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DISTINGUISHING SUBSETS OF SEMI-GROUPS
AND GROUPS

JOSEF ZAPLETAL

Received March 25, 1968

1. DEFINITIONS AND SYMBOLS

Let A be a non-void set. We shall call every finite sequence z =
= 223 ... Ty Where z1, 23, ..., Tn € A a string over A. We shall denote
the void sequence by /A, and the set of all strings by A4*. We shall call
|2 |= |2, ... ¢y | = n the length of the string z. The length | 4 |
of the void string is 0. We identify strings of the length 1 with elements
of A. '

We define an operation of binary composition zy = 212; ... Zn1¥2 - - -
ym for the strings * = x2... %0, Yy =Y19%2-.-Ym where z;, y;€A
fori=1,2,..,nandj=1,2,...,m Forx = A, weput Ay =yAd =y.
We write z” instead of x .... x.

_5,..‘
n-times

The operation of binary composition is associative. We shall call the
set A* with the unit (neutral element) A together with the operation
of binary composition a free monoid. (See [3], pages 3 and 18).

The language is intended to mean a free monoid A* with an unary
relation L in A*. We shall denote the language as an ordered pair
(A*, L) where L = A*.

Let (4*, L) be a language. Let x € A*, y € A*. Let azb € L be equi-
valent to aybe L for each ac A* be A*. Then we put z Zy. The

L

—

relation = is a congruence on the free monoid A*.
L

2. ON NOVOTNY'’S PROBLEM

Prof. M. Novotny put the following question:
Let A* be a free monoid. Let @ be a congurence on A*. What pro-
perty must @ have in order that the language (4*, L) might exist for

which @ = £ holds true?
L

- 2.1 Remark. There exist such a set A and such a congruence © on A*
that @ # E for every subset L < A*.
L
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2.2 Example. Let A = {a, b, c}. Let {4}, {a}, {8}, {c}, ® = {x |x € 4*,
|| = 2} be the classes of the eqmva,lencc relation © on A*. Then @
is a congruence relation and @ = 5 for every L < A*.

e

Proof. We shall show that @ is a congruence. Let z @ y. Let u € 4%,
ve A*. If x = A theny = A and clearly uav = uyv and hence uav O uyv.
Let o # A, then y # /1. It suffices to assume the case that at least one
of the elements u, v is non-void. (If u = v = A, then uav = », uyw = y
implies wav @ uyv). Then |uazv| > 1, |uyv] > 1 and hence uavem,
uyv € w. We have uzv @ uyv.

We shall prove that @ ;‘: = for every L = A*. To prove that @ # =

!:
we assume conversely that there exists a set L S 4* such that® = =.

L
Let L contain at least two distinct elements of A*, of the length 1
for instance @ and b. Let uave L. If w = v = A then ubv = be L and
conversely. In other cases wav € 7, and also ubv € n. The strings uav
and wbv belong simultaneously to L or to A* — L. Therefore a 5'b

L
and hence a b, which contradicts the assumption that {a} and {b}
are classes.

Let L contain at most one element of 4* of the length 1. Then there
exist two elements in A*, for intance @ and b which do not belong to L.
The proof for @« Z b and hence a @ b, which contradicts the assumption

L

that {a} and {b} are classes, is analogous.
2.3 Example. Let A be a finite set containing at least two elements.
Let L = {22|x € 4*}. Ifx_.y then =z = y.

Proof. Let xu Y; we ha.ve z2e L and hence A zxe L; therefore

yx = AyxelL. There exists an element ¢ € A* with the property yz = #2.

Let |z| = Jyl. Then 2 [t| = |£2| = lyz| = |y| + |2| = 2 |2| and J¢| =
= |z| = |y|. It follows y =t = 2.

Let |z| < |y|. Then 2|z < |y| + |2| = |yx| = 2| = 2|¢| and 2/ =
= 2| = |yz| = |y| + |z| < 2 |y|. Thus |z| < |{| < |y|. From the equ-
ation yx = t2 there follows the existence of a string u # A with the
property y = tu, t = uz. It implies y = uzu. We choose an arbitrary
ve A* v # u, |v| = |u|. Clearly vavz € L. From = = y follows vavy € L.

