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1 Introduction

The kissing number problem for lattice spheres consists of finding the lattice
sphere packing with the biggest possible number of spheres touching one sphere.
In Euclidean spaces this is a well known problem with a developed theory, see
for example [2] and the references there. Here, I consider a non-Euclidean ana-
logue in dimension two. The problem is to find the Riemann surface of a fixed
signature (g,n) (g the genus, n the number of cusps being the unique bound-
ary components) such that the number (called kissing number) of the systoles
(shortest closed geodesic) is maximal. As in the Euclidean case, such surfaces
are supposed to have many important properties.

The kissing number problem is related to the best lattice sphere packing
problem. Its non-Euclidean analogue in dimension two is the problem to find
the Riemann surface of a given signature with the systole of maximal length. I
called them maximal surfaces, see [6] and [7]. I proved the following theorem
about them.

Theorem[6] A maximal surface M has at least dim(T(M )) + 1 different systoles
where T (M) denotes the Teichmiiller space of M.

The number dim 7 (M )+1 is thus a lower bound for the maximal kissing number,
and maximal surfaces are the first candidates for being the best kissing number
surfaces.

The next idea for finding the best kissing number surface is to look for
surfaces with big automorphism groups. By the action of this group the systoles
are separated in isometry classes. A generic surface has of course only one
isometry class of systoles. In this case the number of systoles is bounded from
above by K - dim (T(M)), K a constant, since the order of the automorphism
group is bounded like that.



14 P. Schmutz

Certainly the best candidates for the best kissing number surface are those
surfaces which not only have a big automorphism group, but also many different
isometry classes of systoles. In fact, there exist surfaces with an arbitrarely big
number of different isometry classes of systoles. Such surfaces can be constructed
by arithmetic groups. The most simple examples are the principal congruence
subgroups of PSL,(2,Z), but we will see other congruence subgroups with the
same property. I shall prove the following main result.

Theorem There exists a Riemann surface Mg corresponding to a congruence sub-
group of PSL(2,Z) such that the number of systoles is bigger than K - dim(T (M))
for every given integer K.

This is a new example which shows the great geometric importance of congruence
subgroups of arithmetic Fuchsian groups.

The main theorem is certainly not optimum. Its proof and the calculation of
examples give strong reasons that the following conjecture is true.

Conjecture (i) For every positive integer K there exists an integer Q(K) such that
for every N > Q(K) the surface C (N ) corresponding to the principal congruence
subgroup I'(N) of PSL(2,Z) has more than K - dim(T(C (N))) different systoles.

(ii) There are infinite many different integers N; such that C(N;) has more
than (dim(T(C (N;))))"/® different systoles.

The paper is organized like follows. Section 2 defines and describes some congru-
ence subgroups of PSL(2,Z). Section 3 introduces the degree of a systole which
is a geometric measure and indicates the “minimal” distance between a given
systole and the set of the cusps. Systoles with different degree are in different
isometry classes, the degree thus allows the classification of the isometry classes
of systoles. It is shown that there exist congruence surfaces with systoles of each
prescripted degree hence with an arbitrarely big number of different isometry
classes of systoles. In the same time it is shown that these isometry classes are
big enough to prove the main theorem. Finally, I give in Section 4 some concrete
examples for the calculation of the degree of the systoles which justify part (i)
of the conjecture above.

Some remarks on the bibliography. For counting the systoles of the surfaces
corresponding to the congruence subgroups other methods have been described,
see [10], [4], [3], [1]. Concerning the kissing number problem I already noted
[2]. For congruence subgroups there is a lot of literature, I only cite [8], [51, [9].

2 Some congruence subgroups of PSL(2,Z)

Definition Let A and N be positive integers with AN > 3. Let

1+aAN  bAN
Iy(N)= {[ N 1+ dAN ] € SL(2,2)

a,b,c,d GZ}.

