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Note. This is a revised and expanded version of an earlier (and much shorter)
preprint with the same title. The main theorems and their proofs are unchanged,
but much exposition has been added.

Suppose that F is a number field, with ring of integers (¥z. Let / denote
an odd prime and let R = Of[1//]. In [3], the author and W. Dwyer gave
an explicit conjectural computation of the mod / cohomology of the inifinite
general linear group GLR. Here is the quickest and simplest statement of the
conjecture (all homology and cohomology groups have Z]l coefficients): let
U denote the infinite unitary group. Let J* denote the mod / cohomology of
the homotopy-fibre of the /“-th power map SU — SU. Thus as an algebra,
J; is the tensor product of a certain polynomial algebra P; and a companion
exterior algebra E;. An explicit description is given in Sect. 1; here we just
remark that the Hopf algebra P, dual to P} is H,BU/(I°-th powers). Let 2
denote the algebra of Steenrod /-th power operations.

Conjecture A Suppose F contains the /-th roots of unity ;. Then as 2-Hopf
algebras

H*(GLR;Z/1) = (H*BUY @ (H'UY™™ @J; ® --- @ J}.

where r, = %[F : @], s is the number of primes dividing / in O, and the
I-torsion subgroup of PicR is Z/I* ® --- @ Z/I°.

The assumption on /-th roots of unity is made only to simplify the
statement. In the general case the conjecture is formulated by setting Fy =
F(u), Ro = Opy(1/1). Then H*GLR = (H*GLR,)*F, where the fixed points
of Ar = G(F(w)/F) are taken in an abelian category of bicommutative Hopf
algebras. A recipe for carrying out this fixed-point construction can be found
in Sect. 1.

* Supported by a grant from the National Science Foundation.
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There is another way of stating the conjecture that is slightly more compli-
cated, but more englightening. In order to avoid technical distractions, explicit
description of the Ag-action is postponed to Sect. 1. Let u(Ro) denote the
I-torsion subgroup of Ry .

Conjecture A’ H*GLR=A®B® C ® D as #-Hopf algebras, where

1. The structure of A depends only on u(Rg) as 4r-module (or on the orders
of Ar and u(Ry)). In fact 4 = H*GLF for a suitable choice of residue
field FF of R, where H*GLIF = (H*BU QH*U)4F.

2. The structure of B depends only on the units Ry mod torsion as 4r-module.
In fact B = (H*U )2 ®(H*U/O)", where r; is one-half the number of non-
real embeddings of F, r; is the number of real embeddings, and O is the
infinite orthogonal group. In particular B is an exterior algebra.

3. The structure of C depends only on the /-torsion subgroup of PicRo as
Arp-module. In fact C = (Jg, YIF®--- @y, )27, where s is the cardinality
of Sy, the a; are as above the Ar-action on the individual factors arises
from choosing a basis of Ap-eigenvectors for Pic Ro/l.

4. The structure of D depends only the set So of primes dividing I in Op,
as Ap-set. In fact D is a tensor product of (so — 1) #-Hopf algebras of
the form (H*BU ® H*U )4F  where so = |So| and the Ag-action on the
individual factors arises by choosing a basis of Ar-eigenvectors for the
reduced permutation module ZSy = Ker(Z/1[So] — Z/1).

Let TBrR denote the Tate module of the Brauer group of R:
TBrR = Hom(Z/I*°,BrR) .

Then TBrRy = ZIS‘O as Ap-module, so D can also be regarded as corresponding
to the Brauer group.

The factor 4 in Conjecture A’ is in fact a retract of H*GLR, because
BGLIF* is a homotopy retract of BGLR™, after localization at I [5]. However
the reader is cautioned that the decomposition of Conjecture A’ will not, in
general, reflect a product decomposition of BGLR*.

The equivalent conjectures A and A’ would follow immediately from one
formulation of the Lichtenbaum—Quillen conjectures. Namely, the Lichtenbaum—
Quillen conjectures assert that there is a homotopy equivalence

(BGLR*Y" = Yg

for a certain space Yz. This space is equivalent to the étale K-theory space of
Dwyer and Friedlander [1], but we will define it as the basepoint component
of the zero-th space of a certain Bousfield localization of the spectrum KR
(Sect. 3). These two descriptions are equivalent by a theorem of Thomason
[14]. The cohomology of Yz is computed in [3], where it is shown to have
exactly the form stated in the above conjectures.
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The Lichtenbaum—Quillen conjectures themselves still appear to be inac-
cessible. However it would be very interesting to even prove that the induced
map H*Yp — H*BGLR is injective. The present paper is a first step in that
direction, focusing on the polynomial part of H*Y;. Write P*(4r,KoRy) for
the polynomial part of the algebras 4 and C in Conjecture A’ (this notation is
explained in Sect. 1). Thus P*(4r,KoRy) = ((H*BU)* ® P ®---®P; )AF
for a certain A action.

We prove:

Theorem 1.6 There is a retraction as ?-Hopf algebras
¢* : H*GLR — P*(4r,KoRo) .

Combining this with results of Quillen [12] leads to an interesting corol-
lary. Call an element of H*GL nil if its restriction to every GL, is nilpotent
(n < 00).

Theorem 2.1 ¢* induces an isomorphism
H*GLR/(nil elements) = P*(Ar,KoR) .

Of course there may exist elements which are nil but not nilpotent. Indeed
the results of [3] predict very precisely the extent to which this occurs. For
example, assuming the Lichtenbaum—Quillen conjectures, every nil element is
nilpotent if and only if there is a unique prime dividing / in Of,. This phe-
nomenon is discussed further in Sect. 5.

Here is a brief sketch of the proofs of these theorems. For simplicity we
assume y; C R. Most of the time we work in homology rather than coho-
mology. Consider the Hopf algebra summand P(KoR) (dual to P*(I?OR)) in
H,Yr. We show that it is generated by certain maps f, : Bu(R) — Y, where
« ranges over a generating set of KoR. Here “generated by” means generated
as an algebra by the images of the even-dimensional generators of H,Bu. On
the other hand it will follow immediately from the construction that each fa
lifts to BGLR™, and this leads to the desired homology retraction.

