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1. Introduction

L1 Let H = H(A,V) = (iV 4+ A(x))*(iV + A(x)) + V(x) be a Schrédinger
operator in R”, with a real bounded potential ¥ and a magnetic potential 4,
such that the spectrum o(H') has gaps (for instance, this is the case for many
uniform 4 and periodic V), let W be a potential decaying at infinity, and
consider eigenvalue branches of families of Schrodinger operators H F AW,
crossing an energy level £ in a gap of o(H).

Problems involving eigenvalues in a spectral gap of a Schrodinger oper-
ator arise e.g. in the investigation of impurity levels in insulators and semi-
conductors (see the bibliography in [DH], [H1], [GHKSV]).

There are a number of papers devoted to the study of counting functions

Ni(LH —EW)= Y dimKer(H — E ¥ uW),

O<p<i

as A — +oo (for 4 = 0 see [DH],[GHKSV], [H1], [H2],[ADH], [B1], [B2], for
A=+0 — [BR], [R]; see also the bibliography in [MR]), but even some cases of
polynomially decreasing W remain to be investigated.

For instance, the asymptotics of N_(A,H —E, W) was studied only if 4 = 0
or V' = 0 ([ADH] and [R] respectively), and the asymptotics of N, (4, H—E, W)
for slowly decreasing W was computed only in the case ¥ = 0 [R].

1.2. In the paper, we suppose that 4 is uniform, i.e. the magnetic tensor

B = [bj]} k=15 bj = 0;Ak — k4, ,
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is constant, ¥ € Loo(IR"), and p( -,H), the integrated density of states for H,
exists:

p(,H) =

vol Ql;r-g+oo vol Or N(ALH(QR) . )

where Qr are expanding cubes, and H(Qz) is the operator of the Dirichlet
problem for H in Qg.
We suppose that a non-negative W € Lo, decays at infinity as |x|™" with
some m > 0:
W) £ C+ k)™, (1.2)

and stabilizes to a positively homogeneous continuous function W :R"0— R
of order —m; ;
(W(tx)—W(ix)" — 0 ast— +oo, (1.3)

uniformly in x € S,_;.

1.3 Main theorems

Theorem 1.1. Let (1.2) and (1.3) hold with m € (0,2), and let a limit (1.1)
exist for all 1.

Then .
]1ir+n Ny(ALH — E,W)A™m = ct(W), (1.4)
where 3
ct(W)= [dx f dp(t,H) . (1.5)

R"  E<t<E+W(x)

Theorem 1.2. Let (1.2) and (1.3) hold with m > 0, and let a limit (1.1) exist
for all A. Then

, lim N_(LH —EW)A™"m =c~ (W), (1.6)
—+00
where ;
(W)= [dx [  dp(t.H). (1.7)
R"  E—W(x)<t<E

Theorem 1.3. Let (1.2) and (1.3) hold.with m = 2. Then
lim No(LH —EW)A"*(n2)"" = cin(W), (1.8)
A——+00

where i
cm(W) = @n) "5 |l [ WE)7dSE) (1.9)
Sn—1

and |v,| is the volume of the unit ball.

Remark 1.1. The integral in (1.5) converges if and only if m € (0,2).

1.4. The plan of the paper is as follows. In Sect. 2 we gather some auxiliary
results, and in Sects. 3—5 we prove Theorems 1.1-1.3, respectively.
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1.5. The author thanks Professor D.E. Edmunds and the University of Sussex
for the warm hospitality during the final stage of the work.

2. Auxiliary results

2.1. We shall need the following definition and lemmas.
Let A be a quadratic form in a Hilbert space $ with the domain D(2[),
and let ¥V C D(A) be a subspace. We assume that 2 is closable, and we set

N (2, V) =sup{dimL |L C V, Afu] < A||ul|§ Y(O+)u € L}.

For A an operator in § and A[u] = (du,u)g, D(A) = D(A), write A (4,4,V)
instead of A(A, U, V).

We also set N((a,b);4) = dim P, 5)(4), where P, ) (A) is a spectral pro-
jection of 4, and we set N(4;4) = N((—oc,1),4).

The following Lemmas are well-known and widely used; for proofs, see
e.g. Appendix in [L] and [RS].

Lemma 2.1. Let A be a semibounded self-adjoint operator with the domain
D(A).
Then N(A;A) = N'(A;4; D(A)).

