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1. Introduction

Gibbons [Gi] and Schoen and Yau [SY] showed that if ¥ is a compact ori-
entable stable minimal surface in an orientable 3-manifold M of positive scalar
curvature § > 0 then X must be a sphere. This result played a fundamental
role in the seminal study of Schoen and Yau of the topology of 3-manifolds
of nonnegative scalar curvature. If M is merely assumed to have nonnegative
scalar curvature S = 0 then X can also be a torus, but only under special cir-
cumstances. As was observed in Fisher—Colbie—Schoen [FCS], if X is a stable
minimal torus in an orientable 3-manifold M of nonnegative scalar curvature
then X must be flat and totally geodesic, and the scalar curvature and normal
Ricci curvature of M along X must vanish. To loosely paraphrase: if a torus
2 C M (where M has § = 0) is infinitesimally of least area then M splits
infinitesimally along Z. The problem of establishing a noninfinitesimal version
of this result, which we address in this paper, has remained unresolved. The
aim is to show that if 2 is locally of least area then a neighborhood of X splits
along 2. We are lead to formulate the following conjecture.

Conjecture. Let M> be an orientable 3-manifold of nonnegative scalar cur-
vature. Suppose X is a torus in M which is locally of least area, i.e., which
is of least area among all nearby surfaces isotopic to it. Then M splits in a
neighborhood of X, i.e., there is a neighborhood U of X which is isometric to
(—&,€) X Z and, hence, which is flat.

Our main theorem settles this conjecture in the analytic case.
Theorem A. If M? is analytic, the conjecture is true.

Although our proof requires analyticity, it does provide information in
the C* case. Some of this information is summarized in Theorem B below.
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Let {Z;} be the normal unit speed geodesic variation of Z, i.e., for small t,
2; is the surface obtained by pushing X a signed distance ¢ along its nor-
mal geodesics in the direction of a given unit normal N. Extend N to be the
unit normal field to all of the X,>s. Let B = B,, H = H,, and K = K, de-
note, respectively, the second fundamental form, mean curvature, and Gaussian
curvature of Z,. Let V,S and Ric denote, respectively, the Levi-Civita con-
nection, scalar curvature and Ricci curvature of M.

As follows easily from Egs. (13) and (14) in Sect. 2, to prove the conjecture
it suffices to show that H, = 0 for all ¢ sufficiently small. Hence, in view of
the analyticity assumption, to prove Theorem A it suffices to show that all
t-derivatives of H = H, vanish along z, Z S |,_0 = 0. (In fact this is the only
way in which analyticity is used.) In the course of showing this we will actually
prove the following.

Theorem B. Let M? be an orientable C*® 3-manifold of nonnegative scalar
curvature. With respect to the variation {X,} of X described above, we have
at t =0 (ie., along %)

0"H _0"K _3"S _ d"Ric(N)

o o o o

for all nonnegative integers n.

V8=

In Sect.2 we present the proofs of Theorems A and B, and consider some
global consequences. We also briefly discuss how the conjecture relates to
certain aspects of the theory of black holes (see [G2] for a more detailed
discussion).

Recall, as noted above, the work of Schoen and Yau [SY] applies to
3-manifolds of nonnegative scalar curvature, S > 0. As such, Schoen and Yau
must themselves contend with the torus case. In their work the torus case is
handled by certain global topological assumptions: in their applications, M? is
compact (without boundary) and the torus is incompressible. Thus, they can
make use of the fact that if M3 has nonnegative scalar curvature then either
it is flat or it can be conformally deformed to a manifold of strictly posi-
tive scalar curvature. This technique is not dlrectly applicable to the situation
considered here.

2. Proofs and consequences

We begin by establishing a basic identity which is essential to our proof of
Theorem B. Let N be a smooth vector field on a smooth Riemannian 3-manifold
M3. Let R(N) be the smooth vector field defined by,

Ric(N,Y) = (R(N),Y) forall Y,

where (,) is the metric and Ric is the Ricci tensor. Now suppose N is hyper-
surface orthogonal, i.e., suppose the normal plane field to N is integrable. Then
N determines a foliation of M by smooth surfaces. Let K : M — R denote
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the Gaussian curvature function of this foliation, i.e., for each p € M, K(p)
is the Gaussian curvature at p of the leaf passing through p.

Lemma. Let N be a hypersurface orthogonal unit geodesic vector field on a
smooth Riemannian 3-manifold M>. Then N obeys the following identity,

(1) div[R(N) — (K + Ric(N))N] =0,
where Ric(N) = Ric(N,N).