In fact our map P(KoR) — H,BGLR is easy to construct directly, and we
do so in Sect. 1. The dual map H*GLR — P*(KoR)) is the map that enters
into Theorem 1.6. This map can be interpreted as a sort of restriction (modulo
nilpotent elements) to all possible maximal /-tori in GL,R, n = 1. Now Quillen
showed that if a class in H*GL,R restricts to zero on every maximal /-torus,
then it is nilpotent. From this one easily concludes that the kernel of ¢* is
precisely the ideal of nil elements. An interesting point here is that although
GL,R typically has many conjugacy classes of maximal /-tori, in effect a single
such /-torus suffices to detect non-nil stable cohomology classes. However it is
not at all apparent, a priori, that ¢* is surjective. This is where Theorem 1.6
comes in.

The paper is organized as follows. In Sect. 1 we introduce some general
facts about Hopf algebras, describe the algebras P, explicitly, and state the
main result Theorem 1.6. Section 2 shows how to combine Theorem 1.6 with
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Quillen’s work to get Theorem 2.1. We also show how Quillen’s unstable
classes in H*GL,R ([12], Sect. 14) are constructed from this point of view.
The rather long Sect. 3 is partly expository. Its aim is to make the technical
intricacies of [3] more accessible; some of these technical details are needed
for the proof of Theorem 1.6. The proof of Theorem 1.6 then appears in Sect.4.
In Sect. 5 we indulge in some speculative remarks concerning the remaining
non-nilpotent Hopf summand in Conjecture A/, and its relation to the Brauer

group.

Notation. An odd prime [ is fixed throughout, and all homology and coho-
mology groups have Z/I-coefficients. </ denotes the mod!/ Steenrod algebra,
and 2 is the subalgebra generated by the /-th power operations; thus 2 =
of | o B, where P is the Bockstein. Spectra and spaces are implicitly localized
at /. Notations such as PicR,(BGLR")", A always indicate /-adic completion
of the group, space or spectrum, as the case may be. The following notation
is also fixed throughout the paper:

Roots of unity. um denotes the group of /"-th roots of unityin C, 1 £ n £ oo.
We also write p(4) for the group of I-power roots of unity in a given integral
domain A: if A = R, we abbreviate this further by setting u = u(Ro). Let
I’ = Aut oo, 4 = Aut p, I' = Ker(I" — 4). Thus T’ " is canonically
isomorphic to Z;*, and there is a uniquely split extension

r—-r —4.

Composing the unique splitting map in this sequence with the canonical iso-
morphism I” = Z) yields the “Teichmuller character” @ : 4 — Z;. The
pro-group ring Z;[[I']] is denoted by A. A choice of topological generator y of
I defines an isomorphism A = Zj[[T]], where Z;[[T]] is a power series ring
and y — 1+ T. Similarly A’ = Z[[I"]]; note A" = A[4].

Topological K-theory. A is the periodic complex K-theory spectrum. The
natural map {k € Z : (k,1) = 1} — [, 4] sending k to the Adams operation
Wk extends to a (continuous) injection I — [.)ff ,A’]. The latter map in turn
induces an isomorphism A’ = [, H ).

The cyclotomic tower. We assume F is a subfield of C. Set Fo = F(1), Foo =
F(ue), Ro = Opy[1/1], etc. Let 4r = G(Fo/F) and let dr denote the order
to Ar. Note Ap C A. Let ap = max{a : p= C Fy'}. Let I'p (resp. I'y) denote
G(Foo/Fo) (resp. G(Foo/F), so that I'eCTl, I't CI', I't = T'rdF, etc. Write
A for the pro-group ring Z[[I'r]], so Ar C A. Similarly Al C A'. Note that
if we choose an isomorphism A = Z;[[T]] as above, Ar corresponds to the
subring Z/[[Tr]] with Tr = (1 +T )’aF — 1. S (resp. Sp) is the set of primes
over [ in Of (resp. Op,), and s (resp. so is the cardinality of S (resp. So).
r, (resp. r2,0) denotes 1/2 the number of nonreal embeddings of F (resp. Fo),
and 7, is the number of real embeddings of F.
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1 Hopf algebras, class groups and H,BGLR*
In this section we define P(4 F,KORO) and define a map

¢ : P(4r,KoRy) — H,BGLR*

whose dual is the map discussed in the introduction. At the end of the section
we state our main result, Theorem 1.6, but postpone the proof to Sect.4. Related
discussion of some of this material can be found in [10].

Let # denote the category of connected graded bicommutative Hopf
algebras of finite type over Z/I. This category is an abelian category [13],
with coproducts given by tensor products of Hopf algebras. In fact the groups
Hom,s(4,B) are profinite abelian /-groups and in particular are modules over
Z;. We will need several refinements of #:

(i) If G is a profinite group, #G is the category of G-modules in #.
Thus an object of #'G is an object 4 of # together with a continuous homo-
morphism G — Aut,4. A morphism is just a morphism in # that commutes
with the G-action.

(i) #'2 is the category of unstable #-Hopf algebras A, 4 € #. There is
also a dual category ##* in which Steenrod operations go down instead of
up. #'.o/ and H o/* are defined similarly.

(iii) #PG is the category of unstable 2[G]-Hopf algebras A, 4 € #.
Thus an object of #2G has both a G-action as in (i) and a P-action as

in (ii), and these actions commute. #2*G, # 4G and #.4*G ae defined
similarly.

All of these categories are again abelian, with kernels and cokernels being
computed in #. Now recall that # splits as a product of smaller subcategories:

Remark 1.1 Every A € # splits uniquely as 4 = A* ® A~ where A* is con-
centrated in even degrees and A~ is an exterior algebra on primitive generators
of odd degree. In fact this yields a splitting of categories # = #tT x H .

Remark 1.2 Every A € #* splits uniquely as
1-2
A= Q A[i]
i=0

where A[#] has both primitives and indecomposables concentrated in degrees 2n
with n =i mod / — 1. Again this yields a splitting of categories #'* = IT#7i].

It is not hard to show that if A is an object in #2G, both of these
splittings are automatically splittings in #2G.

We next discuss some fundamental examples. The most basic example of
all is § = H,BU, regarded as an object in #2*I" in the usual way: the H#P*
structure arises from the H-space structure on BU, and the I’-action arise from
the canonical identification of I’ with the /-adic Adams opertions. In purely
algebraic terms, S is the symmetric algebra on the P-coalgebra B with basis
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{bn : |bw| = 2n, n 2 1}, coproduct 4b, = Zi-{—j:n b; ® bj, and Steenrod
operations given by a classical formula which we need not recall here. The I'-
action is trivial, but 4 acts on S[i] as «'. (For one way to see this last fact,
compare [10], 3.3-3.7 and the remarks following.)

