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Introduction

Let 4 be a finite dimensional, connected wild hereditary k-algebra, k& an
algebraically closed field. We denote by A-reg the full subcategory of regu-
lar A-modules in 4-mod. This category is closed under images and extensions,
but, contrary to the tame situation, not closed under kernels and cokernels. A
nonzero regular module £ is called elementary, if there is no nontrivial regular
submodule X, such that E/X is regular, too. Since the Auslander—Reiten trans-
lations 7 and t~ define an equivalence on A-reg, a module E is elementary, if
and only if 'E is elementary, for all integers i.

It follows from the definition that each nonzero regular module X has a
filtration 0 = Xy C X; C --- C X, = X with elementary composition fac-
tors X;/X;_, hence the class & of elementary modules is the smallest class of
regular modules, whose extension-closure is A-reg. By definition the elemen-
tary modules are exactly the quasi-simple regular modules, if the algebra 4 is
tame.

We will show in part 2 that — parallel to the tame situation — there exist
only finitely many Coxeter-orbits of dimension-vectors of elementary modules.
Totally different to the tame case is, that a t-sincere module E is elemen-
tary only if dimg Ext(E,E) = 2 holds (Theorem 3.4) and that there exist
infinitely many algebras whose elementary modules all are stones, that is in-
decomposable modules without self-extensions, see part 4. In this case The-
orem 2.1 then says that there are only finitely many t-orbits of elementary
modules.

Finally we show the occurrence of elementary modules in natural con-
structions: If B is (wild) concealed, if M is a regular B-modules then the
one-point extension B[M] is a tilted algebra only if M is elementary. Simi-
larly, if the quiver 2 is a wild star with vertices {0,...,n} where 0 denotes
the center of the star, if M is an indecomposable k2-module with dim M =
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(2,1,...,1), then k2[M] is a wild canonical algebra if and only if M is
elementary.

Parts of this paper have their origin in the second author’s thesis [11].
Especially Theorem 2.1 and Theorem 3.4 are central results of [11].

Notations

The word algebra always denotes a finite-dimensional, unitary, basic alge-
bra over some algebraically closed field k. The letter 4 normally is reserved
for wild hereditary, connected algebras. We call a module X a brick if
End(X) is isomorphic to k. A brick without self-extensions is called a stone.
The number of pairwise non-isomorphic simple A-modules will be denoted
by n(4).

By Q(A4) we denote the set of regular components of the Auslander—Reiten
quiver I'(4) of A. An indecomposable regular module X is called t-sincere, if
7' X is sincere for all integers i.

If U is a quasi-simple module and » a natural number, we denote by
U(r) ([r]U) the indecomposable regular module with quasi-length » and quasi-
socle (quasi-top) U.

If X is an indecomposable regular module, say X = [m]U for U quasi-
simple, we denote the wing of X (of length m) by #(X).

From the concept of perpendicular categories we use the following
result (see [3], [15] or [14]): If A is a hereditary algebra and X a quasi-
simple regular stone, then the right perpendicular category X+, defined by the
objects {¥ |Hom(X,Y) = Ext'(X,Y) = 0} is an abelian subcategory of 4-mod
which is equivalent to a module category B-mod, and B is wild, connected
and hereditary. Sometimes we write (X,Y)(!(X,Y), respectively) instead of
Hom,(X, Y )(Ext}(X, Y), respectively).

In general we follow the notations used in [12].

1 Basic properties
Definition Let A be a hereditary algebra. A regular A-module E £0 is called
elementary if there is no short exact sequence 0 — U — E — V — 0 with
U and V regular and nonzero.

The proof of the following lemma is straightforward:
Lemma 1.1 Let A be hereditary.

(a) If E is elementary, then so is t"E for all n € Z.
(b) Elementary modules are quasi-simple.
(¢) If A is tame and E is quasi-simple regular, then E is elementary.
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Remarks. 1) If T is a preprojective tilting module with End(7) = B,
then the functor Hom(7, —) induces an equivalence between A4-reg and B-reg.
Hence the results on elementary modules hold for concealed alge-
bras, too.