Lemma 2.2. A (A4;W; V') is independent of V provided V is a core of the
Sform A,

Lemma 2.3. If Au] < W [u] Yu € V, then

N (AUGVY S (LW TV).
Lemma 2.4. If V C V), then

N (LW V) S N (AU V).

Lemma 2.5. Let H; be a Hilbert space, Ws a quadratic form in H,,V; C
D(Uy) a subspace (s =0,1,...,r), let

I GB K =¥ Vb

1Ss<r

be an isomorphism, and
Woll(uy,...,u)] = Zl A [uy]

Then
N (AW Vo) =Y N (AU V).
s=1
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2.2. Weighted Sobolev spaces associated with a magnetic Schradinger
operator

Let A be a uniform magnetic field, and s € Z. Set

1/2
Hy(R") = {u € Ly(R™) | [lulla,s = (HZ; (D +A(X))“ulliz) <00} - (@20

This is a Hilbert space, and C§°(IR") is dense in it (see e.g. [SD.
Lemma 2.6. The following norm defines a topology in Hi(R"):

lull,s = (CH(A, 00w ), + [ullZ)” - (22)
Proof. For the case s = 1, see [S]; the proof in general case is similar. [

Lemma 2.7. For s € Z,, H(4,0)* : CP(R") — Ly(R") is essentially self-
adjoint, and we denote its closure by H(4,0)".

Proof. For the case s = 1, see e.g. [ADH][S]; the proof in general case is
similar. [

2.3. Some bounds for counting functions

Denote by B; an open ball of the ra_dius_ l,_centered at_the origin, and let
Q(R,R]) stand for any of sets QR,BR, QR»BRaBR\BRlaQR\QR], and Q()(R,Rl) —

for any of sets BR,QR,BR\BR,,QR\QRI.
The following lemma (even in a more general form) is well-known — see

e.g. [RSS].

Lemma 2.8. Let N =1, n =1 be integers.
Then there exists C = C,x such that for any >0 and any R/2 > Ry > 1

N (35 (=) C(Q0(R,R1))) < CA™* meas Qo(R, R1) , (2.3)

N (|| 13 v CE(QARRY))) < C(1 + A™?) meas QR Ry) . (2.4)

Lemma 2.9. Let N = 1, n = 1 be integers, let A be a uniform magnetic
potential, and let V € Loo(IR™).

Then there exists C = C,n such that for any A>0,any R/2>R; > 1,
and any xo € R",

N (A HA, V)V C(x0 + Qo(R,R1))) £ C(1 + "™ )meas Q(R,R1) , (2.5)

N | HA VY P Cx0 + QR:R1))) £ C(1+ ™) meas QR,R) -
(2.6)
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Proof. 1t is easy to see that there exist C; = C;(N,V,R), j = 1,2, such that
(=MDNuyu), £ C{HA, VYV uu)y, + Colull},, Yu € CF(Q(R,R1)),
and
gy < CH{HAU V)YV u,u)r, + Collulf,, Yu € CP(RR,R)) .

By applying Lemma 2.3, we see that (2.5) and (2.6) follow from (2.3)
and (2.4), respectively, with the constant depending on xo, R, R;, though.

To reduce the proof in general case to the case of a fixed R and xy = 0,
construct a partition of unity

S 2i=1, supprx Cr-k+(—r'?/ar+r'2/ay 2.7
keZn

ID* x| £ Cor™1®2, Va, (2.8)

with C, independent of » = 1/4. It follows from (2.8) and (2.2) that
(HANY, tradtrsw)| < Crm PUHA VYV uu) + Collullf,) . (2.9)

with Cj, C; independent of N and r. Due to (2.7) and the locality of H(4, V),
(2.9) holds for |, [H(A, VN, xrxlx-k| as well, and we conclude that there
exist Cy, C, such that uniformly in » = 1.