Now let P, denote the cokernel (in #) of I* - 1. It is easy to see that P,
is just S modulo the ideal generated by /“-th powers. The dual Hopf algebra
P is a polynomial algebra on generators yy, i of dimension 2n/*, where n is
prime to / and 0 £ k < a. Note P, is an object in H#P*A.

If N is a finitely-generated Z;-module with rank s and exponents LI (L
we define an object Q(N) in #'P*4 by

ON)=®'S®P, ®---®F, .

Now suppose 4’ is a subgroup of 4, of order d, and N is a Z;A’-module.
We will associate to N an object P(N) in #2?*A’. Although the construction
is quite elementary, the A’-action gets a bit confusing so we illustrate it in
Example 1.3 and Example 1.7. A key point to bear in mind here is that the
A'-action we define is actually a blend of two distinct actions: an “external”
action via Adams operations, which is inherited from the A-action on Q(N)
and has nothing to do with the 4’-action on N, and an “internal” or “Galois”
action induced directly from the action on N. We also need the notion of “Tate
twisting”. If 4 is any object in #A’ the i-th Tate twist A(i) has the same
underlying Hopf algebra but with the twisted action ¢ - x = w'(g)o(x) for
ce A, x€A Here w: A — Z is the Teichmuller character (for further
discussion, see the remarks on Tate twisting at the beginning of Sect. 3).

Let N = @,tol N;, denote the A’-eigenspace decomposition. Then

d—1
P(N) = @)Q(Ni)(i)-

We write P(4',N) for the A’-fixed points (in 5#°) of this action. To compute
these fixed points explicitly, we have the formula

QNN = ® OW)I-J]

j=imodd
where 0 < j < 1-2.

Example 1.3 Let A4’ C A be the unique subgroup of order 2, and let N = Z;
with the trivial A’-action. Then P(N) is just S with the A’-action it inherits
from A. Hence
P(4',N)= @ S[i] = H.BO .
ieven

On the other hand if N is Z; with the non-trivial 4’-action, P(N) = S(1).
That is, 4’ is now acting trivially on the factors S[i] with i odd, and acting as
the canonical anti-automorphism on S[i] for i even. So in this case,

P(4',N)= @ S[i] = H.QBO .
i odd
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We now proceed to the definition of the map
¢ : P(4r,KoRo) — H,BGLR" .

The definition will be facilitated by some general remarks. We begin by
recalling that, for any commutative ring, BGLR' is a KoR-module in the
homotopy category of spaces. Here we say that an object X of a category
% is a module over a ring @ if Homg(—,X ) takes values in @-modules.
To define such a module structure, we need only exhibit a homomorphism
KoR — [BGLR",BGLR*]. So suppose given a finitely generated projective
module P. Choose a projective 0 and an isomorphism P & O = R™. Choose
also a bijection N x {1,...,m} = N and use it to define an isomorphism
R @ R™ = R*. Then let p(P) : BGLR" — BGLR* denote the map induced
by the group homomorphism

GLR — Aut(R* ® P) C Aut(R® ® (P & Q)) = GLR

where the first map is tensor product with the identity of P. Note that this
homomorphism is a union of homomorphisms of the form GL,R — GL,,,R.

It is easy to see that, up to weak homotopy, p(P) is independent of the
choices made. Using the techniques of [15 and 8], it is not hard to show that
p(P) is even well-defined up to actual homotopy. However we omit the proof
in view of the more sophisticated approach embodied in Remark 1.8 below.
Similar remarks apply to the next proposition.

Proposition 1.4 (a) p(P & Q) = p(P) + p(Q); (b) p(P ® Q) = p(P) o p(Q)
(where o denotes composition); (c¢) p(P) is an H -map.

It follows that p extends to a ring homomorphism KoR — [BGLR", BGLR™],
also denoted p, with the property that p(«) is an H -map for each a € KyR.
Thus for any space X, [X,BGLR"] is a KoR-module. We let o % f denote the
product of an element « of KoR with map f : X — BGLR*.

Since each p(«) is an H-map, by applying homology we obtain a KoR-
module structure on H,BGLR™ in the category . Thus we have a ring homo-
morphism

p : KoR — End »H,BGLR" .

In particular Hom 4 »(S(B), H,BGLR{) is a module over KyRy. We again write
ax f for the product of « € KoRy and f € Homya(S(B), H,BGLR{). Note
that there is a canonical element j € Hom x»(S(B), H,BGLR{), induced by

the canonical map Bu 4, BGLR] . The next proposition is immediate from the
definitions.

Proposition 1.5 (a) The map j factors through KRy. In particular, if o has
order prime to | then ax f is the zero element (in ) of

Hom »(S(B), H.BGLRY ) .
(b) If I°a =0, then o« j factors through P,.
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() If 6 € A, g0 (axj) = (60)* (50 ).
(d) If a lies in the reduced K-theory KoRo, and m : BGLR{ — BGLIF{ is
the reduction map, then m.(a*j) = 0.

Now fix a minimal generating set o, ...,%, for the Z;-module KoRo. We
can assume that oo = 1 and that for i > 0 o; has finite order /. We also
can and do assume that each a; is an eigenvector for the Ar-action — say
oo; = wi(a)x; for 0 € Ap. Then the maps * j combine to induce a map in
HPAr i

¢o : P(KoRo) = S(B) ® Pa, (k1) ® - - - ® Pay,(km) — H.BGLRg

where we have made use of Propositions 1.5a,b, and the Ap-equivariance of
¢o follows from Proposition 1.5c. Taking fixed points in J then yields

¢ : P(4r,KoRo) — H.BGLR" .

The map ¢ depends on the choice of generators a;, but not in any significant
way. In fact it is clear that if ¢’ corresponds to some other choice, ¢ and ¢’
differ by an automorphism of P(4r,KoRo) (compare the proof of Lemma 2.3
below). In particular, ¢ and ¢’ have the same image.

Here is the main theorem:

Theorem 1.6 ¢ : P(4r,KoRy) — H.BGLR' is a split monomorphism of
P-Hopf algebras.