2) We will show below that all elementary modules are bricks. It is well
known (see [9]) that for a wild hereditary algebra there always exist quasi-
simple modules which are not bricks. So the converse of 1.1(b) is not true if
A is wild.

3) One can construct examples of regular modules M having filtrations with
totally different elementary composition factors.

Before summarising the basic properties of elementary modules, we need the
following.

Lemma 1.2 Let A be wild hereditary

(a) Let X +0 be a regular module. Then there exists a positive integer N
such that for all regular modules R and for all f € Hom(t'X,R) with | = N
the kernel ker f is regular.

(b) Let Y be regular. If Y has no nontrivial regular factor-modules then
so has ©'Y for all 1 = 0.

Proof. a) As the dimensions dim ,t~'P grow exponentially with / for P pro-
jective (see [2]) there exists N € N such that dimyt~'P > dimiX for all
I 2 N and for all projective modules P=0. For / = N and R regular con-
sider 0% f € Hom(t'X,R). We have the short exact sequence 0 — ker f —
t’X — Im f — 0 with Im/ regular and ker / without nonzero preinjective
direct summand. Applying =/ we get 0 — t~'ker f — X — 1 /Imf — 0,
which shows that ker /" is regular.

b) If 'Y has a nontrivial regular factor-module Z then we get a short
exact sequence 0 — U — t'Y — Z — 0. Application of 7~/ gives a
contradiction.

Proposition 1.3 Let A be representation-infinite and hereditary, let E be an
indecomposable regular module. There are equivalent

(1) E is elementary.

(2) There exists an integer N such that t'E has no nontrivial regular
Sfactor-modules for all | = N.

(3) There exists an integer M such that t~'E has no nontrivial regular
submodules for all | = M.

(4) If Y #0 is a regular submodule of E then E/Y is preinjective.

(5) If X+E is a submodule of E with E/X regular, then X is pre-
projective.
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Proof. (2)= (1), (3)= (1), (4) = (1) and (5) = (1) are obvious. (1) = (2)
and dually (1) = (3) follow from 1.2(b).

(1) = (4): Suppose E/Y = Z; ®Z, with Z; +0 regular and Z, preinjective. We
get the following diagram

/)
|

0 > E ElY — 0
|| |

0 - E zT — 0

[N)
o

Se— Ne— R — ~
(_

hence K is regular, a contradiction, (1) = (5) is dual.

Corollary 1.4 (a) If E is elementary then E is a brick.

(b) If E is elementary and Y is regular with dimY = dimE then either
Y is isomorphic to E or Y and E are orthogonal, that is Hom(E,Y) =0 =
Hom(Y, E).

Proof. (a) Follows immediately from 1.3(2).

(b) Suppose E and Y are not orthogonal, say Hom(Y,E)#0. As Y is
regular, we have dim t'Y = dim t’E for all / € Z. 1.3(3) then says that there
is a surjective map g :1~'Y — t7'E, thus g is an isomorphism.

Examples. (1) Let S be indecomposable regular such that dimS or
dim; S is minimal among all non-zero regular modules. Then S is
elementary.

(2) Let A be the path-algebra of a star 2, not of Dynkin-type, where
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Let M be the following indecomposable module:

k — k
v
1, k — — k
M = k?
l\d,
k D I, — k

It is easy to check that the following are equivalent:

(i) The one-point extension 4[M] is a canonical algebra in the sense of
Ringel [12, 3.7].

(ii) oi(k) + aj(k) =k* forall 1 < i%j < r.

(iii) M is elementary.

(3) If 4 is connected, wild and hereditary, say 4 = k2 with n = 3 simples,
then 2 always has a full connected subquiver 2’ with |2)| = n — 1 such that
B = k2' is representation-infinite (this follows e.g. from [5]). As almost all
indecomposable preprojective 4-modules are sincere, see [13,1.2] almost all
preprojective B-modules are regular in 4-mod. Let £ be an indecomposable
preprojective B-module such that £ is regular in 4-mod but all proper prede-
cessors of E in B-mod are preprojective in 4-mod. Then E is elementary in
A-mod. Especially any representation-infinite hereditary algebra with more than
two simple modules has elementary stones.