Elements of I'4(N) are also written as U (a,b,c,d) instead of
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1+aAN  bAN
cN 1+dAN |’

Let
045 _ a b a b|_|x 0
rw-{[2 4] erman|[2 5]=[* *]me).
If A =1, than I also write I"(NV) instead of Ix(N). I" denotes the modular group
PSL(2,2).
Remark. By AN > 3 it follows that I4(N) has no elliptic element.
Theorem 1 (i) I'(N) is a normal.subgroup of I of index
N 2] Ja-1/pY
pIN

where the product runs over every prime of N.
(ii) I'°(A) is a subgroup of I of index

AlJa+1/p).
plA
(iii) I'(AN ) is a normal subgroup of I'y(N) of index A.
(iv) Ix(N) is a normal subgroup of I'°(A) of index
AN? leAN(l —1/p?
211, (1 +1/p)

Proof. (i) is well known. For (ii) see for example [3].
(iii) It is clear that I"(AN) is a normal subgroup of I4(N). Let

z=[1:, ‘1’]

Then I[4(N) = Ufz_ol Z¥I'(AN) as it is easy to verify. Therefore, the index is A.
(iv) Again, it is clear that I;(N) is a normal subgroup of I"°(A). By (i) and
(iii) the index of I4(N) in I is

APN32 [T -1/p%.

P|AN

This together with (ii) proves (iv). O

Definition (i) The Riemann surface which corresponds to I;(N) is denoted by
Ca(N).

(i) T(M) denotes the Teichmiiller space of the Riemann surface M .

(iii) The signature (g, n) of a Riemann surface indicates the genus ¢ and the num-
ber n of boundary components which are by convention simple closed geodesics
or cusps.
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Corollary 1 Let §4(N) be the dimension of the Teichmiiller space of C4(N). Let
Ya(N) be the index of Ty(N) in I'°(A). Then

8aN)/ZaN) < A/2[ [ +1/p)
plA

and 64(N)/ Xa(N) is bounded from above independently from N.

Proof. This follows by (ii) and (iv) of Theorem 1. O

3 The degree of a systole

Definition Let u be a non-oriented closed geodesic in C4(N). I denote by M (u)
the two conjugacy classes (which may coincide) of matrices U in I4(N) which
corresponds to u (such that we have |tr(U)|/2 = cosh(L(«)/2) where L(u) stands
for the length of ). I also say for a matrix U € M (u) that it corresponds to u. If
u is a cusp, then M (1) may contain more than 2 conjugacy classes of matrices.

Definition (i) The systole of a Riemann surface M is the shortest simple closed
geodesic which is not a boundary geodesic.

(iv) The automorphism group of a Riemann surface consists of the orientation
preserving automorphisms. The restricted automorphism group of C4(N') contains
the automorphisms induced by

Tu(N) = XTH(N)X !

with X € I'°(A).

(iii) The isometry class of a systole u of Co(N) contains all systoles u' of C4(N)
such that there exists an automorphism ¢ of the restricted automorphism group
of Ca(NV) with ¢(u) =u’.

Lemma 1 Let 2x be the length of the systole of CA(N). Then
2coshx = AN? — 2.

Proof. Let U = U(a,b,c,d) € I'x(N). Then for the trace of U we have tr(U) =
2+ (a + d)AN. Since det(U) = 1 we have a +d = 0 mod (N). It follows that

2coshx > AN? — 2.

1 AN
—N 1-AN?

On the other hand the matrix

has the desired trace. O

Definition For integers x and y the greatest common positive factor is denoted
by (x,y).
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Definition (i) U = U(a, b,c),a,b,c € Z, defines the following matrix.

yo | 1+aaN bAN
“| N 1-aAN —AN?

(i) V=V(a',b',c"),a',b',c" € Z, defines the following matrix.

y_[ 1+a'aN  bAN
- ¢'N 1—a’AN |~

Lemma 2 In the notation of the preceeding definition we have

(i) U(a,b,c) corresponds to a systole of Co(N) if and only if a’A + aAN +
be + 1 = 0 and all matrices corresponding to a systole of C4(N) can be written
like that.