Example 1.7 Take F = Q and / = 691. The choice of [ here is deliberate; 691
is the first non-trivial numerator in the sequence B,/n, where B, is the n-th
Bernouilli number ([16], p. 347). It is known that

Pic Ry = Z/691 & Z/691

with 4 = A acting by w~!! on the first summand and as »™'** on the second.
(The numbers —11, —199 are derived from the table on p.350 of [16]; the rest
of our assertion can be deduced from various standard results in [16].) Hence
P*(BicRo) = P} ® P} and P*(4r,PicRy) = P{[11] ® P{[199]. Explicitly,
P*(Ap,f’ic Ro) is a polynomial algebra on generators X, Vn with |x,| = 2m,
|ya| = 27, m = 11 mod 691 and n = 199 mod691. The factor (S*)4F is just
S$*[0], a polynomial algebra on generators z, of dimension 2n(/ — 1). Hence
Theorem 1.6 asserts that there is a retraction of #-Hopf algebras

H*GLZ[1/691] — S*[0] ® P{[11] ® P[199] .

Remark 1.8 There is another way to describe the KoR-module structure on
BGLR™*, that will be used in Sect. 4. If X is a ring spectrum, then Q°X is a
ring space. The multiplication Q§°X A QF°X — Q5°X is simply the adjoint of

IRQRX AIPQCX > XAX = X .

In particular Q5°X is a meX-module. According to [9], p. 302, in the case
X = KR this ring space structure agrees with the one defined in [8]. In parti-
cular the KoR-module structures agree.
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We will not consider exterior algebras in this paper; in effect we work
entirely in the category #*. However for the reader’s convenience we will
define the exterior algebras E, occurring in the conjectures of the introduction.
As an object of #2*, E, is the exterior algebra generated by primitives Onk
of degree 2nl* + 1, where (n,/) =1and 0 £ k < a. The action of 2 is
obtained by identifying E, with a sub-Hopf algebra of H,U. Note that any
object E of #~2* admits a unique splitting as in Remark 1.2, again denoted
by E = ®,’:§ E[i]. Here E[i] has primitives concentrated in degrees 2n — 1
with n = imod / — 1. Now suppose given a finitely-generated Z;-module N as
before, with rank s and exponent /91,. .., /% Then

E(N)=(HUY ®FE, ®-- ®E,, .
If N is a A’-module, with eigenspace decomposition N = @ N;, then

E4,N)= @ EN)-/]

Jj=imodd

where 0 < j < I — 2. For example if A’ has order 2 and N is Z; with the
trivial A’-action,
E(4',N)= @ H.U[i] = H.O

ieven

whereas if N has the non-trivial action

E(4',N)= @ H,U[i] = H.U/O .
i odd

Finally J, = P, ® E, and J(4¢,N) = P(4r,N) ® E(4F,N).

2 The cohomology of GLR modulo nil elements

An element o € H*GLR is nil if the restriction of o to H *GLyR is nilpotent
for all finite n. The nil elements form an ideal 4. It will follow from the
proof below that 4" is in fact a Hopf ideal.

Theorem 2.1 The map ¢* of Theorem 1.6 induces an isomorphism of 2?-Hopf
algebras

H*GLR/ N = P*(4r,KoRy) .

Proof. We may assume that y; C R, since the general case follows by taking
Ap-fixed points in .

Call an n-tuple (Py,...,P,) of rank one projective submodules of R" a
complete flag if ® P; = R". Two such flags S,S’ are equivalent if for some
(possibly different) ordering (Piy,...,P;,) of S and (P{l »--»P; ) of 8, we have
Py = P{j as R-modules for all j. Let Gs denote the isotropy group of S in
GL,R. Then Gs = (R*)", so Gs contains a unique /-torus T of rank n. The
next lemma is essentially proved in [12], Sect. 14.
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Lemma 2.2 The assignment S — Ts defines a bijection

(flags in R", up to ordering) < (maximal I-tori in GL,R)
and induces a bijection

(equivalence classes of flags) < (conjugacy classes of maximal I-tori) .

A torus T of rank k in GL,R determines a map ® C H.T — H.GLR.
Let Wy denote the image of this map. Let ¥ denote the linear sum of all the
vector spaces Wr.

Lemma 23 Im¢ = W.

Proof. For each a € KoR, let V, denote the image of axj:S(B) — H.BGLR".
Let V = 3, Va where the sum is over all « € KoR, and is taken in the
category #. We will show first that V' = Im ¢.

To show that ¥ C Im ¢, it is enough to show each ¥, C Im ¢. Moreover
we need only check this condition on a generating set for KoR. Hence we can
assume that either o = &; (0 £ i £ m), in which case ¥, C Im ¢ by definition,
or else « has order prime to /, in which case V, is zero (in ) by part (a)
of Proposition 1.5. Thus ¥ C Im ¢, and since the reverse inclusion is true by
definition this proves ¥ =Im @.

Now we show ¥ = W. Note that W is a sub-Hopf algebra of H.BGLR"
— that is, W is closed under sums, products, coproducts and a fortiori un-
der the canonical anti-automorphism. So to show ¥V C W it is enough to
show axj(B) C W for each « = [P], P € PicR. But clearly axj(B) C
Wrg, where S is the flag (P,P~') in R%. Finally, consider a complete flag
S = (Py,...,P,) in R" with associated maximal torus T = Ts. Let S’ de-
note the flag (P1,P;',...,PsP;') in GLy,R. Then T is conjugate in GL2,R
to the subtorus of T consisting of elements which are trivial on the factors
P ! 1t follows that Wr C 3, Vip,). Hence W C V, which completes the
proof.

We can now complete the proof of the theorem. If x € 4" then x annihilates
Wr (under Kronecker product) for all 7, and hence x annihilates Im ¢ by
Lemma 2.3. Conversely if x annihilates Im ¢ then x2 restricts to zero on every
I-torus T, again by Lemma 2.3. Hence for all n, the restriction of x to GL,
is nilpotent by [12], Theorem 14.1. So ¢* factors through a monomorphism
H*GLR/ N — P*(KoR), which by construction is a map of #-Hopf algebras.
By Theorem 1.6, this map is an isomorphism.

We conclude this section with an observation due to Quillen ([12], Sect.14).
Call a cohomology class y € H*GL,R unstable if it is not in the image of the
restriction map from H*GLR.

Proposition 2.4 Suppose PicR contains nontrivial elements of order prime
to 1. Then for all n = 2, there exists an element y € H*GL,R such that y*
is unstable for all k.