(HA,V)Nuuy 2 (1= Crr= ") S (HA, V)Y g, 2 kt) — Cor™ 2 |ull,
k

(2.10)
Now, (2.10) and Lemmas 2.5 and 2.3 give for r = 2C3:

N (A H(A, V)Y € (xo + Qo(R, R1)))

S Y MGU+AHANY,CEWUL),  (211)
kEI(RRy.r)

where U5, =r -k +(=r'?/4,r +r'2/4)', and
I(R,Ry,r) = {k| U 0 (xo + Qo(R,R)) %0} ;

Cj; is independent of k, of course.
Set Vi(-) = V(rk + -) and notice that H(4, V') is unitarily equivalent to
H(A4,V;). Hence,

N(C3(1+ A H(A, VYV CF(U)) = M (C3(1 + A HA, Vi)Y C(U))

and since Vj is uniformly bounded with respect to k£, we deduce from (2.3)
an estimate

N(C3(1+ A HA VYV CRUR)) S Co(1 + 27N )ymeas U, (2.12)

with C,; independent of k. By substituting (2.12) into (2.11), we obtain (2.5).
(2.6) is proved similarly, (2.4) being used. [
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3. Proof of Theorem 1.1

3.1. Without loss of generality we may assume that H = 1.
Due to (1.2), W is non-negative and relatively compact with respect to
H — E, therefore the Birman—Schwinger principle implies that

Ne(LH —E;W)=NO,A"' s wW'2(H - E)"'w'?). 3.1)

We apply the Glazman lemma 2.1 to (3.1), and then use Lemma 2.5. We fix
§>0 and Co, set R = CoA"/™ and r = §4'/™, and consider

((H = E)", s ltritts ) = (AxH ™" 2u, H= ) (3.2)

where
Ay = H(H — E) '[tpi, H — EXH — E) ' H'?

and y, 4 are the same as in (2.7) and (2.8).
We have

AAr =H'"?(H — E) [, H — EXH — E)™ ", Hyr 4 (H — E)™'
x[H — E, x4 J(H — E)'"H'? .

H is local, and there exists C > 0 such that supp y,x N supp ., = § provided
|k — 1| > C, therefore (2.9) gives

3 i 32, = cr™2, (3.3)

uniformly in /. Using (2.9) and the exponential decay of the kernel of (H—E )~
off the diagonal (see [S]), we obtain

474l < Cor™Pexp(—8|1—k|r),

with some 6 > 0, and hence

.

by |4} Ak, < Corm 2. (.4)

It follows from (3.3), (3.4) and the Cotlar lemma that ) 4 strongly converges
to a bounded 4 with ||4|] £ Cr~'2, hence if C; is sufficiently large and
¢ = C,r~ 172, then (3.2) yields an estimate

(A~ = W'2(H — E)™'W")u,u)
= (A = WV2((H = E) ™+ eH W)Y 2 cuu) + e(W'PH™ W' Pu,u)
k

> ; (A~ = WYA((H — E)" +eH YWYy, i, xritt)
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and Lemmas 2.5 and 2.3 give
Ny(ALH—EW) < S (0,27 —W'A(H —E) ' +eH W', C(US)) -
k

3.5)
Using an equality y,xu = u VYu € C5°(U, ), where

U = {x € UY |dist(x,0U,5) > r~'72/2}
we similarly obtain for

u=(u;)€ ?c;f(ugk) c CP(R")

an estimate

(A= WVAH - EY "W u,u),,

= <(;r‘ - W' (H-E)™" - eH-')W‘/Z)}:xi,‘u,u>
k Iy

—e(W'"PH= "Wy, u),,
S SO = WYH(H - E) — eH YW )y, i, g k)1,
k
=S (A = WA(H - E) — eH "YW Py, uy)y,
k

Using Lemmas 2.4, 2.5 and 2.3 we derive from this estimate
Ny(ALH—EW) 2 S 40,47 = W'(H —E)™" —eH "YWW', CPWU,5)) .
k

(3.6)
Similarly to (3.5) we have

N(0,27" = W'AH(H - E)™" +eH YW, CEUS))
S N0, = W'R(H - E) ™" 4+ e H YW, € ((0U4)))
+ NM(0,A7 = W'2(H —E)' + e H "YW, € (U,4))
— here and below ¢; stands for a function which is o(1) as » — +o0, and
Uni =7k +(0,r)",(3U)}, = {x|dist(x,0U,) < r'?/2},
therefore we can rewrite (3.5) as
N.(LH —EW)

<SS NOA T = WR(H -EY T + e HTYW2,CFAU))))
k

+ N0, = W(H - E) e H YW, CPUn)) - 3.7)
k
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Similarly, for given ¢ — 0 we can find & — 0 such that
N0, — W'A(H —E)™' + eeH YW, CF(Urk))
< H (0,47 = W(H - E)™" + eH YW, C(UL))
+ N(0,47 = W'R(H — E)' + e H YW, CE((0U))))
and we deduce from (3.6) an estimate
N.(LH —E,W)
> —zkj N0, — WA(H — E)™' + et H YW, CFP(0U)} )