2 The finiteness condition

For a tame hereditary algebra 4 the set of dimension vectors of elementary
that is quasi-simple modules is finite. Of course this is no longer true, if 4 is
wild, as dim P'E +dim t/E for i+ /. If E is elementary, if @ is the Coxeter-
transformation (corresponding to 7) then we get ®/(dimE) = dimt/E for all
J €Z. For x € Z" we call (®/(x))jcz the Coxeter-orbit of x. The main result
of this part is

Theorem 2.1 If A is hereditary then there exist only finitely many Coxeter-
orbits of dimension-vectors of elementary modules.

Proof. The assertion is trivial, if 4 is not wild, so assume 4 is wild. As each
regular component contains only finitely many non-sincere modules we can
choose an (indecomposable) regular module R such that t="R is sincere for all
n 2 0. If X is elementary by [1, 3.1] and [6, 1.1] there exists E = /X such
that Hom(R,E) = 0 but Hom(t"R,E)=+0. Take 0+ f € Hom(t R,E), let be
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U (K, C, respectively) the image (the kernel, the cokernel) of f. Then we get
the two short exact sequences

(1) 0-K—-1TR—-U—0
2) 0-U—E—-C—0.

Applying the functor Hom(R, —) to (1) and (2), we get --- — Ext'(R,7"R) —
Ext(R,U) — 0 and --- — Hom(R,E) — Hom(R,C) — Ext(R,U) — - - -
From Hom(R,E) = 0 we deduce

dimy Hom(R, C) < dimy Ext(R,U) < dimy Ext(R, T R)=5s.

As E is elementary, C is preinjective by 1.3(4), that is

C=@ 1)~
i€ENp j=1
where /(1),...,I(n) are the indecomposable injective modules and almost all
l;; are zero. The inequality dim; Hom(R,C) < dim, Ext(R,7"R) = s hence
implies
n

> Y1l + dimg Hom(t™'R,I(j)) < 5.

i€Np j=1
As the components of the dimension vectors grow exponentially, there exists
ip with dim Hom(z 'R, 1(j)) = s for all i = iy and for all Jj=1,...,n, that is
l;j=0forall i 2 iy and for all j. As Hom(t™*R,1(j)) %0 for all i = 0 and for
all j only finitely many /; ; satisfy this condition. Thus we get an upper bound
¢ for dim C, only depending on R. Especially we have dimE < dimR +¢. As
there are only finitely many roots smaller or equal to dimR + ¢ the assertion
follows.

Example. 1f A is the path-algebra of the quiver 1.2 « 3 all regular modules E
with dim £ = (1, 1,0) are elementary, as their dimension is minimal. The stone
E' with dimE’ = (1,2,0) is elementary by an argument dual to example 3
in part 1. One can show that 4 has exactly two Coxeter-orbits of elementary
modules, namely (&'(1,1,0))icz and (9(1,2,0));cz, for details see [11].

3 Perpendicular categories and t-sincere elementary modules

If 4 is connected, wild hereditary and X is a quasi-simple regular stone, then the
right perpendicular category X is equivalent to C-mod, where C is connected,
wild hereditary. If 4 has n simple modules, C has n — 1 simples. If M is the
minimal Ext-projective generator in X then X @ M is a tilting module and
H = Homy(M,—) : X+ — C-mod, where C = End,(M), is an equivalence.
We use this notation for the rest of the paper. If X is a quasi-simple stone,
then [2]X is a brick, see [7,1.6] and is contained in X+,
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Proposition 3.1 Let A be wild hereditary, let X be a quasi-simple regular
stone. Then we have

(a) Z = H([2]X) is elementary in C-mod.