The proof we will give here is really no different from Quillen’s original
argument, but still it is enlightening to see how it fits into our context. We
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first need a lemma that properly belongs in the context of an Atiyah—Segal-type
homomorphism for representation rings, but we will take a direct approach here.
Consider a complete flag S = (Py,...,P,). Each P; can be expressed uniquely
in the form P; = P; ® P/, where the order of P! (resp. P!) is a power of [
(resp. prime to /). The relation (P ® Q)@ 1 = P @ Q in PicR shows that
P& ®P, =R" so there is a flag §' = (P},...,P)).

Now observe that a complete flag S = (P;,...,P,) defines not only a maxi-
mal /-torus, but even a specific homomorphism 6y : U — GL,R : Os(&y,..., &)
acts as ; on P;. Let ks denote the induced map Bu} — BGLR™.

Lemma 2.5 ks is homotopic to .

Proof. Since p" is a finite /-group, and BGLR" has finite type, [By", BGLR*]
is an /-complete abelian group. Hence it is enough to show that for some
integer d prime to /, dkg is homotopic to dkg. Choose d prime to / so that
®‘P]' = R for all i. Then the definition of the H-space structure on BGLR* as
in [8] shows that dks factors through BGL,,R, where it is represented by the
following map f: write R¥" = dP,&---®dP, and classify the homomorphism
K" — GLgnR defined by requiring (&y,...,&,) to act as & on dP;. There is
a similar map f’ representing dkg. Since dP; = dPj, there is an element
g € GL,R with g(dP;) = dP] for all i. Hence gkgg~' = kg, f is homotopic
to f’/, and the lemma follows.

Now assume PicR contains an element [P] of order d > 1 with d prime
to /. For n = 2, let S denote the flag (P,P~',R,...,R) in R". In this case S’ is
the “trivial” flag whose associated torus Ty lies in the diagonal matrices. Then
by the lemma, the restriction maps H*GLR — H*Tg and H*GLR — H* T
have identical kernels. But since Ts and 7y are nonconjugate maximal /-tori
in GL,R, there is an element y € H*GL,R such that y restricts to zero on T st
but is nonzero — even non-nilpotent — on Ts ([12], Proposition 11.2(ii) and
Remark 14.4). Evidently y* is unstable for all k.

3 Homology of the space Yz

The purpose of this section is to explain some of the results of [3], in particular
the homology computation Theorem 3.6 below. Since these results may appear
forbiddingly technical to the uninitiated, we will begin with several miscella-
neous remarks that may be helpful. We suggest that the reader skim through
these first six paragraphs at a first reading, returning to them later as necessary.
An explicit numerical example is given at the end of the section.

The homotopy category of spectra

All of the results summarized below are formulated and proved in the homo-
topy category (i.e., the stable category) of spectra, or of spaces. For example
a “commutative ring spectrum” is simply a spectrum E together with a homo-
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topy class of maps £ A E — E such that the relevant unit, associativity and
commutativity diagrams commute up to homotopy; similarly for module spec-
tra. When we speak of a group G acting on a spectrum E, we simply mean
there is given a homomorphism from G into the group of self-equivalences of
E. 1t E is I-complete, such a homomorphism extends to a ring homomorphism
Z/[G] — [E,E]. Any decomposition of the identity of Z,[G] into orthogonal
idempotents yields a corresponding wedge sum decomposition of the spec-
trum E: if e is an idempotent, the corresponding wedge summand is simply
the mapping telescope of

ESESES- -

or equivalently the spectrum obtained by applying Brown representability to

the functor e[—,E]. For example, the action of 4 on A by l-adic Adams

operations yields the Adams splitting A = Vf;oz 32 g where & is a ring

spectrum whose homotopy is concentrated in degrees divisible by 2(/ —1).
Similar remarks apply to group actions on commutative H -spaces.

Reduction to a residue field

A prime ideal B of R, as well as its residue field IJF = R/B, will be called
retractible if the natural reduction map BGLR* — BGLIF" is a retraction after
localization at 1. Such primes always exist by [5]. In fact, choose any prime f
such that dg = dr and aF = ar. Then f is retractible, and infinitely many such
primes exist by the Cebotarev density theorem. Furthermore there is a canonical
choice of splitting map BGLF+ — BGLR* [2]: it is an H-map whose image
in homology is independent of the choice of B. If FF is retractible for R, IF is
retractible for R, and so on. A choice of IF is fixed throughout.

Adams operations vs. Galois action

As noted in the introduction, there is a natural action of the group I ' on A via
J-adic Adams operations. This extends to a canonical isomorphism A’ & AOA .
On the other hand we also have the cyclotomic Galois group I' ' associated to
the number field F, and a corresponding pro-group ring Af. Moreover there
are canonical embeddings I'y — I'" and Ay — A’, obtained from the canonical
representation of 'z on foo. From this point of view, the relation between the
Galois automorphisms I'y and the Adams operations I ! appears in a purely
formal way. In fact, as we now recall, this relation arises in a deeper way from
Quillen’s work on the Adams Conjecture. Fix a retractible residue field IF as
above and consider the I-adic cyclotomic extension IFoo. Then I'f is canonically
isomorphic to G(IFs/IF). Our fixed embedding of R in C defines an embed-
ding of the /-power roots of unity of o in C. Hence we get a “Brauer lift”
map BGLF, — BU which is well-defined after [-adic completion. Further-
more, as shown by Quillen, this map is an /-adic equivalence under which the
Frobenius automorphism of BGLFY, corresponds to the Adams operation Y7
on BU.
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Passing to Ap-fixed points

We will invariably proceed by first adjoining /-th roots of unity to R, denoting
this extension by Ro. It is then always easy to “descend” from R, to R. The
reason is that Ar is a finite group of order prime to /, and our spaces and
spectra are always localized (and usually completed) at the prime /. For exam-
ple, consider the natural action of 4z on the spectrum KR,. Then KR is just
the “homotopy fixed-point spectrum” of this action: KR = KR0 , Where KRgF
simply means that wedge summand of KR, associated to the idempotent of the
trivial representation.

Tate twisting

Let G be any group equipped with a fixed homomorphism w : G — Z'. In
our applications, G will be a subgroup of 4 and w will be the Telchmuller
character. Let X be an object in some category such that Hom (X, X ) has a
natural structure of Z;-module, and suppose we are also given a Z;-linear action
of G on X:

¢ : Z)[G] — Hom (X, X).