(ii) V(a',b’,c") corresponds to a cusp of C4(N) if and only if a?A+b'c’ =0
and all matrices corresponding to a cusp of C4(N) can be written like that.

(iii) If U(a, b,c) corresponds to a systole of Co(N), then b # 0, ¢ # 0 and
(c,A)=(b,A)=1.

Proof. (i) and (ii) follow since the determinants of U and of V must be one 1
and since the trace of a matrix corresponding to a systole must be 2 — AN? by
Lemma 1. (iii) follows by (i). O

Lemma 3 Let u be a systole of Ca(N) and v a cusp. Let U(a,b,c) correspond
tou and V(a',b’,c") correspond to v. Let W = UV . Then

tr(W) =[(2a + N)Aa' +cb’ + b’ — 1]JAN? +2.
Proof. By calculation. O

Definition (i) I denote by v, the cusp in C4(N) which corresponds to the matrix
V (0, 1,0). This matrix is denoted by Vj.

(ii) The subset Z" of the cusps of Co(N) contains a cusp v if there exists an
element ¢ of the restricted automorphism group of C4(N) with ¢(vg) = v.

(iii) Let u be a systole and v a cusp of C4(N), let U = U(a,b,c) € M(u) and
V=V(@,b'c')eM@w).Set D(U,V)=|2a+N)Aa' +cb’ + bc'|.

(iv) I call D(1) = min{D(U, V)|V € M (v),v € Z} the degree of u.

(v) A canonical representative of an isometry class & of systoles of C4(N) is a
matrix U = U(a, b, c) corresponding to a systole u of i with ¢ = D(u).

Lemma 4 (i) The degree of a systole is invariant with respect to the restricted
automorphism group of Cy(N).
(ii) Every isometry class of systoles has a canonical representative.

Proof. (i) Let u be a systole, v € 2" a cusp, U € M(u) and V € M (v) such
that D(U,V) = D(u). Then the lengths of the two geodesics corresponding to
W = UV and W’ = UV ~!, respectively, are well defined by Lemma 3 and part
(i) of the lemma follows.
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(ii) By (i), there exists a systole ' in the isometry class of u anda U’ € M (u')
such that D(u’) = D(U, V). This implies D(u) = &=c and since we can replace
U’ by its inverse, we can assume D(u)=c. O

Remark In the notation of Lemma 4, W (or W') corresponds to the shortest
geodesic with the property that the geodesics corresponding to U, V and W (or
W') are the boundary geodesics of a surface of signature (0, 3). Therefore, the
degree of a systole has a precise geometric meaning.

If in a surface of signature (0, 3) two boundary geodesics x and y are fixed
while the length of the third increases, then also the length of the common
orthogonal between x and y increases. In this sense, the degree of a systole is
a measure for its shortest distance to a cusp of Z". A canonical respresentative
corresponds to a systole such that the “nearest” cusp of Z” is vy.

Proposition 1 Let V = V(a’,b’,c"),c' < 0, correspond to a cusp v € Z" of
Ca(N) such that there exist a systole u and a corresponding matrix U with D(u) =
D(U, V). Then there exists integers x and y with (x,Ay) = 1, and a’ = —xy,
b’ =x?% ¢’ = —Ay>

Proof. By definition there exists an X € I'°(A) and an integer k such that V =

XVO"X".Let
_| o AB
HEE
Then )
1 — kayAN ka*AN
ky—1 _ Y
XVoX “[ —ky?AN 1+ka7AN]‘

Since D(U,V) = D(u), it follows that |k| = 1, and since (a,Avy) = 1, the
proposition follows. O

Corollary 2 Let U = U(a, b, c) correspond to a systole u of CA(N). Then D(u)
corresponds to the smallest (with respect to the absolute value) non-zero integer
D which is represented by the quadratic form

cx? — (2a + N)Axy — bAy?.

