 2a(5)] y*(s) s

S FO@) - & [ 196 - 2045

and for ¢ — oo there is F(y(t)) - — oo, which is a contradiction with our supposition.
We have proved that y(¢) cannot be nonoscillatory under the given supposition.

Lemma 5. Let p(r) 2 0, q(t) < 0 and p'(t)—29()20. If

f [P'(t) — 29(1)] dt = o,

then the nontrivial solution y(t) of the equation (L) is nonoscillatory iff c € [a, )
exists such that F(y(c)) < 0.

Proof: Let y(z) be a nontrivial solution of the equation (L). If F(y(z)) > 0 on
[a, o), then y(7) is oscillatory by Lemma 4. Then c e [a, o) exists for nonoscillatory
¥(t) such that F(y(c)) < 0.

On the contrary, if F(y(c,)) < 0 for some ¢, € [a, ), then F(y(t)) < 0 on (¢, )
since F(y(t)) cannot be a constant. Let us suppose that y(¢) has the root in #, € (c, o).
Then F((y(t5)) = y'%(t,) 2 0, which is a contradiction. The solution »(t) must be
nonoscillatory. Thus the assertion is proved.

Theorem 1. Let p(t) = 0, g(t) < 0 and p'(t) —29(t) 2 0. If

[tr0 - 200180 = o,
then the equation (L) has two linearly independent oscillatory solutions.
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Proof: Let the solutions u,(¢), u,(t), u5(t) of the equation (L) satisfy the initial

conditions
- 0,i+j+1
ugj)(a) = o‘.j"‘l = {l i =j + 1}

Let n > a be positive integers, b,,, b,, and c,,, c3, constants such that the solu-
tions of equation (L) of the form

vn(t) = blnul(t) =+ b3nu3(t)’
W,,(t) = C2n“2(t) + (,'3,,“3(1),
(bfn + bgn = Cg,. + c§,, = l)

satisfy v,(n) = w,(n) = 0. Then F(v,(n)) = 0, F(w,(n)) = 0 and since F(y(¢)) cannot
be a constant on intervals of the form [z,, c0), there holds

1) F(v, (1)) > 0, F(w,(t)) > 0 on [a, b,), where b, — o0 as n — co.

By Lemma 1 the sequence {n,} exists such that v, (#) converges for n, — oo on
every finite subinterval from [a, c0) uniformly to the function v(¢) and there holds.

V(1) = bul(t) + bu(t), s=0,1,2,
b? + b3 =1.

From (1) it follows that F(v(¢)) = 0 on [a, c0). As F((yt)) is a nonincreasing func-
tion and is not a constant on [a, 00), there must be F(v(t)) > 0 on [a, ). In the
contrary case F(v(t)) obtains negative values, which is a contradiction. We shall
prove similarly that F((w(t)) > 0 and ¢ + ¢ = 1 on [a, ). )

Solutions v(t), w(t) are oscillatory by Lemma 4. Let the solutions v(z), w(z) be
depend. As b? + b3 = ¢2 + ¢2 =1 is satisfied, there holds v(¢) = Ku,(t) for some
K # 0. Then however v(¢) is nonoscillatory by Lemma 5, because F(u;(a)) =0
by definition of u;(¢), which is a contradiction.

We have proved that v(¢), w(z) are linearly independent solutions; this completes
the proof.

Theorem 2. Let p(t) = 0 be a bounded function, q(t) < 0,

j [/(1) - a()] dt = o,

If y(t) is a nontrivial nonoscillatory solution of the equation (L) satisfying y'(t) # 0
on [a, o), then y(t) is unbounded.

Proof: Let y(z) be a nonoscillatory solution of the equation (L) satisfying y'(¢) # 0
on [a, o). Without loss of generality we can assume y(¢) > 0 on [a, 00). By Lemma 2
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there holds y(z) y'(#) > 0 on this interval. Then c € [a, ) and a positive constant K,
exist such that we can put y(t) = K, on [c, o).

Let us suppose that y(¢) is a bounded solution. Since p(¢) is a bounded function
by the supposition, positive constants K, K exist such that y(¢) £ K, and p(t) < K,
on [c, 00). By means of integration of the equation (L) within the limits c, ¢ we obtain

y'(#) + p(t) y(t) = y"(c) — p(c) y(c) = f [p'(s) — q(s)] y(s) ds.

There holds

¥'(t) + K;5K, + const = ~f[p’(s) = q(s)] y(s)ds =

> K f [#'6) — a(s)] ds.

Hence we have y"(t) - oo for t - oo. A positive constant N for d € [c, 00) exists
such that y'(¢) > N on [d, ). By integration from d to ¢ then y(t) > N(t —d) +
+ y(d) - oo for t - oo, which is a contradiction. Then the solution y(t) is unbounded.

So the assertion is proved.

Example: Let us consider the equation (L) on the interval [2, o) for

B o 16, 2

Further there holds
40

-3
27t >0

P - 2a0) =51 +

and
J‘[p'(t) — 2¢(1)] dt = oo.

By Theorem 1 this equation has two linearly independent oscillatory solutions
o(t)=t""cost, w(t)=1t"sint

for which the functions F of Mammana’s identity (M) are positive. Further linearly
independent solution of this equation is nonoscillatory

u(t)=1",  Fu(t))» —0  for t— oo.

It can be easily verified that for u(¢) the suppositions of Theorem 2 are satisfied.
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