Then for any integer n we can define a new Z;-linear action on G on X,
the n-th Tate twist, by

d(n)(9) = " (9)(9) -

We use the notation X(n) to denote the object X with this new G-action.
The most obvious example is to take X a Z;-module, in which case this is the
classical notion of Tate twisting; for example Z;(n) denotes the n-th twist of the
trivial module. However we could also take X to be an /-complete spectrum,
an /-complete commutative H-space, or a Hopf algebra in the category .

Bousfield localization

For a detailed discussion of Bousfield localization, in the context of algebraic
K-theory, the reader could consult the author’s expository article [11]. Here
we will only make a few brief remarks. Fix a spectrum E. Then for any
spectrum X, the E-localization of X consists of a spectrum LgX and a terminal
E.-equivalence out of X: X — LgX. Bousfield has shown that such a functor
Lg(—) always exists; it has the effect of stripping away all information about
X which is not visible to the homology theory E. For example if E, is rational
homology (= rational homotopy for spectra), the homotopy groups of LgX
are Just the rationalized homotopy groups of X. If E is mod /- -homotopy, we
write X for LgX. This is (by definition) the /-adic completion of X; /-adic
completion destroys spectra with uniquely /- divisible homotopy groups. The
example central to [3] is the case £ = X or X it is easy to see that the
functor L is just Ly followed by /-adic completion. We write L for Ly
The crucial point is that Thomason [ 14] has proved the Llchtenbaum—Qulllen
conjectures for the localized spectrum LKR.
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With these preliminary remarks out of the way, we turn to our summary
of [3]. We begin by recalling the basic Iwasawa module M = M, which is
one of the essential ingredients of [3]. Let E, denote the maximal abelian
J-extension of F., which is unramified away from /. Then M is the Galois
group G(Ew/Foo). It is an abelian pro-/-group on which I'; acts (continu-
ously) by conjugation, and hence receives a natural structure of Ak-module.
This structure encodes a wealth of number-theoretic information ([7,16]). We
will need the following property of M:

Theorem 3.1 (Iwasawa) M is a finitely-generated Ap-module, of rank r2(Fo)
and of projective dimension at most one.

The next theorem is the main theorem of [3].

Theorem 3.2 There are natural isomorphisms of A’'-modules
HKR= Ay M
HKR= A'®y Z1 .

Combining this with Iwasawa’s theorem above, it follows that A*KR is
finitely-generated as a module over A', of projective dimension at most one.

Remark 3.3 The spectrum A is periodic, with period 2, so Theorem 3.2
completely describes A*KR. Explicitly, there is an element B € nzf such
that multiplication by B gives an equivalence mg : S2 A A — A. How-
ever mg does not commute with Adams operations and indeed to a topologist
this provides the quintessential example of “Tate twisting”. The point is that
Ton X" = Z;(n) as A’-module. Hence as A’-modules, mg actually gives an iso-

morphism #™2X(1) 2 #"X. In particular, #'KR = A'® 2, M(=1), a fact
that will be used below (note that the functor A'® A (—1) commutes with Tate
twisting, so our notation is unambiguous).

We comment briefly on the proof of the theorem. By definition, the nat-
ural map KR — LKR induces an isomorphism on A*. On the other hand
Thomason [14] computed the homotopy groups of LKR:

nnLKR = HA(R,Zi(n + 1)) ® HY(R. Zi(n)) (1)
Tons1 LKR = HY(R,Z;(n + 1)) ()

where the H® term is Z; for n =0 and is zero otherwise.
The strategy of [3] is to work backwards from the homotopy to the
K-theory. One of the crucial ingredients of this procedure is the fact that the
natural map LKR — LKTF is a retraction whose right inverse is a canonical map
of ring spectra. In particular LKR has a canonical structure of LKIF-module
spectrum.

Remark 3.4 Although we cannot give any details of the proof here, consider-
able insight can be gained by pondering why Theorem 3.2 is at least consistent
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with Thomason’s theorem. For simplicity we assume that R contains the /-th
roots of unity. We first give an analogy. Suppose X, — X is an infinite cyclic
covering map, with group G. Then for any Z[G]-module X there is a natural
universal coefficient spectral sequence

Exth (Hy(Xoo; Z); N) = HPYI(X;N)

where N is the associated local coefficient system on X. Since ZG has global
dimension 2, this spectral sequence collapses at E3. Now consider the map
of schemes Spec(R) — Spec(R). This can be viewed as a Galois covering
whose group of deck transformation — namely I'r — is at least topologically
cyclic. Moreover one can show that there is an analogous spectral sequence in
étale cohomology, which in the case of Z;(n)-coefficients takes the form

Ext) (H;'(Roo; Z ); Zi(n)) = HE (R, Z;(n)) .

Here H;‘(ROO;Z,) denotes étale homology, which we will not define here.
Again the spectral sequence collapses at E3, for the same reason. However in
this case the groups H'(Roo; Z)) are zero for ¢ > 1. Moreover Hg"(Roo; Z)=

Z; and Hle"(Roo;Zl) = M. So the spectral sequence collapses at E, and we
conclude that there are isomorphisms

HE(R; Zi(n)) = Ext)y, (M;Z(n))
as well as (split) short exact sequences
0 — Ext)y (Z1,Z;(n)) — HY(R; Z;(n)) — Hom 4, (M,Z;(n)) — 0.

Now suppose given Theorem 3.2. We could then compute the homotopy
groups of LKR using the . -based Adams-Novikov spectral sequence, which
in this case can be written in the form

ES' = Ext%, (X°KR,Zi(j)) = mj1. LKR

where ¢ = 2j + ¢ and ¢ = 0 or ¢ = —1. So, after an application of Shapiro’s
lemma, this spectral sequence leads to the results (1), (2). Hence Thomason’s
theorem and Theorem 3.2 are at least consistent. (Readers not familiar with

the Adams spectral sequence can avoid it by using the explicit resolutions
described below.)

The retraction LKR — LKTF induces an isomorphism on #°. So if LK™R
is the fibre of this retraction, #°LK™IR = 0 and

A LK™R = A’ ®4 M.

The low prOJectlve dimension of M then leads immediately to an explicit
description of LK™R. Roughly, one simply obtains a cofibre sequence

a b R
VA — | A — LK™R
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for suitable a, b, in which the first map is a matrix of K-theory operations
arising from a choice of length on resolution of M. However we wish to
choose this resolution in a particular way.