The lemma is used below to obtain an evolution equation for K = K(x, 1)
(see Eq. (16)), which plays an essential role in our proof of Theorem A.

Proof of the Lemma. The lemma is a consequence of the contracted differential
Bianchi identity,

- o 188

kj ™ 0 oxk’

where R;; are the components of the Ricci tensor and S is the scalar curvature.
From (2) we obtain,

(3) div(R(N)) = (R{N¥),; = R],;N* + R]NY,

1 2
5N(S) + X Ric(e;, Ve N) ,
i=1

where, at a given point p, {e},e;} is an orthonormal basis of the tangent space
of the leaf through p. To interpret the second term on the right hand side of
(3) we choose e; and e; to be principal directions for the leaf through p.
Without loss of generality, we may assume that e; and e, can be smoothly
extended to a neighborhood U of p in M such that at each point g € U, e,
and e, are orthonormal principal directions for the leaf through ¢. To see this,
first note that, by continuity, it is sufficient to establish (1) on a dense subset
of M. The set of nonumbilic points of all the leaves union the interior of the
set of umbilic points is a dense subset of M at each point of which the desired
extension holds. Thus on the neighborhood U of p we have,

(4) ve,-N = K€, i= 1’2 L]

where for each g € U, x,(¢q) and k,(g) are the principal curvatures of the leaf
passing through ¢g. For 1 < i, j < 3, set R;; = Ric(e;, ¢;) and let Kj; denote
the sectional curvature of the plane spanned by e; and e; (where e; = N). Then
by using (4) and, where appropriate, expressing Ricci curvatures in terms of
sectional curvatures we obtain,

2
(5) > Ric(e;, Vo,N) = K1Ry; + k2R,

i=1
' (k1 + K2)(K12 + R33) — k1Kp3 — 12K73 .
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By a straight forward computation, which we carry out below, one has,

(6) Kis = —N(x;) — &;

i

i=12.

Substitution of these equations into (5) gives,

(7) Ric(e;, Ve,N) = (k1 + K2)(Ki2 + K1K2 + R33) + N(x1k2)

2
=1

= (K +Ric(N))div(N) + N(kk3) ,

where to obtain the second equation we have used the Gauss equation. Substi-
tution of (7) into (3) then gives,

div(R(N)) = (K + Ric(N))div(N) + N (18 + k;xz)
= (K + Ric(NV))div(N) + N(K + Ric(N))
= div[(K + Ric(N))N],

which establishes (1) given (6).
To complete the proof of the lemma we compute K3 =(R(e;,N)N,e;). We

have, R(e;,N)N = Ve, VNN — VNVeIN - v[elsN]N
= —Vn(xi1€1) = Ve, —wye N

= (=N(x1) — k?)e; — ki Viver + Ve, N .

By taking the scalar product of the left and right hand sides of the above

equation with e;, and observing that Ve, is perpendicular to both e; and N

(and hence is a multiple of e,), we obtain the desired expression for Kjs.
We proceed to the proof of Theorem B.

Proof of Theorem B. Let ® : (—¢,e) x £ — M be the normal exponential map
of X, &(t,x) = exp,tN, where N is a smooth unit normal field along X. Choose
¢ sufficiently small so that @ is a diffeomorphism onto U = &((—¢,¢) x X).
For each t € (—¢,¢), let X, = &({t} x X), i.e.,, Z, is the surface obtained by
pushing X out along its normal geodesics a signed distance ¢ in the direction
of N. Extend N to be the unit normal field to the X,’s, N = &, (%) Below
we will frequently identify, via @, points in U with points in (—¢,¢) x Z, so
that, for instance, scalar fields f : U — R may be viewed as functions of
te(—ege)and x € X, = f(¢,x).

Let B = B, be the second fundamental form of X,; thus for vectors X,Y €
T,Z:, BX,Y) = (VxkN,Y). Let K = K, and H = H, = tr B, denote the Gaussian
curvature and mean curvature, respectively, of X,.

Let {e),e2} be a smooth orthonormal frame of X. Extend e; and e, to U by
parallelly translating them along the normal geodesics to X. For 1 < i, j < 2,
set A;; = B(e;,e;). One has,

an}“ij i <2

(8) Vv'Blene) = L, 1S,
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A straight forward computation using the Gauss equation shows that the
normal Ricci curvature Ric(N), scalar curvature S, B and K are related by,

1 1 1
ic(N) = =8 — =|B* + =H?*—
) Ric(N) = 58 - 5 |B* + sH? - K ,
where in terms of the components 4;;,
2 2 2
(10) |B]” = Z Aj and H =3 A;.

ij=1 i=1

Thus, in view of (8), (9) and (10), to prove Theorem B it is sufficient to
establish the following claim.