L
It implies the existence of an element s € A* with the property vavae = s2.
We have 2|s| = [s2| = |vzvy] = |vav] + ly| = |uaul + |yl = ly| + Iyl =
= 2|y| and |s| = |y| = |vav|. Thus vav = s = y = uau. As we have
|v] = |u| it follows v = % which is a contradiction with the assumption
v #* u. Thus the case |z| < |y| is impossible and the assertion is proved.

2.4 Definition Let @ be a semi-group, u, v elements in G. A mapping ¢
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defined in G by the equation t(x) = uaw is called a translation determined
by an ordered pair (u, v). (See [1] page 297). Let T be the set of all transla-
tions in @, L a subset of G. We say that L distinguishes @ if for any pair
of distinct elements z, ¥ in G there exists an element ¢t € 7' such that
t(x) € L, t(y) € L or conversely.

2.6 Remark. Let O be any congruence relation of A*. Consider the set
A*|O of all & — classes of A* and denote by T(x € A*) the @ — class
including the element x. We define the operation of binary composition on
the set A*|O by the aid of the operation on A*. We assign to every pair
T, g€ A*[O the @ — class of A* including the element xy; in symbols
Ty = xy. (See [7] page 170).

2.6 Theorem. Let A* be a free monoid, @ a congruence on A*. Then
the following statements are equivalent:

1. There exists a subset L = A* such that @ = E.

L

2. There exists a subset L in A*|@ such that lA*/@ s distinguished
by L.

Proof. Let (1) hold. From the assumptions z € L, and z = y it follows
L
that A.x.AeL hence y=A4.y.AeL and hence L = U £ where

zel
xeZe A*/O. Let us denote the set {&|fe A*/@, & < L} by L. Let

Z e A*/O and j € A*/@ where & # §. Then for x € Z, y € § the formula
2@y does not hold. (1) holds true, therefore znonZy. There exist uec A*,
L

ve A* such that uave L, uyv € L (or cdnversely). Since L contains with eve-
ry element x from L the whole class & € 4*/@ in which z lies too, #&d =
= uav € L follows from uave L and similarly @g5 = uyv € L follows
from uyv € L (or conversely). Therefore 4*/@ is distinguished by the
set L.

Suppose (2). Let us put L = U B, where Be L, and let z € A*,
yed* °

(x) We shall prove that @y implies Zy. Let x@y; then uxv @ uyv

L

and hence wazv = uyv. If uxv € L we have uzv & L therefore also uyv < L
and we obtain wyv € L. Similarly if uyv € L we have uav € L. Hence
xEy.

L
() We shall prove that xZy implies 2@y. We shall carry out
the proof (8) by the contradiction. Let us suppose that there exist z,
y € A* such that 25y but xnon@y. According to (2) there exists
L

a translation £ e T such that #(%) e L, t(§) € L or conversely. Let the
first case occur. There exist u, v € 4*/@ such that (&) = %9 = uwv,
#(§) = @go — uyv and it holds wwve L, uygv e L. Let ueci, ved be
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arbitrary. Consequently there is uxv € uzv € L and similarly uyv e uyv € L.

Since wzv < L and uyv N L = @ it follows uav e L and wyv € L. But

this is the contradiction with the assumption zZy. Hence it holds (f).
L

From («) and (8) we shall get that (1) holds true.
2.7 Theorem. Let L’ be the complement of L in the free monoid A*.
Then = = E.
. L I
Proof. For z, y € A* there holds x5y exactly when uav € L is equi-
L

valent with wyv € L for arbitrary u, v e 4*. Let be uxve L’. Let us
suppose uyv € L’. Consequently uyv € L and that is the contradiction
with the assumption zZ%y.

L

2.8 Theorem. Let A and B be semi-groups, L a subset in A. Let ¢
be a homomorphism of A onto B for which ¢~ (p(L)) = L holds true.
Let L distinguish A. Then @(L) distinguishes B.