+);jm(o,r' — WYV (H —E)""' —egH YW, CP(Urk)) - (3.8)

If Cy > 0 is sufficiently large then
|\WY(H —E)' £ eH "YW <27'/2 on U/, ¢ Bk,

therefore we may assume that £ in (3.7) and (3.8) satisfies U:k C Bg.
Fix g — 0 as 4 — 400, and set Ioo = {k | k| = 1},

Ly = {k ¢ Iy | U,k C Bg, W(x) >£o|x|_"’, Vx € Ur,k} .

I_ ={k¢looNIiy|Unk CBr}.

To treat terms with k € I, set

Wi = sup W (x), wp = inf W(x),
UR/( UR.k

and notice that w_, > 0 for k € I, and due to (1.3),
|Wx) —wE| < vwh, Vx €U,

where v — 0 uniformly in k provided ¢ — 0 sufficiently slowly. It follows
from these observations, (3.7), (3.8) and Lemma 2.3 that for k € I,

N0, = WA(H —E) ' + e H YW, C5°(Urk))

< MO,wE A = (L +e)H — E)™" —e2(H = E)7%,C(Up)) » (39)
and
N(0,A" — W'A(H — E)™" — eH™YW'?,C5°(Ur i)

> M(0,(wg, A = (1 — &) (H — E)™ + ex(H — E)™%, €5°(Ur)) - (3.10)

The RHS of (3.9) and (3.10) can be estimated by means of the following
lemma.
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Lemma 3.1. Let @ — 0 as R —» +oo.
Then there exist C >0 and ¢ — 0 as R — +o00 such that for all 2>0

N(E + 4 — e, H(Qr)) — N(E + Ae, H(Qr)) — CR"™'2(1 + ")

S MO0, 1 = A(H - E)™" + o(H — E)7?),Ly(Qr))

S N(E + A+ e, H(Qr)) — N(E — 4, H(Qg)) + CR"™'2(1 + 272y | (3.11)
and
N(E — Ae,H(Qr)) — N(E — A+ e, H(Qg)) — CR"~"2(1 + a"2)

S N0, 14+ A(H —E)™" — o(H — E)2),L,(Qr))

= N(E + 4, H(Qr)) — N(E — 4 — 2&, H(QR)) + CR"™'2(1 + A"?) . (3.12)

Proof. We prove (3.11); (3.12) can be proved similarly. For v € C§°(Qr), we
have (H — E)v|g, € Ly(Qr), therefore

N(0,1 = M(H ~ E)™" + o(H — E)™2),Ly(Qk))
2 N(0,(H - E)Y — M(H —E)+ w),CF(Qr)) . (3.13)
To obtain a similar estimate from above, we construct a function Xr such that
Irlor =1, suppyr C Orimins  |D*xa| < GRTM2, wa,  (3.14)
and notice that
N0, 1 = M(H - E)™' + o(H — E)?),L(Qk))
= N(0,1 = Agr((H — E)™" + o(H — E) )z, L2(Qk))
S N O = 2((H = E)™" + o(H — E) ), Lo(Qrein)) -

Further, recall that H — E : Hj(IR”) — L(R") is invertible therefore for any
u € Ly(Qgypi2) there exists v € H2(IR") such that u = (H—E)DIQR+R1/2' Hence,

A(0,1 = M(H — E)™" + w(H—E)™2); Ly(Qr))
< N0, A(H — E, \,R), H}(Qp1p12)) ,
where
UH — E LR -1=(H - E)-|l} 0, ) — M(H —E)~'
+o(H —E) ?)yr(H — E)+, xx(H — E) * ) 1,we) »

and H3(Q) is defined similarly to H2(IR").
It follows from (3.14) that

lxr, H — EJH™'?|| < CR™',
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and since
(H — E)yr(H — E)~'yr(H — E) — tr(H — E)r
=[H — E,xg)(H — E)™'yr(H — E) + xxlxz, H — E]
=[H — E, gI(H — E) [y, H — E]+ [H — E, xg)x& + x&lxz, H — E1 ,
we obtain
|A{((H —E)"' + o(H — E)*)xr(H — E)u, r(H — E)u)1,
—A|(—iV + AG))zrul* — AV — E)xrs xrt4)L,|
< v(|(H — Eullz, + A*[lullf,) -
where v — 0 as R — +o00. Hence,
A°(H — E,\,R) = U, (H — E,,R),
where
W(H —EALR)[-]1 = (1=)|(H - E)- |7, = GV — Ax)xz - |,
—M(V = Er - 2w+ Yo — V22| - IIE,
and Lemma 2.3 gives
N(0,1— M(H — E)™' + o(H — E)™*),L2(Qr))
< N0, A(H — E, A, R), H{(Qpsg12)) - (3.15)