Claim. At t =0 (i.e., along X) we have,
(11) VB =0 (ie, A" =0,1 <ij <2)and S” =K™ =0,
N ij

for all nonnegative integers n (where S™ = Z5_etc.).

The proof of the claim requires several formulas. The mean curvature H =
H(t,x) of the foliation {Z,} obeys the Ricatti equation,

oH
—— = —Ric(N) — |B)?
— = —Ric(N) - |8,
which, taken together with (9), gives,
O0H 1 1 1
12 —=—-8S—_-|BP--H*+K.
(12) ot 2 2| | 2 +

For ¢t € (—¢,¢), let A(t) = area of Z,. The first and second variation for-
mulas imply,

(13) A'(t)= [Hdx,,
Z

and,
A'(t) = — [ (Ric(N) + |B]> — H*)dx, .
Z

Since, by the Gauss—-Bonnet theorem, f z,K dx; = 0, substitution of (9) into
the above equation gives,

(14) A'(@t) = —%Ef (S + |B* — H*)dx, .

The area form dx; on X, is related to the area form dx on X by, dx, = u(t,x)dx,
where u satisfies, 4(0,x) = 1. By choosing ¢ small enough, we may assume

S u(tx) =2, forallte(—¢e)and xe 2.

N | —
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Equation (14) can now be written as,
1

(15) A"(t) = —if(S+|B|2—H2)udx.
z

If X is a vector field on U, let X7 denote the orthogonal projection of X
onto each leaf X,; divX and divy, X7 are related by,

divX =divy, X7 + (X,N)H + (VyX,N) .
Setting X = R(N) in the above equation and simplifying yields,
divs, R(N)T = div(R(N) — Ric(N)N) .
By combining this equation with (1) we obtain,

(16) aa—lf = —KH +divy, RIN)T .

Equations (12), (15) and (16) enable us to control the ¢-derivatives of B, S
and K along Z. During the course of the proof of the claim we make frequent
use of the product rule,

f - g™ =§:0 <Z> fU) k)

The proof of the claim is by induction on n. The case n = 0 is just the result
of Fisher—Colbie-Schoen [FCS] referred to in the introduction. Now assume the
claim is true for 0 < n < m-—-1,

(17) A7(0,x) = §™(0,x) = K™M(0,x) =0, 0<n<m-1,
ij

for all x € X. We first show that S (0,x) = 0 for all x. Note that since the
scalar curvature is nonnegative we must have S (0,x) = 0 for all x.

By differentiating both sides of (12) with respect to ¢ (m — 1)-times and
using (17) it follows that, )

(18) H™0,x)=0, 0<n<m,
and hence by the product rule,
(19) (H>)™(0,x)=0, 0<n<2m+1.

Thus, by Taylor’s theorem, there exists a bounded function f = f(¢,x), |f(t,x)|
< C, say, such that,

_ 8™(0,x)

S — H?
m!

"+ f(t,x)mt
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Hence, from (15),

A"(t) S~ [ (S — HP)udx
2}:

m+1

< — 2 [ SOt x)dx + e [ £t x|t x)dx
2m! 5 2 3

<~ [SM©,x)dx + C - AQ)mH |
4m! 5

If [ S™)(0,x)dx > 0 then there exists & > 0 such that 4”(¢) < 0 for all ¢ €
(0,6). But since 4’(0) = 0 (2 is minimal), this contradicts the assumption that
Z is locally of least area. Hence, [, S™(0,x)dx = 0 and, thus, S“™(0,x) =0
for all x.

From (17) and the product rule we have (|B]>)"(0,x) =0, 0 < n <
2m—1. Applying a similar argument to that given above, one obtains ((B|2)(2’"
(0,x) = 0, where one now uses the full strength of (19). In terms of compo-
nents, |B|> — H? = 2(43, — A11422). Thus, along X we have,

(A} — And)® =0,
which, by the product rule and (17), implies,
(2('"))2 l(]']")ig’;) =0

Using H™ = AP 4+ %) = 0 along X in the above equation we conclude
AM(0,x) = ""’(0 x) = ,1("‘)(0 x) =0 for all x, i.e., VY"B =0 along Z.
It remains to show that K (0,x) = 0. In view of (16) and (18) it is
sufficient to show that

(20) (divy, RIN)TY™=D =0

along X. To this end, we introduce Gaussian normal coordinates x° = #,x!, x?
on U = (—¢,¢) x Z. In these coordinates, gog = (3—‘25,6—6) =1 and go; =
(s 25) =0,15j 2. Set gy = (Z,25) and b; = B(&, &), 156,/ <2
observe that b;; = ;a—g;i The transformation law for tensors and the product rule
imply that i,(.j'f)=0, 0 <n<m-1if and only 1fb(") 0,0<n<<m-1.
Hence, from (17),

(21) bP(0,x)=0, 0<n<m—1.