In order to emphasize the simple, formal nature of the construction, let us
extract the essential data. It is convenient to put the emphasis on KRy, waiting
until the last minute to descend to KR. Note that A = Ap, = A}o. We are
given

(i) a finitely-generated Ay-module N' (namely, M) of projective dimension
at most one
(ii) a A -local spectrum X, with Ag-action (namely, LK™Ry) with i
Xo=0
(iii) an isomorphism A X=A® a N of A’-modules, compatible with
the Ap-action on X and N.

Here the fact that F is a number field is irrelevant; the subscript F only
serves to specify particular subgroups Ar and I'r of I, etc. We set X = XOA s
Now choose a resolution.

0P, —Py—N—0 3)

by finitely-generated projective Ay-modules. We will regard this as a resolution
by free Ar-modules which is compatible with the As-eigenspace decomposition
of N. Thus the exact sequence above has the form

0 42548 5N -0

where C is a matrix of power series in Ar and the eigenspace decomposition is
understood. We will assume further that the resolution is a minimal resolution
as Ap-modules, and that C(0) is a quasi-diagonal matrix — i.e., (of} j(0)=0
for i+ j, and each C..i(0) is either zero or of the form /4. Note that C(0) is
a matrix over Z;, and that the quasi-diagonal condition is easily arranged by
multiplying C by suitable constant matrices.

Now tensor up over Ar (not Ay!) to get a free resolution over A

0— (APSUY > A @1 N—0.

This is to be regarded as an exact sequence of A'[4r]-modules. The matrix C
is now a matrix with coefficients in A, and C(0) is still quasi-diagonal. We
then obtain, in an obvious way, a fibre sequence of spectra with Afp-action

a ., b . P a n b n
VA VA —>X - VI — IX 4)

where C' is the transpose matrix. We emphasize that the compatibility of this
sequence with the Ag-action is an utter triviality; it amounts to nothing more
than a wedge decomposition of the given fibre sequence into d summands, one
for each character of Ar.



Class groups and cohomology 117

Remark 3.5 Note that there is an exact sequence of Z;Ar-modules

t
0 — mX — 28878 | n¥ — 0.

Let rank ;X = e and write nopX X Z/I @ -- - @ Z/[%m @ Z;. Then because the
original resolution was minimal, we conclude that 5 =m + ¢ and a = e + m.

Passing to zero-th spaces in (4) (and restricting to the basepoint component
of the second and third terms) yields a fibre sequence of spaces

(BU)* x mX — (BU)® — Q

Applying homology and analyzing the Rothenberg-Steenrod spectral
sequence yields an exact sequence in #PAr

®"S(B) — ®°S(B) — H.QCX — @°H U

in which the first map is precisely C*(0), regarded as a matrix over End S(B).
(See [10] for a discussion of End S(B).) Since C(0) is quasi-diagonal. We
may write this as

1 — P(mpXo) — H.Q5°Xo — E — 1

where E = (H.Q3°X;)~ and the sequence splits uniquely in #2Af.
Passing to Ag-fixed points in # yields

H,Q5°X = P(Ar, moXo) @ E4F .

Now return to the case Xp = iK’edRo. Here we start from a resolution as
in (3) of M(—1). Then by Thomason’s theorem we have

mXo = HY(R,Z(1)) = (RY) = Z»0~"
and a short exact sequence
0— ISIC Ro — TC()I:KredRO —— TB}’RO —0

where TBrR, is the Tate module of the Brauer group as defined in the intro-
duction. It is a free Z;-module of rank so— 1. Here moLK™Ry = H2(Ry,Z;(1)).
Writing X
PicRy = Z/I" & - - Z/I
we see that the numbers ¢ and b defined above are given in this case by
a=m+r2,0+s0—l
b=m+so—1.

Bringing the residue field IF back into the picture, we get the following
theorem ([3], Theorem 10.11):

Theorem 3.6 (Dwyer-Mitchell) There is an isomorphism in H#P
H,QFLKR = H,BGLF ® E(4r, Ry /torsion) ® J(AF, Pic Ry) ® J(Ar, TBrRy)
where J(Ar,—) = P(4r,—) @ E(4r,—) as in Sect. 1.
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For our present purposes, only the following corollary is relevant:

Corollary 3.7

(H.QPLKRY" = P(4r,KoRo) ® P(4F, TBrRy) .

To illustrate the preceeding constructions, we consider the example discussed
in Sect. 1: / = 691 and R = Z[1/I]. In this case the Iwasawa module M,
including the A-eigenspace decomposition, can be described quite explicitly.
Call a character of A even (resp. odd) if it is an even (resp. odd) power of
the Teichmuller character .

Proposition 3.8 M(—1), = A if x is even, and if ¥ is odd there are power
series f, € A such that M(—1), = Al fy. Moreover for y odd, f, is a unit
unless y = o' or y = 0™'%, in which case v, f,(0) = 1.

Here the power series f, are related to /-adic L-functions, and can be
taken to be linear polynomials. The condition on the odd characters comes
about because these are the only characters which occur in the eigenspace de-
composition of PicRy. The condition on the even characters can be traced,
ultimately, to Dirichlet’s unit theorem. It would require too lengthy a digres-
sion to prove these assertions here; the interested reader should consult [16],
especially Chapter 13 and Theorem 10.16.

Let f = f,—n, g = f,-199. Since we are free to multiply each f, by a
unit, we can assume f(0) = / = g(0). We can take the matrix C to be the
2+ 1"7') x (2)-matrix whose first two rows are

f 0
0 g
and whose remaining entries are zero. Since ar = 1 in this case, we have

C = C. The fibre sequence given by the first three terms of (4) breaks up as
the wedge of ’—31 fibre sequences

H({) — * — ZH ()
with i even (see the remarks on Tate twisting above) and two fibre sequences

H(=11) L H(=11) — Y

A (~199) L A(~199) — Z

and hence
LK™Ry > \/ ZA(G)VYVZ.
ieven
Thus
QLK™ Ry = (UMY x Q°Y x Q5°Z



Class groups and cohomology 119
and
H.QF°LKRy = H,BGLF) ® (H,U"** ® J, ® J,

where J; = P; ® E} as in Sect. 1. A

Finally, we descend to Z[1//] itselt} Note that J#(i))? is precisely the
Adams summand &~'. Hence (V;evenZ#'(i))4 is precisely the real K -theory
spectrum KO, and so

LK™R = 5KO" v Y4 v Z*

where for example Y4 fits in a fibre sequence

g L oshg ., y4

and in particular the first nonvanishing positive-dimensional homotopy group
of Y4 is my, Y4 = Z/I. Similarly

QFLK™R = (U/OY* x QPY4 x Qg°z4
and finally
H.QF°LKR = H,BGLF ® H,(U/0) ® J;[11] ® J;[199]

where J,[i] is defined in Sect. 1.