Since C8°(QR Lg12) is dense in H2(Qgg12), we may substitute the former for
the latter in (3.15). Next, applying the localization procedure which was used
to derive (3.5), we obtain

-M(09mv(H - E’ 'LR)iH}(QR+R'/2))
< N0, (H — E, A,R), C5°(Qr))
+ ‘/V(O’ ”(H - E) * ”2 - CAZ“ * I.lza CSO(QR+R1/2 \QR_RI/Z)) ’ (3.16)

where v; — 0 as R — 400 and C >0 is large enough (but fixed).
Due to Lemma 2.9

N(O,[[(H = E)- > = C2|| - |2, € (Qpsnn \ Qp—piz))
< Ci(14 AM2)Rn=12 (3.17)
and we deduce from (3.15)—(3.17)
A(0,1 = A(H — E)™' + o(H — E)™*), La(Qr))
< #(0,(1 = v)(H — E)* — MH — E) — v 2*,C(Qr))
+Cy(1 4+ AM2)Rn—172 (3.18)
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Similarly to (3.16) and (3.17) we can find C; > 0 and v; — 0 as R — 400
such that

N0, Ay, HA(Qr)) £ N'(0,(H — EV — MH ~ E + »), C(Qr))
+ (14 AP)RV2
Next, by applying (3.13), we obtain
A(0,1 = M(H = E)™" + o(H — E)™2),Ly(Qr))
> N(0,U_,,, H*(Qr)) — Ca(1 + A2)Rn—112 (3.19)

Let 2r be the domain of H(Qg). Since C°(Or) C 2% C H}(QR), Lemma 2.4,
(3.18) and (3.19) yield an estimate

—Ci(1 + A")R'2 + 40, U_,,(H — E, A, R), Dg)
S N(0,1 - A(H - E)™" + o(H — E)72),Ly(Qr))
< G+ 2R + 40, U, (H — E,A,R),Zz). (3.20)

If 44 £ Ay < --- are the eigenvalues of H(Qg) (counted with their multiplic-
ities) then (3.20) can be rewritten as

=Ci(1+ "R + card{k | (1 + vi) (4 — EY — (4 — E) - A+ v 22 < 0}
S (0,1 - A(H — E)™ + o(H — E)2),L,(0r))
S C+HA")R™2 4 card{k | (1 — v)) (A — EY—(k — E)- A= A2 < 0},
and (3.11) follows. [
3.2. Applying (3.11) to (3.10) and (3.9), we obtain for k € I, ,:
N (0,47 = WA(H - E)™' — eH " YW'2, €L (Ury))
Z N(E + wg (1 — €), H(Ug k) — N(E + eAwp . H(Ur x))
— C(1 + Awg  y'PR12 (3.21)
N (0,27 = W'A(H — E)™\(1 + &1) + e2(H — E)"2)W'2, € (Ur )
S N(E + dwg (1 + &3), H(Ug k) — N(E — e3w 1, H(Ur x))
+C(1 + Awg YR (3.22)

Now, E is in a gap of H and there exists Cs > 0 such that Ilw:f,( < Cj for
|k| > 1. Therefore, for these &,

edwS, —»0 ase—0.
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It is easy to show that the density of states is continuous at £ in a gap, therefore

> IN(E:tG/lw:k;H(Ur,k))—N(E;H(Ur,k))l=0( 2o N(E;H(Ur‘k))),

k€l 1 {<7

as A — oo (and hence, ¢ — 0). Using Lemma 2.9, we see that the RHS is
o(A"'™), with the constant depending on J, of course.
Thus,

T NEE e HU) = 5 NEHU) +o™) . (23)
€Ly €lyy

Applying (3.21) and (3.22) with (OU ):fk instead of U, ; and using Lemma 2.7,
we obtain

S N7 = WYA(H - E)Y e H YW CFQU)] ) = o(2MM) .
k€l
(3.24)
Note that the constants in o-terms depend on J.
Now we have necessary bounds for all terms in (3.7) and (3.8), except for
those with k € Ipo UI__. To treat them we need the following lemma.