Proof. Let r, se B, r # s, let us choose x € ¢~ (r), y € p~1 (s) arbi-
trarily. It is « 5= y and there exist u, v € 4 such that uaxv € L and uyv € L
or conversely. It is ¢~ @(L)) = L and therefore @(urv) = gp(u).r.
. p(v) € p(L) and @(uyv) = @(u) s p(v) € p(L) or conversely.

2.9 Remark. The converse statement of the theorem 2.8 does mot hold
true.

2.10 Example. Let 4 be additive semi-group of nonnegative integers.
Let us denote by L the subset of even numbers. Let B be additive semi-
group which has two elements 0 and 1 for which 1 4 1 =0. Let ¢
be a homomorphism of 4 onto B for which ¢(L) = 0, ¢(L’) = 1. Then
the subset @(L) distinguishes B, but L does not distinguish 4.

Proof. It is sufficient to choose two arbitrary even numbers a,
be A. For every translation ¢ € T' there holds f(a) € L if and only if
t(b) € L.

2.11 Definition. Let @ be a semi-group, I < G. We shall call the set I
an ideal of the semi-group G when ab e I and ba € I hold forae I, be Q.
If I is a proper non-void subset in @, then we shall call I a proper ideal.
The proper ideal which has at least two elements is called a non-trivial
ideal.

2.12 Theorem. Let G be a semi-group, I a non-trivial ideal in Q. Then I
does not distinguish G-

Proof. The ideal I is non-trivial, it has hence at least two elements.
Let x,yel, x #y. Forall ue @ thereisux €I, uye I and for all v e @
there is uzv € I, uyv € I. For a chosen pair of the elements z, y there
does not exist a translation ¢ € 7" such that {(z) € I, {(y) € I or conversely.
Thus I does not distinguish G-

2.13 Corollary. Let G be a semi-group, L a subset in G. In order that L
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distinguishes Q, there is necessary that neither L nor L’ contain a non-
trivial ideal.

2.14 Definition. (2°) A non-void subset R of a semigroup G is said
to be a normal complez, if for arbitrary u, v € @ and for arbitrary z, y e R
always uyv € R follows from wuxv € R.

A normal complex is said to be a mon-trivial one, if it contains at
least two different elements.

2.15 Remark. From the definition of the non-trivial complex there
follows that it does not distinguish the semi-group G. It is sufficient to take
z, ye R, x # y.

2.16 Theorem (2°) Let G be a semi-group, R a subset in G. The following
statements are equivalent.

(1) R is the normal complex.

(2) There exists a homomorphism ¢ of the semi-group G such that R
is a complete counter image of one element at the homomorphism ¢.

2.17 Remark. Let G be a group and H its normal divisor, then every
class of the decomposition of the group G modulo H is a normal complex.

2.18 Theorem. Let G be a group, H its normal divisor containing at
least two different elements. Then no class of the decomposition modulo H
(especially H) distinguishes G.

Proof. The statement follows from the remarks 2.15 and 2.17.

2.19 Theorem. (2°) The semi-group @ is a group if and only if ¢t does
not contain proper ideals.

2.20 Remark. Regarding the theorem 2.12 the condition for the distin-
guishing is not a sufficient condition.

Proof. A group does not contain a non-trivial ideal. Let us put
L = aH where a € G and where H is a normal divisor containing at
least two elements. According to the theorem 2.18 the set L does not
distinguish @. Simultaneously, neither L nor L’ contain a proper ideal.

2.21 Agreement. Let G be a semi-group, L a non-void proper subset
in @. Let 7' be the set of all translations. For arbitrary ¢ e 7' put 7% =
={zlxre @ t(xr)e L} and T} = {x|x €@, t(x) € @ — L}. Let us denote
by G; = {T;, T;} the decomposition corresponding to the translation ¢
and to the subset L. Let us denote by Gy = A G;. the least common

teT
refinement of the decompositions G;, t € T' (See [2]).