(b) tcZ has no nontrivial regular factor-modules.
(c) tZ has no nontrivial regular submodules.

For the proof we need some lemmas:

Lemma 3.2 Let X be a regular stone and U € X~+.

(a) If U is cogenerated by X then U is projective in X+,
(b) If U is generated by X, then U is injective in X .

Proof. (a) As U is finitely generated, there exists a monomorphism 0 — U —
X',

For Z € X+ we apply the functor Ext(—,Z) and get 0 = Ext(X",Z) —
Ext(U,Z) — 0, thus U is projective in X*. Part (b) of 3.2 is dual.

Lemma 3.3 Let X be a quasi-simple regular stone.

(a) If U € X is an indecomposable submodule of [2]X, not projective in
X+, then [21X/U is injective in X~+.

(b) If V € X1 is an indecomposable factor-module of [2]1X say V =
[21X/U, not injective in X, then U is projective in X+

Proof. (a) If 0 — X EA 21X £ X — 0 denotes the Auslander-Reiten

sequence, if ¢ : U — [2]X denotes the inclusion with cokernel « : [2]X — V
we get the following diagram

&

— Co+— o

S g
0 X [21X X 0

Jn

V

0
Note that ¥ € X+, as X1 is an abelian subcategory. As Hom(U,X) =
DExt(X,U) = 0 we have 0+¢eg € Hom(U,X). By [4, 4.1] the map &g then
is injective or surjective, therefore surjective by 3.2 since U is not projective.

Thus we have dim; U > dimy X. If ¥, is an indecomposable direct summand
of V and mj : [2]1X — VW, is the induced map, then fmy : 7X — ¥ is nonzero,
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since Hom(X, ¥;) is zero. Again by [4, 4.1] [y is injective or surjective. The
dimension-argument shows that fm, is surjective and 3.2(b) then says ¥, is
injective in X1,

The proof of (b) is dual to (a).

Proof of 3.1. (a) Follows from (b), (c) is dual to (b), so it suffices to show
(b): Suppose 7¢Z has an indecomposable regular factor-module R in X, Then
we have the short exact sequence 0 — K — 1¢Z — R — 0; applying 7 gives
0 —1cK —Z — 1R — 0. By 3.3(b) 1K then is projective in C-mod. So
7K =0 that is R = 1.Z.

If 4 is a tame hereditary algebra then a quasi-simple regular 4-module E is
t-sincere if and only if it is homogenous that is dim Ext!(E, E ) = 1. In contrast
we get in the wild situation:

Theorem 3.4 Let A be wild hereditary and E a t-sincere elementary module.
Then dimy Ext(E,E) = 2 holds.

Proof. Let us first show that E has self-extensions. If £ is a t-sincere
elementary stone, the right perpendicular category £ is contained in A-reg.
Considering the universal short exact sequence

0-4—-X—>E =0

with / = dimy Ext!(E, 4) we see that Hom(U, E)#0 for each indecomposable
projective module U € E*, that is [2]E is sincere in EL. If U is simple Ext-
projective in £+ like in the proof of 3.3 we can consider the diagram

0

ls
0 —s 18—t P)F —s B —s 0.

E

14

|

0

If h=¢eg: U — E is injective, by [10,2.2] the cokernel coker # is regular,
too, a contradiction to E being elementary. If 4 is surjective and ¥ is a factor-
module of ¥, simple in E+, as in 3.3 we get a short exact sequence

0—-K—1E—>¥—-0

and again by [10,2.2] K is regular in contrast to tE being elementary.
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Hence E is a brick with self-extensions, that is Hom(E, TE ) is non-zero.
Moreover by 1.3(2) we may assume that each /' € Hom(E, tE)\{0} is injective
with cokernel C. Applying the functor Hom(E, —) to the short exact sequence
0—-FE—1E—C—0we get

0 — (E,E) — (E,tE) — (E,C) — '(E,E) — '(E,1E) —» "(E,C) > 0.

Since E is elementary, C is preinjective, thus Ext'(E,C) = 0 holds.