Proof. Clear by Proposition 1 (D () = 0 is excluded by Lemma 2(iii) and Lemma
4(Gii)). O

Lemma 5 Let U = U(a, b, c) correspond to a systole u of C4(N). Let m #0, s,
t be integers such that

cs? — (2a + N)Ast — bAt? = m.

Let (xg, yo) = (cs — aAt,t).
(i) (x0, Yo) is an integer solution of the equation

x? — ANxy + Ay? = cm.
(ii) Put
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x=|5 W] ore[h 4]

Let [xo, yol denote a column vector. Then X [xo, yo] and Y [xo, yo] are also integer
solutions of

e — ANxy + Ay? = cm.

Proof. 1 will prove the claim for X [xo, yo]. The other claims are proved by similar
calculations using the equation (see Lemma 2)

a*A+aAN +bc+1=0.
X[x0,y0] = [—cs + aAt + ANt,t].
(—cs +aAt + ANt)* — AN (—cs + aAt + ANt)t + At? =
= c(cs® — (2a+N)Ast)+At*(a®A+aAN +1) = c(cs® — (2a +N)Ast) — bcAr® = em.
O

Proposition 2 Let U = Ul(a, b, c) correspond to a systole u of C4(N), N > 1.
Assume that c* < AN +A + 1. Then D(u) = c].

Proof. Let m = D(u). By Corollary 2 we have m < |c|.
(i) Assume firstly that there are integers s, ¢, x1, y, with x; = cs — aAt,y; =t
and

cs’ — (2a+N)Ast —bAt> =m,  x? — ANxyy; +Ay? = |c|m.
It then follows by Lemma 5 (compare Fig. 1) that there exist integers xp and y,
with
xg — ANxpyo +Ay§ =|c|m

and x¢ < |c|m and y? < |c|m/A. If

22 +ANZ2 + Az = |c|m
then |z| < 1 by hypothesis. Since
x* — ANxy + Ay* = |c|m

describes a hyperbola with asymptotics passing through the origin, it follows that
(x0, yo) must lie on the axes.

Assume that (xo,y0) = (£4/|c|m,0). This implies by Lemma 5 that x; =
y1 = 0 mod (\/|c|m) and therefore, cs = ¢ = 0 mod (/|c|m). By the equation

cs? — (2a +N)Ast — bAt> =m

we conclude m = 0 mod (\/HE), thus m = |c|.

If (x0, y0) = (0, £+/|c|m /A), then it follows by the same argument that m =
mod(+/|c|m/A) and hence m = |c| since (c,A) = 1 by Lemma 2. This implies
moreover that this second case is only possible for A = 1.
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x2— ANxy + Ay?=Iclm

(;prl)

/ X
>
>

(xo’)’o)

“(1,-1)

Fig. 1. To every integer solution (x,y;) of x2 — ANxy +Ay? = |c|m corresponds an integer solution
(x0,yo) on the thick region of the picture. If the points (—1,1) and (1, —1) are on the “outside” of
the hyperbola as in the picture, then (xo, yp) must be a point on the axes

(ii) Let ymin > O be defined by (A2N? — 4A)y%, — 4|c|m = 0. Let x, =
ANYpin /2. Then (xy, ymin) is the real solution of

x? — ANxy + Ay? = —|c|m

with minimal positive y.
Let X, > O be defined by (A2N2 —4A)x2, —4A|c|m = 0. Let y; = Nxpin /2.
Then (Xmin, yx) is the real solution of
x% — ANxy + Ay? = —|c|m

with minimal positive x.
Assume now that there exist positive integers x; and y; with

x2 — ANx\y; + Ay} = —|c|m.