3.3

Lemma 3.2. Let @ — +0 as R — +o0, let w>0and 0 £ W(x) < w on Q.
Then

N(0,A7" — W2(H — E)™" + o(H — E) )W, C(0r)) £ CUw)"*R"
(3.25)
with C independent of R = 1, >0, w.

Proof. There exists C; > 0 such that
—(H-E)y'—wH—-E)? 2 -Ci(H(4,0)+ 1)7",
therefore
(0,47 = W'A(H — E)™" + o(H — E) )W, €3 (Qr))
< M(0,47" = O WAHA,0)+ 1) W CF(Qr)) . (3.26)

Let e, : Ly(Qr) — Lo(R") be the extension by zero operator, and define .o/ :
Ly(Or) — L2(Qr) by lgu = (H(A4,0)+1)"'e;ulg,. This is a positive compact
operator, therefore the Glazman lemma, the Birman—Schwinger principle and
Lemma 2.3 give

N (0,271 = WR((H(4,0) + 1) W2, C(Qr)) = N (4 g ', W)
< NGw, 7") = (0,47 W™ — (H(4,0) + 1)7"), €F(Qr)) - (3.27)
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If Aw <1/2 then the RHS of (3.27) is zero, and if |iw| > 1/2 then applying
Lemma 3.1 and Lemma 2.9 we obtain

the RHS of (3.27) £ C(Aw)"?R" .

Now (3.26) gives (3.25). O

3.4. Recall that r = 64", By using an appropriate partition of unity on
Uk, k| £ 1, and (3.25), we can obtain

Iz N2 = WYH(H —E) ' (1 4+¢) + e H YWY, CR(Upi))
k|1

SG [ A+ xD)T™YPdx £ Cyarmsr-m/2) (3.28)

x| <2821m

Due to (1.2) /Iw:fk — 0 as 6 — 0, uniformly in k € /__, hence Lemma 3.2
gives

) > N W (H-E) (1 +e)+eaH YW CR(US)) £ o)A
€l__

(3.29)
where ¢(5) — 0 as 6 — 0.

3.5. By gathering (3.7), (3.8), (3.21)—(3.25), (3.28) and (3.29), we obtain

k; (N(E + A, (1 — &), H(Urx)) — N(E,H(Uyx))) — f1(8)A"™ — £,(5, 1)
€l

SNo(LH—EW) £ 5 (NE+ iw (1 + &), H(Uy k) — N(E,H(Uy)))
k€l

+ £1(O)A™ + £(8,2), (3.30)
where f1(6)—0 as 6—0, and f>(8,A)=0(A"") for 6 > 0 fixed and 1 — +oo.

For 6 > 0 fixed, there exists Cs > 0 such that card I, < CsVA, and since
due to (1.2)

|w:,—k - W(x)l + Iw;k - W(x)| —0 as il— o0,
uniformly in x € U,+ and |k| > 1, we deduce from (3.30)

dx J dp(t,H) = f1(0)A"" — £2(8,2)

U(CoAl/m,02Ym)  E<t<E+A(1—e)W(x)

S NA(LH-EW)

s [ ax dp(t,H) + f1(8)2""™ + f2(8,4), (3.31)
U(CoAl/m,531m)  E <t < E+A(14€)W (x)



622 S.Z. Levendorskil

where ¢ — 0 as A — oo, and U(CoAYm,521mY is a union of U, such that
|k| > 1 and U,,k C BCOAVM.

In the LHS and RHS of (3.31), we make changes of variables x —
(A(1 — €))"/mx and x — (A(1 + £))"/"x respectively, then divide by A"m and
calculate the limit lims_,olim;_, ;o0; the result is

ct(F) < lim Ni(hLH —E; W)L < (W),

and Theorem 1.1 has been proved.