From dim; Ext!(E,E) = 1 we would deduce Hom(E,E) = Hom(E,tE) = k
and Ext'(E,E) = Ext'(E,1E) = k that is Hom(E,C) = 0, contrary to the
assumption E being t-sincere.

4 Elementary modules and exceptional components

If A is wild hereditary, following [8] we call a regular component % € Q(4)
exceptional, if for a quasi-simple module X in % there exists an integer s > 2
with Hom(X, 7°X)#0 but Hom(X, r**'X)=0. It was shown in [8] that in this
case X is not t-sincere and a stone. More precise, by [8] we may assume
that 4 = A'[M] is a one-point extension of some algebra 4’ by a projective
module M =rad P(w) (w the extension vertex). Moreover we may assume that
X €A4’-mod and there is a short exact sequence

0—-X—-1tX > I(w)—0.

Proposition 4.1 Let A be wild hereditary with an exceptional component €
such that for X quasi-simple in € there is s = 2 with Hom(X,1°X)=0,
Hom(X, t**'X') = 0 = Hom(X, t**2X). If E is an elementary module in A-mod
then Hom(t/E,I(w)) = 0 for some je.

Proof. As mentioned above, we may assume the existence of a short exact
sequence

0—-X—-1X—>I(w)—0.

If E’ is elementary there exists i € Z such that for £ = t'E’ we have
Hom(X; tE) = 0, but Hom(X, t?E)+0. Applying Hom(E, —), we get

0 — Hom(E,X) — Hom(E,t°X) — Hom(E,I(w)) — Ext'(E,X)=0.

Let us show that Hom(E, t°X) = 0. Assume there is g € Hom(E, t°X)\{0}
and take any f€Hom(X,7?E)\{0}. Then by 1.3 the composition f o t2g is a
nonzero map from X to t5*2X, a contradiction. Thus Hom(E,/(w)) = 0 holds.

Exceptional components can be constructed in the following way: Let 9 be
an Euclidean quiver with more than two vertices and path-algebra B, let x be
an extending vertex of 2, that is n(x) = 1, when n is the dimension vector of
the quasi-simple homogenous modules. Then each of the inhomogenous tubes
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of B gives rise to an exceptional component of the algebra 4 = B[P(x)] in the
following way:

If 7 C I'(B) is a tube of rank s, if X €7 is the quasi-simple module with
dim X (x) = 1, then we have X, 14X,...,t5"' X € B-mod, Hom(X, 7°X) = k with
short exact sequence 0 — X — 1°X — I(w) — 0 and Hom(X,7**'.X) = 0.
We say that these exceptional components, corresponding to the inhomogenous
tubes of B, are defined by B, see [8, Sect. 4].

If A has an exceptional component defined by a tube of rank s with
Hom(X,7°X)#0 but Hom(X,7**'X) = 0 = Hom(X,7°*2X) then elementary
modules with self-extensions are modulo Auslander—Reiten shift quasi-simple
homogenous in B-mod. With these notations we get

Lemma 4.2 Let B be a tame hereditary algebra and A = B[P(x)] a wild
hereditary algebra with exceptional components defined by B. Suppose there
is a quasi-simple homogenous B-module E which is elementary in A-mod. If
% is an exceptional component in I'(A) defined by a tube I C I'(B) of
rank s, if X is quasi-simple in €, then Hom(X, "/ X)+0 for all j = 0
holds.

Proof. By [7, 4.3] we may assume that the modules X, 7,X = 15X,... ,rj"’X =
157'X form the mouth of the tube 7. Especially we get Hom(tE,7°X) = 0 =
Ext(tE, 7°X).

First we will show that Hom(X, t2*/E) %0 for all j=0. Applying the functor
Hom(zE, —) to the short exact sequence

0—-X —1tX = I(w)—0
we get the long exact sequence
-+ = (1E,7°X) = (1E,I(w)) — '(1E, X) — '(tE, 1°X) — - --

From E =2 1gF and (dimE)(x) = 1 we get Hom(zE,I(w)) = k and therefore
k = Ext(tE,X) = DHom(X, t2E).