2.22 Theorem. Let G be a semi-group, L < G a subset. Then L distin-
guishes the semi-group G if and only if Gy is the least decomposition.

Proof. Let Gy be the least decomposition. Consequently every class
Gr contains exactly one element. Let z, y€ G, = # y. There exists

(2°) The definitions and statements see for example Ljapin [4].
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to € T such that ty(x) € L and to(y)—e L (or conversely). The set L distin-
guishes G.
Let L distinguish G. Let 2, y € G, 2 # y. There exists t, € T' such that

to(x) € L and to(y)EL (or conversely). The elements z, y are not in the
same class of the decomposition Gy .

3. EXAMPLES

3.1 Example. Let R be the multiplicative group of the positive rational
numbers, N < R the set of the natural numbers; then N distinguishes R.

Proof. Let z, y € R, « # y. Without loss of generality it is possible
to assume that z > .

Letx:f—,y= p,.We put u:l,v:l;then uzv:l.g-

q q , ) p q
2 _1eN and uyv=1.p,-1=£—:£=£<l and hence
r 9 P q q z

uyv € N.

3.2 Example. Let G = {a°, a!, a2, a3, a*, a> = a°} be a cyclic group of
the order 5. Let L = {a?, a3}. Then L distinguishes G.

Proof. The cyclic group is a commutative multiplicative group.
The system of all translations 7' is determined by the elements a°, al.
a?, a3, a* indeed, {(x) = uaxv = wvxr = akx for a suitable k. Let t; be
the translation determined by the element a* € @. Let @, be the decom-
position corresponding to the translation #, (k = 0, 1, 2, 3, 4).

We shall construct G;, corresponding to the subset L.

Gy, = T = {a?, 03}, T, ={a at, a%}}
=T ={at, @?), Ty ={o a3 at}}
@, = {To={a a1}, T,={a a3 a%}}
,={Tu={a" 0}, T,={a! a2 a?}}
G, = {T0 ={a%, a%}, T, ={a", a, a?}}

Let Gr =A Gy,. Let us put 7% — T n Tt n T n T2 n Tie.
xE

k=0,1,2, 3, 4 are the classes of the decomposition G7. The exponents
form a five-element sequence of the zeros and ones. The intersection

.....
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00111 — {az} To101 — )
01011 — () To0110 — ()
01101 — (j 711001 — {a°}
01110 — {,,,3} 11010 — (§

10011 — {al} T11100 — {a4}

Gr = {{a%}, {a'}, {a?}, {a®}, {a*}}. According to the theorem 2.21 the
set L distinguishes G.

3.3 Example. Let @ be a cyclic group of the order 9. Let L = {a?,
a’, as}.

Then L does not distinguish G.

Proof. The set H = {a®, a3, aS} is a subgroup of the group G. Since ¢
is eyclic, H is a normal divisor. But L = a2H. Thus L is a class modulo
H. According to the theorem 2.17 the set L does not distinguish G.

4. DISTINGUISHING SUBSETS OF GROUPS

4.1 Lemma. Let G be a group, L a proper subset in G. Let x, y be ele-
ments in Q. Then the following statements are equivalent.

(1) For all u, v @ the condition uzv € L is equivalent with uyv € L.

(2) For all », ve @ the condition uz~lyv € L is equivalent with

wv € L.

Proof. Let (1) hold. Let us now choose %, vo € @ arbitrarily but fixed
and further let us choose u; = ugx~1, v; = vo. Then ugwy = Upr—l2vy =
= uav € L exactly when wer—lyvy = uyv € L. Hence wuxzlyvoe L is
equivalent with ugve € L for all ug, vy € G, that means, there holds (2).

Similarly the statement (1) can be proved from the statement (2).

4.2 Remark. In this paragraph we denote the unit of a group by I.

4.3 Lemma. Let G be a group, L a proper subset in G. Then the following
statement are equivalent.

(1) L does not distinguish G.

(2) There exists an element z € G, z # 1 such that for all, uve Q, wv e L
is equivalent with uzv € L.

