

## Werk

Label: Article **Jahr:** 1969

**PURL:** https://resolver.sub.uni-goettingen.de/purl?311067255\_0005|log29

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## ON POLITICAL REALIZATION OF A GIVEN LUXURY GOODS SUPPLY

Jan Chrastina and Václav Polák, Brno
To Professor Otakar Borůvka at his Seventieth Birthday
Received April 30, 1969

A certain version of Brouwer fixed point theorem is derived and by means of which one theorem from mathematical politology is presented. Let S be a d-simplex in  $E^{d,1}$  A map f: bd  $S \to bd$  S is said to have an  $\alpha$ -property if it holds (for each  $L \in \mathscr{F}(S) \dot{\longrightarrow} \{S\}$ )

$$f(L) \cap (-L) = \emptyset.$$

We say f has the property  $(\alpha)$  in  $Z \in \mathcal{K}(S)$  if  $(\alpha)$  holds for all  $L \subset Z$ . Evidently f has the  $\alpha$ -property in  $Z_1 \cup Z_2$  if the same holds on  $Z_1$  and  $Z_2 \cdot f_1, f_2$  are said to be  $\alpha$ -homotopic, if they are homotopic and all  $f_t$ ,  $0 \le t \le 1$  of the homotopy considered have the  $\alpha$ -property. f is called  $\alpha$ -deformation if it is  $\alpha$ -homotopic with the identity. A map  $f: S \to S$  is called to have  $\alpha$ -property if  $f(\operatorname{bd} S) \subset \operatorname{bd} S$  and  $f \mid \operatorname{bd} S$  has  $\alpha$ -property.

**Lemma:** Let  $L \in \mathcal{F}(S) \stackrel{\cdot}{\to} \mathcal{F}_0(S)$ ,  $f : \operatorname{bd} S \to \operatorname{bd} S$  have  $\alpha$ -property and  $f \mid \operatorname{rlbd} L$  be the identity. Then f is  $\alpha$ -homotopic to  $g : \operatorname{bd} S \to \operatorname{bd} S$  with  $g \mid \mathscr{C}(L) = f \mid \mathscr{C}(L)$  and  $g \mid L$  being the identity.

Proof: For  $k=0,\,1,\,2,\,\ldots$  put  $Z_k=:(\bigcup K)\cup\mathscr{C}(L)$ , where the sum operates on all  $K\in\mathscr{F}(S)\div\{S\}$ , dim  $K\leq\dim L+k$ . Evidently  $Z_0==\mathscr{C}(L)\cup L\subset Z_1\subset\ldots\subset Z_{\overline{k}}=\mathrm{bd}\,S$  (for some k). It is  $f\mid L:L\Rightarrow b$ d  $S\div(-L)$  (because of  $(\alpha)$ ) and hence in a simple way this  $\alpha$ -homotopy  $f_t$  can be constructed as  $f_t:Z_0\to\mathrm{bd}\,S,\,0\leq t\leq 1$  with  $f_0\mid Z_0==f\mid Z_0, f_t\mid \mathscr{C}(Z)=f\mid \mathscr{C}(L)$  and  $f_1\mid L$  being the identity. Let  $Z_0\neq\mathrm{bd}\,S$  and choose some  $V\in\mathscr{F}(S)$ , dim  $V=\dim L+1$ . Put  $Z=:\mathrm{rlbd}\,V$ ,  $T=:Z\cup V,\ U=:\mathrm{bd}\,S\div(-V),\ g_t=f_t\mid Z$  and using the extension theorem construct a homotopy  $f_t^*:V\to\mathrm{bd}\,S\div(-V),\ f_t^*\mid Z=g_t.$  Define  $f_t:Z_0\cup V\to\mathrm{bd}\,S$  (on  $Z_0$  by  $f_t$ , on V by  $f_t^*$ ).  $f_t$  has on  $Z_0\cup V$  the  $\alpha$ -property (because the same holds on  $Z_0$  and V). Step by step in this way we extend  $f_t$  first on the whole  $Z_1$ , then  $Z_2,\ldots,Z_k=\mathrm{bd}\,S$  and dut  $g=f_1;Q.E.D.$ 

**Theorem 1:** A map  $f : \operatorname{bd} S \to \operatorname{bd} S$  with the  $\alpha$ -property is an  $\alpha$ -deformation.