4. Proof of Theorem 1.2
4.1. We need the following lemma.

Lemma 4.1. Let @ — +0 as R — 400, let w>0and 0 < W(x) = w on Or.
Then for each N there exists C such that

H(0: 4~ + WVA(H — E)™" — o(H — E) )W C2(Qr)) £ COw)™ R" .
(4.1)

Proof. Let P, be a spectral projection P(—oo,£)(H ), and set P, =1 — P;. If
® > 0 is small enough, we have

Py(H —E)' — o(H - By *yE 0,
and therefore, for each N there exists Cy >0 such that

(H—E)" —o(H —E)? 2 Pi((H —E)™" —o(H —E)™)
> —Cn(H(4,0) + D .

Hence,

N2+ WYA(H — )™ — o(H — E) )W CF(Qr))

< N (0;47" — CyWVAH(4,0) + )V CF(0r)) 5
and we finish the proof just as the proof of Lemma 3.2. U

4.2. The proof of Theorem 1.2 differs from the one of Theorem 1.1 in the
following respects:

1) functions of the form .47(0; 1 —A(+); +)and N(0;A~1—(+); +) should
be replaced by functions of the form A7(0; 14+A(+); » ) and A°(0; A7 14(+ )5 +),
respectively;

2) instead of (3.11), we use (3.12);

3) instead of (3.25), we use (4.1).

The necessity of using more involved estimate (4.1) is as follows. If m €
(0,2), then we can use (4.1) with N = 1, but for m = 2, (4.1) with N =1
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will not give an analogue of (3.28) while (4.1) with N > m/2 gives

IIE N2+ W(H -E) (1 —¢) - e H YW, €(U,.1))
k=1

=G [ A+ RN dx < Cy(8)A,

x| <2821m

where C3(6) — 0 as 6 — 0.
Similarly we transform the proof of an analogue of (3.29), and Theorem 1.2
has been proved.

5. Proof of Theorem 1.3

Now we use constructions in the proof of Theorem 1.1 with » = Inln and
R = CpA'2. Noticing that R*(Inln 1)¥ = o(4*?In 1) and

J G+ xD2Y? ~ e
|x| £2CoAlm

with some ¢; € R, we see that in all the estimates in the Proof of Theorem 1.1
o(A"™Y's should (and could) be replaced with 0o(A"21nA)’s. Further, in (3.27)
we now have

=G [ QA+ REDTH?dx = 00" Innd) = o(A"? ),

|x|<2Inini

and as a result we obtain instead of (3.30)

> (N(E + Aw_ (1 = &), H(Upx)) — N(E,H(Uypx))) + o(A"*In 2)
kel

S N(ALH-EW)

S X (N(E A+ wf (14 6),H(Up)) — N(E,H(Unz))) + o(A"*n 1) . (5.1)
kElyy

In (5.1), terms with
E+wf(1+e) < (Inln i)

give a contribution
O((Inln A)*"R") = o(A"?1In 1) ; (5.2)

since diamU,,y <4r=4InIn 4 and the magnetic potential is uniform, the others
admit an estimate

N((E + dw, (1 £ &1 ); H(Urx))
S N(E + wE)(1 £e); H(Upni))
S N(E + 2w ) L&) H(Upk)) (5.3)

where ¢, — 0 as 4 — +o0.
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The asymptotics of the LHS and RHS of (5.3) can be computed by means
of the well-known formula

N ( —4; CF(Qr)) — (2m) " |vs| meas Qg - %, (5-4)

as p+R — +oo,p 2 1,R 2 1 (see e.g. review [RSS]); here we also need a
uniform estimate for the remainder in (5.4) and such estimate is provided by a
general theorem of the approximate spectral projection method in [L]- see e.g.
Theorem 7.1 there.

In the definition of I, (after (3.7)), we take g — 0 as R — +00 suffi-
ciently slowly so that uniformly in k € 1,4 and x € U4

W = W+ Wi — W) £ alW(x), (5.5)
and one easily deduces from (5.1)—(5.5)

No(LH — E,W) = 2r)~"|va| 272 [ W (x)"?dx + o(A"*1n 7).
Inln A< |x| <CoAl?

(5.6)

Since W(x) is positively homogeneous of degree —2, we deduce from (5.6)
N.(LH—-EW)
= Q2r)"|oa| A [ W(x)"*dS(x) [ ¥~ Vdr 4+ 0o(A"*1n 2)

Sn—1 Inln A<r<Coil”?

= (2n)_"|v,,|% [ W) dSx)A"* n A+ o(A"*1n 1),

n—1

and (1.8) has been proved.
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