By an analogous argument as above (compare Fig.2) there exist integers xo and
Yo with
x3 — ANxoyo + AyZ = —|c|m
and Xpin < Xo < Xy and ymin < Yo < Yx-
But since Xy /Ymin > 1 and y; /Xmin > 1 and
22 —ANz2 +Az2 = —|c|m

for |z| < 1 by hypothesis, there cannot exist such integers xo and yo which
contradicts the assumption that
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x*— ANxy + Ay*=—lclm
Ay

(xmm’yx)
(L1

(xov)’o) (x )1 )
Xy Ymin)

X
»>

Fig. 2. To every integer solution (x;,y;),x; > 0,y > 0, of x> — ANxy + Ay? = —|c|m corresponds
an integer solution (xg, yo) on the thick region of the picture. If the point (1, 1) is on the “outside”
of the hyperbola as in the picture, then (xg, yp) cannot exist

x} — ANx;y; + Ay? = —|c|m.
O

Theorem 2 Let K be an integer. Then for every A there exists an N such that
Ca(N) has (at least) K different isometry classes of systoles.

Proof. Let N = [[},(Aj2 + 1), @y = n, ¢, = An® +1 and b, = —1 — nAN /c,,
n < K a positive integer. Then b, is an integer and a,?A +a,AN +b,c, +1 =0
and therefore, by Lemma 2, U, = U,(ay, by, c,) corresponds to a systole u, of
Ca(N) for every integer n with 1 < n < K. Moreover, n> < AN +A+1 for every
n < K if K > 4, say. It follows by Proposition 2 that D(u,) = ¢, = An? + 1,
1 <n < K. The theorem now follows by Lemma 4. 0O

Theorem 3 Let K be an integer. Then for every A there exists an N such that
the number of systoles of Co(N) is bigger than K - dim(T (C4(N))).

Proof. (i) Let N, a,, by, cn, un, U, be defined as in the proof of Theorem 2
and let K > 4. Let v, € Z" be a cusp and V,, = V,(a,, b, c,) a corresponding
matrix with D(U,,V,) = D(u,), 1 < n < K. By Proposition 1 we can write
ay, = —Xpyn, b} =x2, cl = —Ay2.

Let V, = U,V,U,"". Then tr(U,V,) = tr(U,V,), hence D(U,, V) = D(up)
and V, can be described by x, and y, as in Proposition 1. By calculation we
obtain

x) = (1 + a,AN)x, + b,ANy,
and
Yp = CaNx, + (1 — a,AN — AN?)y,.

(xn,yn) is a solution of one of the two equations

cnx? = (2a, + N)Axy — Ab,y? = +c,.
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(ii) Assume firstly that (x,,y,) is a solution of
cnx? — (2a, + N)Axy — Ab,y? = c,.

Then, by Lemma 5, (c,x, — a,Ayn,yn) and YX[c,x, — anAy,, ynl =: [wp,z,] are
solutions of

x2 — ANxy + Ay? = c,zl

where X, Y and the symbol [,] are defined as in Lemma 5.
Going back we obtain a solution ((wy, + @,Az,)/Cn,2n) = (rn,24) Of

c,,x2 — (2a, + N)Axy —Ab,.y2 = Cj.
By calculation we obtain

Tn = —Xn — @nX,AN + (1 + a2A + a,AN)ANy, /c,

Zn = —Ncuxn + a,ANy, + (AN? — 1)y,

and it follows by the equation a,?A +a,AN + b,c, + 1 =0 (see Lemma 2) that
(rnvzn) = (_x'i’ —)’;:)

We can repeat the hole procedure and it follows as in the proof of Proposition 2
that v, has a corresponding matrix W, = W, (—&,n,, €2, —An?) with n? < c2/A
(compare Fig. 1). By the proof of Proposition 2, n, =0 or,ifA=1, 7, = £c,. In
the first case we have v, = vy, in the second case v, corresponds to a different
cusp.

(iii) Assume now that (x,,y,) is a solution of

cax? — (2a, + N)Axy — Ab,y?* = —c,,.

The same argument as in (ii) is possible and we obtain a contradiction as in the
proof of Proposition 2.