Proof. Let (1) hold. There exist z, y € @ x # y such that for all
u, v € G there holds uav € L exactly when uyv e L. This is, however,
according to lemma 4.1 equivalent with the statement, that uz—' yv € L
axactly when uv € L. If we put -1y = z in the last equivalence then
z # 1 and we shall get (2). :
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Let (2) hold. Then the statement (1) follows directly from the defi-
niton 2.4.

4.4 Definition. Let G be a group, L a proper subset in @, z % 1 an
element in @. Let uv € L be equivalent with uzv e L for all u, v € G.
We shall denote by @(z) the cyclic group generated by the element z
and we shall call it the x-group of the set L in Q.

4.5 Lemma. Let Q(z) be an a-group of the set L in Q. Then L = U

ael
aQ)(z) holds true.

Proof. Let ac L. Let us denote K = a-1L. Then 27 K for all
integers n.

Obviously 1 € K. We shall prove that z* € K is equivalent with 2k+1 e K
For all u, ve @ it holds true that wv € L is equivalent with wuzv e L.
Let us put « = a, v = 1. We obtain that a € L is equivalent with az € L
and hence z € K. Let us denote the last equivalence by (4-). If 2k € K =
= a~1L then az¥ € L. According to (+4) the relations az* € L, azkz € L
are equivalent. It is further az¥z = az¥+1 € L. The last relation is equi-
valent with 2¥*1e€q-1L = K. From the preceding equivalences we
shall get that 2% € K is equivalent with 2%+1 € K. Considering that z € K,
there holds 2” € K for all integers.

It follows that Q(2) < K, hence a@Q(z) < L. From this U aQ(z) < L.
ael
Since, however a € aQ(z) we have U aQ(z) = L.
aeLl

4.6 Definition. Let G be a group, L a non-void subset in @. Then we
define the set W(L) < @ as follows: W(L) = {z|z € @ with the property
uzv € L if and only if uv € L for all , v € G}.

4.7 Theorem. Let G be a group, L a proper non-void subset in G. Then
W(L) 18 a normal divisor of the group G.

Proof. I. We shall show that W(L) is a subgroup of the group G.

o) From the definition of W(L) follows that 1 € W(L).

p) Let 2;, 2, € W(L). We shall show that 2,2, belongs to W(L). Since
z; and 2; belong W(L) the relation uv € L for all u, v € @ is equivalent
with uz;v € L and similarly uv € L is equivalent with uz,» € L. Now let
us choose ug, vo € @ arbitrary but fixed and let us put further u; = uo,
v = 209. Then it holds uovp € L if and only if uez;v9 = uyv; € L, which
is equivalent with o220 = 12191 € L. From this uv € L is equivalent
with uz;2,0 € L for all u, v € Q. Hence 2,2, € W(L).

%) Let ze W(L). We shall show that z—1 is an element of W(L). Since
ze W(L), wwe L is equivalent with uzv € L. Let us choose uy, v € G
arbitrary but fixed and let us put u; = g, v; = 2-1v,, Consequently
it holds: wugwo = wizv; € L exactly when wg2~lvy = uv; € L. Hence
uv € L is equivalent with uz—1v € L for all u, v e G. Hence 21 € W(L).
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II. We shal show that W(L) is a normal divisor of the group @, that
means, for z € W(L) and arbitrary element a € @ there holds aza-1 € W(L).
Let us choose u, vy € G arbitrary but fixed and let us choose further
% = e and v = a~ly,. Since there is z € W(L) and it holds ugv, =
= o . @~! = wv; € L the relation ugv, € L is equivalent with wu,zv, —
= wuo(a@za=1) vo € L. Hence uv e L is equivalent with waza-we L for
all », v € G and it holds aza—1 € W(L).