Proof: Order the set  $\mathscr{F}(S) \doteq \{S\}$  into a sequence  $\{L_t\}_{i=1}^{\bar{d}}$  in such a way that first in the row are all vertices, then edges, then triangles etc. and

put  $M_i = : \bigcup_{j \le i} L_j$ . In a simple way one constructs an  $\alpha$ -homotopy  $f_t : \operatorname{bd} S \to \operatorname{bd} S$  with  $f_0 = f$  and  $f_1 \mid L_1$  being the identity. For i > 1,  $f_{i-1}$  being  $\alpha$ -homotopic to f and  $f_{i-1} \mid M_{i-1}$  being the identity construct (according to our Lemma) an  $\alpha$ -homotopy  $f_t : \operatorname{bd} S \to \operatorname{bd} S$ ,  $i-1 \le \le t \le i$  with  $f_i \mid M_i$  being the identity. Evidently  $f_d$  is the identity, Q.E.D.

**Theorem 2:** For a map  $f: S \to S$  having the  $\alpha$ -property it holds f(S) = S.

Proof: Because of  $f(\operatorname{bd} S) = \operatorname{bd} S$  it suffices to consider this case:  $x \in \operatorname{int} S$  exists with  $x \notin f(S)$ . Map linearly the interval [0,1] on each edge [v,x],  $v \in \operatorname{vert} S$  (the corresponding point to t denote by tv), 0v = v, 1v = x, and choose  $t_0 \in (0,1)$  such that  $f(\operatorname{bd} \operatorname{conv} \{tv\}_{v \in \operatorname{vert} S})$  is sufficiently close to f(x). Project from x on  $\operatorname{bd} S$  the map  $f \mid \operatorname{bd} \operatorname{conv} \{tv\}_{v \in \operatorname{vert} S}$  (the projected map denote by  $f_t$ ). Evidently  $f_t$  is  $\operatorname{bd} S \to \operatorname{bd} S$  and  $f_t$ ,  $0 \le t \le t_0$  is a homotopy with  $f_0 = f \mid \operatorname{bd} S$  and  $f_{t_0}(\operatorname{bd} S) \ne \operatorname{bd} S$ . Hence  $f_{t_0}$  is inessential, i.e.  $f \mid \operatorname{bd} S$  is inessential—a contradiction to the theorem 1; Q.E.D.

Let n kind of goods be given, n production branches, in each branch (say i) only the good i be produced and for the production of one unit of good i  $a_{ij}$  units of good j be destroyed. Put  $A = (a_{ij})$  and let the set  $N = \{1, 2, ..., n\}$  of goods be divided in two nonvoid sets I, II (called production means and consumer goods). Let, for each  $i \in N$ , it hold  $A_i \geqslant T_0$ ,  $A_i \geqslant T_0$ . Denote by  $P = \{p \in E^n \mid p \geq 0, T_0 = 1\}$  the set (called price simplex) of all so called price vectors p. Denote by S = $= \{s \in E^n \mid s \geq o, Tes = 1\}$  the set (called power supply simplex) of all so called intensity production vectors s. One says a branch i to be profitable for a given  $p \in P$  if  $(E - A)^i p > 0$  (denote by  $\pi(p)$  the set of all profitable i's). Let at least one price vector (say  $\bar{p}$ ) exist with  $\pi(\bar{p}) = N$ . Evidently  $\pi(p)$  is nonvoid for all  $p \in P$ . One says  $p \in P$  (or  $s \in S$ ) is degenerous if it is not p > o (s > o). One calls a map  $s(p) : P \rightarrow S$ a psychology if it holds  $s(p)^{\pi(p)} \geqslant o$  for all  $p \in P$  and s(p), is degenerous if the same holds for p. The pair (A, s(p)) with above considered properties is said to be a simple commodity production society (see [3]). Put  $Z = \{z \in \mathsf{E}^n \mid {}^Tz = {}^TsA, \, s \in S\}$  and such z call a suitable stock. Put  $C = \{x \in \mathsf{E}^n \mid x \ge o, \, {}^Tx = {}^Ts(E - A), \, s \in S\}$  and call such x a luxury goods supply (the corresponding s's are said to be reproductive). One says  $x \in C$  to be economically realizable according to  $z \in \mathbb{Z}$  if a reproductive  $s \in S$  exists with Tz = TsA and Tx = Ts(E - A). Evidently each  $x \in C$  is economically realizable according to some  $z \in Z$ . One says  $x \in C$ to be politically realizable according to  $z \in Z$  if it is economically realizable according to z and the mentioned s be such that s = s(p) for some  $p \in P$ .