Using a standard coordinate expression for the divergence we have,

. 1 0 "
(22) divy, RIN)" = %5;(\/579'/130;') ,
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where g = det(gy), (¢”) is the inverse of (g;), Ry; = Ric(zk,25), and
repeated indices run from 1 to 2 only. A straight forward computation yields,

_ % o}

o R =5k ~

+ bl — b,

where b} = b;;g"* and the I'}’s are the Christoffel symbols. Equation (20) now
follows from (21), (22), (23) and the product rule. This completes the proof
of the claim and Theorem B.

Proof of Theorem A. Let the notation be as in the proof of Theorem B.
The analyticity assumption and Theorem B imply that the mean curvature func-
tion vanishes identically on U, H = 0. Hence, by (13), we have 4”(¢t) = 0
for all t € (—¢,¢). Equation (14) then implies that B = 0 on U. Thus, N is
parallel and @ is an isometry.

By fairly routine continuation arguments one obtains the following global
version of Theorem A.

Theorem C. Let M be a connected orientable analytic 3-manifold of nonneg-
ative scalar curvature, and suppose M contains a torus X which is locally of
least area. Then M is flat. If M is geodesically complete then M is isometric
to, or double covered by, either a flat 3-torus or R x X. If M is compact
with mean convex boundary then M is isometric to, or double covered by,
[0,£] x Z.

Naturally, one would like to resolve whether or not the analyticity assump-
tion in Theorem A is needed. Theorem A bears some relationship to a splitting
result of Anderson and Rodriguez ([AR], Theorem 1) for 3-manifolds which
contain complete noncompact least area surfaces. Their result does not require
analyticity, but assumes nonnegative Ricci curvature. Unfortunately, their geo-
metric method does not appear to carry over to the situation considered here.
Still, we feel rather strongly that the analyticity assumption in Theorem A is
unnecessary. Moreover, we feel it may be possible to resolve the C>° case
within the framework of this paper. Another possible approach to the con-
jecture is to consider more general variations. For example, one can consider
variations {Z,} obtained by pushing X along its normal geodesics at unit speed
in some conformally related metric. The conjecture would follow easily if one
could establish the existence in a neighborhood of X of a conformal change
of metric such that, in this new metric, the tori at constant distance from X
are flat. What makes this problem difficult is that the conformal deformation
affects not just the curvature of the tori, but also their position; deforming to
zero curvature a fixed family of tori is simple.

A fundamental result in the theory of black holes due to Hawking (cf. [HE])
asserts that, for stationary black hole spacetimes which obey the dominant
energy condition, black hole boundaries are topologically spherical. The proof
of Hawking’s theorem and the theorem of Gibbons [Gi] and Schoen and Yau
[SY] discussed in the introduction are similar in several respects. A black hole
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boundary need not minimize area, but satisfies some other related criterion.
In Hawking’s proof the torus also arises as a borderline case. The argument
given in [HE] to eliminate the torus case is not so clear. (For instance, one
encounters a certain rescaling problem, related to the conformal deformation
problem mentioned in the previous paragraph, which is not addressed.) It would
be of interest to establish a rigidity result for toroidal black holes akin to
Theorem A. These matters are discussed in greater detail in [G2].

Theorem A can be used to improve certain results concerning the topo-
logy of “bodies”, i.e., compact 3-manifolds with boundary. In [G1] the second
author obtained a result concerning the notion of topological censorship.
Roughly speaking it was shown that, in the steady state limit, the topology
of space outside the event horizon of a black hole must be trivial, i.e., even-
tually, nontrivial topology becomes hidden behind the event horizon. In this
work it is assumed that the black hole is surrounded by an external mean
convex sphere, or, more generally, an external mean convex boundary having
an S? component. Theorem A can be used in the analytic case to remove the
assumption in the main theorem of [G1] that the external boundary has an S2
component.
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