4 Proof of the retraction theorem

Consider the composite map 0 in #PAr
P(4r,KoRo) = S ® Py, ® --- ® Py, % H,BGLR} — H.QPLKR, .

Here F,; corresponds to a fixed eigenvector o; of the Ar-action on Pic Ry, and
has the corresponding Ar-action as in Sect. 1.

We will show that 6 is an isomorphism onto the corresponding summand
P(KoRo) of H,Q3°LKRy described in 3.7. This will prove Theorem 1.6 for Ry,
and the general case then follows by passing to 4x-fixed points in 5. Clearly it
is enough to show that the image of 6 is P(K. oRo). Moreover one easily reduces
to checking the analogous assertion with KR, replaced by PicRy (where we
identify Pic Ry with KoRy in the usual way).

Extend the generating set a,...,a,, for Pic Ry to a generating set ay, ..., Gy
for moLK d Ry such that ¢ = so—1 and apmyy,...,0n,4 are also eigenvectors for
the Ap-action. Consider the map

m+t A
6: VA — LK™R,

where ¢t = so — 1. Write §; for theA individual maps K — LK™R,. We can
assume that mod; maps the unit of # to o;, 1 < i < m+¢. Now let g; denote
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the composite
0By, "5 Ko — [KIFo — A 0 LK™ Ry
where # is the canonical map of ring spectra and & is the composite
>*°Bu, — 8% — K§

of the augmentation and the unit. Let f; = £G°g;. Thus f; is the composite
N Q505 5
Bu — BGLF; — BU =~ QFLK™Ry

where the unlabeled maps are the obvious ones. Each map f; then induces a
map in X PAr
f,: 8 — H.LK™Ry.
The proof of 3.6, as outlined above, shows that the summand P(lsic Ry) is
generated by the images of the maps f 5
There is another way to describe f;. It was shown in [4] that d; is a map
of LKIFy-module spectra. Hence the composite

[KFy — A& 25 LK™Ry
simply multiplies «; by LKTFy; that is, it coincides with the composite
r 7 0 Aoy 2 i grred F xrred
[KTFy = LKIFg A S° — LKIFg A LK™ Ry — LK™ Ry .

Hence, after composing with the inclusion of LK™R, in LKRy, g; is simply
the product of (n — &) and o; (in the ring spectrum structure on LKRy). Now
suppose i < m, S0 &; € Pic Ry. Then g; lifts to a map g; into KRy — indeed
g; is just a;j(n — &) in the ring spectrum structure on KRy. Hence f; lifts to
a map f, : By — BGLR". But f, is precisely the map a; j described in
Sect. 1 (see Remark 1.8). Hence the image of 0 is precisely the Hopf summand

P(4 #,KoRo), as desired.

5 On the nil but non-nilpotent elements of H*GLR

Let A" denote the ideal of nilpotent element in H*GLR. Let % denote
the Hopf kernel of the natural map H*GLR/AN " — H*GLR/A . Suppose
the Lichtenbaum—Quillen conjectures are true for R, so that (BGLR™ )" =
Q°LK™R. Then by Theorem 3.6, it would follow that

U = P*(Ap, TBrRy) = (&% 'H*BU)*F.

In particular, % is trivial if and only if there is a unique prime dividing / in
Or,- When there is more than one such prime, it would be very interesting
to show directly that P*(4r,TBrRy) is a retract of H*GLR. For one thing,
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this would show that (H.(BGLR™)")" — (H.QPLKR)" is split surjective.
This conjectural summand is also of interest because it is somehow related to
the Brauer group of R. These questions are closely related to the following
conjecture.

Conjecture 5.1 The natural KoR-module structure on (BGLRJr )\ extends to
a K& R-module structure, so that the map (BGLR*)" — QPLK™R is a map
of K R-module spaces.

We recall here that K§'R = moLKR, and that there is short exact sequence
0 — PicR — K&R — TBrR — 0.

It is clear that the conjecture would follow from the Lichtenbaum—Quillen
conjectures. For Q°°LKR has such a module structure by Remark 1.8 and
Thomason’s theorem which would then be inherited by (BGLR™)" if the
Lichtenbaum—Quillen conjectures hold.

Suppose now that Conjecture 5.1 is valid, and denote the action of « € Ket
on a map f € [X, Q°°LKR] by ax f. The resulting Ke‘-module structure
on higher K-groups is not likely to be of any interest. Indeed consider any
x € K&R = noLK™R. Then it is easy to see that for any x € m,LK™IR
(n > 0),axx = 0. The point is that (see Remark 3.4) « has A -Adams
filtration one, whereas 7n,LK™R is concentrated in Adams filtration zero
(n odd) or one (n even). Alternatively one could argue similarly using the
descent spectral sequence of [14 or 1].

The action of K{;" on homology, however, would definitely be non-trivial.
Let B1 = my1s..-, Bt = dmys, Where t =5 — 1, and consider the maps ;% :
Bu — (BGLR*)". These induce a map ®'H,BU — H,BGLR'* such that the
composite

®'H.BU — H,BGLR" —s H,Q{°LKR

is a 1somorphnsm onto P(TBrR). In particular this would show that all of
(H.QLKR)* is a retract of H,BGLR*.

The conjectural maps f; » j, which should be constructed in some way from
the Brauer group, would be of interest in their own right. Recall [6] that for
any finite /-group G, there is a natural ring homomorphism

0 : IRrG)" — [BG,(BGLR")"]

where ZrG is the representation ring of R-projective RG-modules and /%G
is the kernel of the augmentation ZxG — KR. It follows from our homology
calculations that the maps f§; » j are not in the image of 6. Furthermore B; » j
cannot in any sense factor through BGL,R*, n < oo, since any such factor-
ization does come from a representation, by a theorem of Lannes. Thus the
construction of such “homotopical /-tori” poses an interesting problem.

Acknowledgement. 1 would like to thank the referee for criticizing an earlier and much
shorter manuscript, and especially for insisting that the exposition of [3] be expanded.
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