As E has self-extensions Hom(t2E,7?*/E)#+0 for all j = 0 holds. If
f:X — 12E is nonzero and g: t2E — t?*E is nonzero, then the compo-
sition fg: X — 12*/E is nonzero since E is elementary, see 1.3.

Next we prove that Hom(t~E,7°X) is nonzero. For this we apply
Hom(z ~E, —) to the above short exact sequence and get

0> (t7EX)—> (1TETX)—> (tTEI(w)) — l(‘l:_E,X) —F i

Now Hom(t ~E,I(w)) =0 holds: Otherwise we would have 1, E =1, E =E,
a contradiction. Moreover we have Ext!(t~E,X) = DHom(X,E) = 0 hence
Hom(z "E,7°X)#0 holds.

Finally, if g € Hom(t ~E,7°X) is nonzero and f € Hom(X,7?*/E) is non-
zero, then the composition f o 73*/g is nonzero in Hom(X,7*3+/X) for all
jz0.
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Let denote by E,, (n=6,7,8) and 5,, (n = 4) the following graphs with
n + 2 vertices

o o——oe—eo
o
E7 0——0—— 00— 0———0—— 0 ——0<e—eo
o
ES 0—0——0——0——0—0——0——O0at—o
o\ 0ce—oeo
D ° B m o 2 o o

Theorem 4.3 Let A be the path-algebra of a quiver of type I:E,, (n=6,7,8)
or D, (n26). Then all elementary modules are stones. Especially there exist
only finitely many t-orbits of elementary modules.

Proof. We may suppose that 4 is a one-point extension of a tame algebra B
with underlying graph E, (n = 6,7,8) or D, (n = 6) where the black vertex
in the above picture is the extension vertex. By [8] table, therefore the algebra
4 has an exceptional component ¥ defined by a tube J of period s such
that Hom(X, t°X)#0, Hom(X,t5*'X') = 0 = Hom(X, t5*2X ). Therefore each
7-orbit of an elementary module contains a n}odule Ee B-mod. Consulting
again [8] table, Lemma 4.2 tells for the cases £;, Eg and D, (n 2 6), that £
has to be a stone. _

For the case Es we need an argument from L. Unger: If £ is a quasi-
simple homogenous B-module, then we have in B-mod the short exact se-
quence 0 — X — E — Y — 0 where X is indecomposable preprojective
with

0
dimX = 1
2
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and Y is indecomposable with

1
dimY = 1 .
0 01 11

As A-modules the modules X and Y become regular and thus E is not
elementary.

5 Tilted algebras

In the simplest case a wild tilted algebra 4 which is not concealed is of the
form 4 = Ag[M] with 4y wild concealed and connected and 4, M regular (or
dually the one-point coextension [N]4y with N regular). Our aim is to find
properties of M in this case.

If M is a B-module for some algebra B and o.: B — B is a k-linear auto-
morphism of B, the map s: B®; M — M, given by s(b ® m) = a(b)m defines
another B-module structure on M, which we denote by ,M. The proof of the
following lemma is straightforward.

Lemma 5.1 Let B be a finite dimensional algebra.

(a) For a B-module M and o.€ Aut(B) the algebra B[M] and B[,M] are
isomorphic.

(b) Let M and M' be B-modules and : BIM] — B[M'] an isomorphism
with B(B) = B. If o € Aut(B) is the restriction of B to B, then M' =, M
holds.

For an algebra C and two sets {ej,...,e,} and {fi,..., fn} of pairwise
orthogonal primitive idempotents of C, there exists an inner automorphism
o€ Aut(C) and some permutation 7€ S(n) with a(f;) = en). Using this fact,
we deduce from (5.1)

Lemma 5.2 Let Ay be a concealed algebra, let M and M’ be reqular Ay-
modules and let B: Ao[M'] — Ao[M] be an isomorphism. Then there exists
an inner automorphism o€ Aut(4o[M]) such that af(4o) = Ao. Consequently
we have M =, M’ for some y€ Aut(A4).