4.8 Theorem. Let G be a group, L a proper non-void subset in G. Then
L = L& aW(L).

aeE,

Proof. W(L)is a normal divisor. We shall show that with the element
a from the set L the whole class aW (L) is a subset of L. Let z ¢ W(L)
and choose a € L arbitrarily, then a.1 e L is equivalent with a.z.
- 1€ L. Thus for all ze W(L) there is az € L and therefore aW(L) < L.
Hence U aW (L) c L. Conversely if a € L then a € aW(L) so that L <

aeL
c UaW(L).
a€Ll
4.9 Definition. Let H be a normal divisor of a group @. We say that H
is @ proper normal divisor if 1 = H # @ holds true.

4.10 Lemma. Let H be a proper normal divisor of a group G. If L =

= U aH, then L does not distinguish Q.
aeL

Proof. We shall prove that for he H, b 1 holds that uv € L
is equivalent with uhv € L. Let uv € Lthen uvH < Lbut uvH = u(vH) =
= u(Hv)and hence uhv e uHv < L. Let uhv € L then uv € uvH — uHv —
= w(hH)v = uhvH < L.

4.11 Theorem. Let G be a group, L a proper nonvoid subset in G. Then
the following statements are equivalent:
(1) L does not distinguish G.
(2) There exists an a-group Q(z) such that
L= U aQ(z).

acL
(3) There exists a proper normal divisor H such that
L=y aH.

aeL v
Proof. Let (1) hold. According to the lemma 4.3 there exists -an

a-group ¢(z) generated by an element 2, z % 1 for which-aceording to
the lemma 4.5 L = UaQ(z) holds. I

aeL T30 o 1
Let (2) hold. Then there exists the set W(L) # {1} in @ which is
a normal divisor (theorem 4.7) with the property L = UJ aW(L) (theorem

ael
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4.8). It is L # @ and thus also W(L) # @ because if W(L) = @ held
true then L = U aW (L) = @ would be. If we put H = W(L) then holds

aeL
(3).

Let (3) hold, then according to the lemma 4.10 the statement will
hold.

4.12 Corollary. If @ is a simple group (containing mo proper normal
divisor), then an arbitrary proper non-void subset L of the group G distin-
guishes G.

4.13 Corollary. If @ is a cyclic group of the prime number order, then
every proper non-void subset L of the group G distinguishes G.

4.14 Corollary. Let G be a group, L a proper subset in G containing the
unit. Let L contain mo proper normal divisor of the group @. Then L
distinguishes G.

4.16. Corollary. Let G be a group, L a proper nonvoid subset in G.
Let L contain no class modulo a proper normal divisor of the group G.
Then L distinguishes G.

4.16 Theorem. Let G be a group, L a proper non-void subset in G.
Then ¥ = {aW(L) | a € L} distinguishes G|/ W(L).

Proof. We shall carry out the proof by the contradiction. Let &
do not distinguish G/W(L). Then there exist different elements & =
=zW(L), § =yW(L) in G/W(L) such that the condition %5 e ¥
is equivalent with @#5 € & for all 4, ¥ € G/W(L). The relation @&5 =
= uav W(L) e &L is equivalent with uav W(L) < L according to the
theorem 4.8. Hence uzv € L. Conversely if uxv € L then uav W(L) < L
and this is equivalent with 4%0 = uaxv W(L)e.%. We obtain that
uxd = uzv W(L) € & is equivalent with uav € L. From the preceeding
equivalences there follows that wave L is equivalent with uyv € L.
The last equivalence is, however, according to the lemma 4.1 equivalent
with the statement uz-lyv € L if and only if wve L. Then zy~! is an
element of W(L) and it holds xy—1W (L) = W(L). It holds now that
yW(L) = W(L)y = (zy'W(L)) y = x(y'W(L) y) = a(y-yW(L)) =
= zW(L). In this way we shall get the equality £ = xW(L) = yW(L) =
= y. This is, however, the contradiction. Therefore ¥ distinguishes
the factor-group G/W(L).

The results of the theorems 4.11 and 4.16 may be formulated as
follows.

4.17 Theorem. Let G be a group, L a proper non-void subset in Q.
Let L do not distinguish Q. Then there exist a group Gy and a homomorphism
@ : G — Gy which is not an isomorphism such that L = o [p(L)] and
@(L) distinguishes the group @,.
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