(iv) We have proved that there exist at most two different cusps which are
“nearest” to the systole u,, 1 < n < K. More precisely, we have proved that
there exists at most one non-trivial element ¢ of the restricted automorphism
group of C4(N) such that ¢(u,) = u,. It follows that the order of the isometry
class of u, is at least half of the order of the restricted automorphism group of
Ca(N). Corollary 1 and Theorem 2 now imply the theorem. O
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4 Examples for the degree of systoles

We calculate the degree of the systoles for some examples. By Lemma 2, we
have to look how the integers f(a) = Aa® + aAN + 1 can be parted into two
factors b and c. It can be shown that it is sufficient to analyse the possibilities
for —AN/2<a <.

I firstly give some examples for A = 1.

(@) N = 21. In this case all numbers f(a) = a’+Na+1,-N/2 < a <0,
are primes and C(21) has only systoles of degree 1. The same is true for N = 9.
I conjecture that these are the unique surfaces C(N),N > 5, which have only
systoles of degree 1 (which are the separating systoles).

(b) N =24. In this case all numbers f(a) = a?+Na + 1, —N/2<a<0,are
primes or twice a prime with the unique exeption |f(—12)| = 143 = 11-13. It is
obvious that the corresponding systole has degree 2. Therefore, C(24) has only
systoles of degree 1 and 2.

Since all surfaces C(N),N > 6, N even, have systoles of degree 1 and 2,
this is an extremal example. Also the surfaces C(6), C(8) and C(12) have only
systoles of degree 1 and 2. I conjecture that these are all such exceptions with
N even, N > 6. '

These examples justify the following conjecture.

Conjecture For every positive integer K there exists an integer Q(K) such that
for every N > Q(K), C(N) has more than K - dim(T(C (N))) different systoles.

(c) N =22.1 give the list of the numbers |f(a)|,—N /2 < a < 0.
f(—=11)]=120=2-60=3-40=4-30=5-24=6-20=8-15=10-12
f(=10)| = 119=7-19
[f(—9)|=116=2-58=4-29
f(=8)|=111=3-37
f(=7)|=104=2-52=4-26=8-13
[f(—6)|=95=5-19
[f(=5)|=84=2-42=3.28=4-21=6-14=7-12
[f(—4)| =71 prime
[f(=3)|=56=2-28=4-14=7-8
[f(-2)]=39=3-13
f(-1)|=20=2-10=4-5

We have possibly systoles of degree 1,2,3,4 (two isometry classes), 7 for C(22).
Since 4-4+2 < 22, it follows by Proposition 2 that there are systoles of degree
1,2,3,4.

There are also systoles of degree 7 since

x2—22xy +y*=1D

has no integer solution for |D| < 7 (compare Lemma 5).

It follows that C(22) has six different isometry classes of systoles. In contrast
to the exaples (a) and (b), this is an example with many isometry classes with
respect to N.
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In view of Proposition 2, we can expect that there exist integers N such that
C(N) has systoles of degree 1,2,3,...,m with

VN -2>m>—-1++vVN —2.
Since dim(T(C(N))) grows with N3, I conjecture

Conjecture There are infinitely many different integers N; such that C(N;) has
more than (dim(T(C (N;))))"/¢ different systoles.

d) I finally calculate the example Cs(2). This is a small surface (genus 1 with 12
cusps) which already has three different isometry classes of systoles, compare
Fig. 3.

P an

R

Fig. 3. The surface C4(N) drawn as a Euclidean torus where opposite sides must be identified. The
vertices of the quadrilaterals are however cusps. The systoles of type o have degree 1, those of type
3 have degree 2 and those of type « have degree 4. We can also see that a bigger degree means a
bigger “distance” from the next cusp of 2" (which here contains six cusps)

I give the possible factorizations |[f(a)| = bc with —5 < a < 0.
f(—=5)]=76=2-38=4-19

If (4| =41
If(=3)|=16=2-8=4-4
f(-=2)| =1
f(-1|=4=2-2

By Proposition 2, Cs(2) has systoles of degree 1 and 2. The surface also has
systoles of degree 4 since, for a = —3,b = —4, ¢ = 4, the equation

cx? — (2a + N)Axy — bAy?

gives
4x? + 20xy +20y?

which is a multiple of 4.
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