Theorem 5.3 Let Ay be a concealed algebra, let E be a regular Ay-module
such that Ao[E] is a tilted algebra. Then we have

(a) E is elementary
(b) 14,E has no trivial regular factor modules.

Proof. Let Ay[E] be tilted, say of type 4. Then there exists a tilting module T
in A-mod such that End(7") = Ay[E]. As A4o[E] has a preprojective component
containing n — 1 projective modules, where n denotes the number of simple
A-modules, the tilting module T has a decomposition T = X & Ty such that
F(Ty) is preprojective in End(7)-mod with End(7p) = 4o and F(X) is not
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preprojective, with 7 =Hom(7, —). By definition we have Ty € X*. Clearly X
is regular, even quasi-simple regular in 4-mod, see [7, Sect. 2]. Following the
notation of Sect. 3 we denote by M the minimal projective generator of X,
by H the functor H = Hom(M, —): X+ — C-mod, where C = End(M ).

As To € X1, the module H(Tp) is a tilting module in C-mod; moreover
H(Ty) is preprOJectlve and 4, is concealed of type C. From 3.1 we know that
Z = H([2]1X) is elementary in C-mod and moreover tcZ is without nontrivial
regular factor-modules. Hence Z := Hom(H(Ty),Z) is elementary in 4y-mod,
too. As Hom(H(Tp),7cZ) = t4,Z the module 14,2 has only trivial regular
factor-modules.

Applying the functor Hom(7p, —) to the Auslander—Reiten sequence

0> X—->R2IX —-X -0
we see Hom(7p,X') = Hom(Ty,[2]X) as A¢p-module. Thus we have

End(7y) Hom(7y,X) ~ |40 Hom(To, [2]X)
[ 0 End(X) ]_ [0 k ]

1

Ao[E]

.. [End(H(To)) Hom(H(Ty),Z)] [AO Z
_[ 0 k ]‘ 0 k]

From 5.1 we deduce that E 2 yZ for some automorphism y € Aut(4y). Hence
with Z also E has the desired properties.

Corollary 5.4 Let Ay be wild concealed and E elementary such that AolE] is
tilted. Then there exists a positive integer N with Ay[t~'E] is not tilted for
alli > N.

Proof. Choose N such that t~"*'E has nontrivial regular factor-modules for
alli > N.

In contrast to 5.4 we have

Proposition 5.5 Let Ay be wild concealed and E elementary in Ag-mod such
that Ao[E] is tilted of type A. Then A['E] is tilted of type A for all i = 0.

Proof. 1t is enough to show Ag[tE] is tilted provided Ag[E] is. We use the
same notation as in 5.3: We have an A-tilting module 7 = 7Ty @ X with
End(T') = Ao[E], End(Tp) = Ao, the minimal Ext-projective generator in X~
is called M, its ring of endomorphisms is denoted by C and H denotes the
equivalence

H = Hom(M,—): X* — C-mod .

Moreover we know that H(T,) is a preprojective tilting module in C-mod.
If P, denotes the projective C’ = End(X & M )-module Hom(X @& M, P,) one
easily checks that P, ® 1o H(Tp) is tilting module in C’-mod. Note that Z :=
rad P, = H([2]X). As in 5.3 we get

Hom(tg H(Ty)P,) = Hom(t & H(Ty), Z) = Hom(H(Ty ), 1cZ) .
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Thus, as in [12, 4.7(4)] we get

End(ti H(To) ® P,) = [End(TEH(To)) Hom(rEH(To),Pw)]

0 End(P,)
[Ao Hom(H (Ty),tcZ)

0 k ] = Ao[tE],

where the last isomorphism again uses 5.3. If we apply now the functor

G=WMa&P,)®—: C[Z]-mod — A-mod

we see that G(t; H(Tp)®P,) is a tilting module in 4-mod with endomorphism
ring isomorphic to Ag[tE].
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