**Theorem 3:** In each simple commodity production society (A, s(p)) to each  $y \in E^n$ ,  $y \geqslant o$  such a number  $\lambda > 0$  and a suitable stock z exist that  $\lambda y$  is politically realizable (according to z) luxury goods supply.

Proof: Because  $\operatorname{conv}(^T(E-A)^i)_{i\in N}$  is the (n-1)-simplex containing the (n-1)-simplex  $\{x\in E^n\mid x\geq o\}$   $\bigcap$  aff $(^T(E-A))_{i\in N}$  (because of  $A^i_1\geqslant {}^To$ ,  $A^i_{11}\geqslant {}^To$  and the existence of  $\bar{p}$ ), it exists to each  $y\geqslant o$  such a number  $\lambda>0$  that  $\lambda y$  is economically realizable according to  ${}^Ty(E-A)^{-1}A\lambda$ . It suffices now to prove s(P)=S, but it follows from the theorem 2 because  $s(p):P\rightarrow S$  has the  $\alpha$ -property if we identify the points from P with those from S having the same coordinates, Q. E. D. Many applications of homotopies in the economy are given in [2].

## REFERENCES

- [1] Hilton, P. J.: An introduction to homotopy theory. Cambridge University Press, 1964.
- [2] Nikaido, H., Convex structures and economic theory. Academic Press, New York 1968.
- [3] Polák, V.: Mathematical politology. University of JEP, Brno, University Press, 3<sup>nd</sup> edit. 1969.

Department of Mathematics J. E. Purkyně University, Brno Czechoslovakia

<sup>1)</sup> A Euclidean d-dimensional space denote by  $E^d$ . Each point  $x \in E^d$  is considered as to be a column of d reals  $x^{i}$ 's, o means the column of zeros, e that with 1's. For  $X \subset \mathsf{E}^d$  denote by aff X the smallest space containing X and by dim X the dimension of aff X. For a finite  $X \subset E^d$  the X's convex hull denote by conv X. Denote by  ${}^TA$ (or  $A^{-1}$ ) a transpose (or inverse) to a matrix A,  $A^{V}$  (or  $A_{U}$ ), the A's submatrix consisting from the rows (or columns) indexed by elements from V (or U).  $A \geqslant B$ means  $A \geq B$  (i.e.  $a_{ij} \geq b_{ij}$ ) but not A = B. AB means the row-by-column matrix multiplication, E the unit matrix. For a d-simplex S (i.e.  $\dim S = d$ ) denote by  $\mathscr{F}_k(S)$  the set of all S's k-faces, vert  $S = :\mathscr{F}_0(S).\mathscr{F}(S) = :\bigcup_{k=0}^d \mathscr{F}_k(S), \mathscr{K}(S) = \{Z \mid Z = \bigcup_{T \in \mathscr{F}} T, \mathscr{F} \subset \mathscr{F}(S)\}, \mathscr{C}(L) = :\bigcup_{T \in \mathscr{F}} T \text{ (where } \mathscr{F} = \{T \in \mathscr{F}(S) \mid T \neq L, L \notin \mathscr{F}(T)\}\} \text{ for } L \in \mathscr{F}(S) \text{ and } -L = :\operatorname{conv} \{\operatorname{vert} S - \operatorname{vert} L\}. \text{ The boundary of } S \text{ denote by bd } S, S$ 's interior by int S, the relative boundary of  $L \in \mathscr{F}(S)$  by rlbd L. Put  $ec{d} = : \sum_{k=1}^{a} {d+1 \choose k}$ . A continuous transformation f: X o Y be called a map  $(f \mid Z)$ is f but on  $Z \subset X$  only),  $f_t$ ,  $0 \le t \le 1$  denote a homotopy,  $f_0$ ,  $f_1$  are called homotopic. A map  $f: \operatorname{bd} S \to \operatorname{bd} S$  is called a deformation if it is homotopic to the identity. A map f is called inessential if it is homotopic to a constant map. Recall, that a deformation is never inessential (see [1], pp. 25-26), that a map  $f: bd S \rightarrow bd S$ with  $f(bd S) \neq bd S$  is inessential (by a suitable homotopy we contract f(bd S)into a point), and this extension theorem: if Z,  $T \in \mathcal{K}(S)$ ,  $Z \subset T$ ,  $V \in \mathcal{F}(S)$ , U == : bd S 
ightharpoonup V,  $f_0: T 
ightharpoonup U$ ,  $g_t: Z 
ightharpoonup U$ , 0 
ightharpoonup U, 0

F ř.