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1 Introduction
In the famous papers [7] and [9] by Friedrichs and Krein it has been shown
that every closed symmetric operator H in a Hilbert space 5 with gap J has

a self-adjoint extension A such that J is contained in the resolvent set of H;
an open interval (a,b) is called a gap of H if

o2

HS, ) 2 blfI° feDH), if —c=a<b<oo.

feDH), if —ov<a<b<x,

Moreover Krein has found that if in addition A has finite deficiency indices
(n,n), then within the gap J the spectrum of every self-adjoint extension con-
sists of a finite number of eigenvalues such that the sum of their multiplicities
does not exceed n, cf. [9], Theorem 22. Conversely, if {4;};_;, 1 <5 < oo,
is an arbitrary sequence of points of J and {p J} _; is an arbitrary sequence of

positive integers obeying >’ j=1Pj = n, then there exists a self-adjoint extension

H of H such that within the gap J the spectrum of H coincides with the points
A; which are eigenvalues of multiplicity p;, 1 < j < s ([9], Theorem 23).
So the problem which spectrum can the self-adjoint extensions have within the
gap is completely solved for finite deficiency indices.

In [3,4,5] and [10] an attempt was made to extend these results to the
case of infinite deficiency indices. It turned out that Theorem 23 of [9] has
a straightforward generalization. Let & be a countable set within the gap J
and let p: & — NU{Ro} be an arbltrary function. Then there exists a self-
adjoint extension A of H such that o,,(H )NJ = &, the multiplicity of each
eigenvalue 4 € & equals p(4) and no point of the gap J belongs to the
continuous spectrum of H. In other words, any pure point spectrum can be
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generated within the gap J by choosing an appropriate extension. Here o ,(-)
denotes the set of eigenvalues of an operator.

However, provided the deficiency indices of H are infinite it seems natu-
rally to believe that other kinds of spectra (singular and absolutely continuous
spectra) can arise within the gap J. In fact, for a large class of operators H,
including all symmetric operators with infinite deficiency indices and compact
resolvent, we have shown that every kind of absolutely continuous spectrum
within a gap J of H can be generated by a self-adjoint extension H of H,
cf. [2]. In this paper we shall show that a symmetric operator with infinite
deficiency indices and some gap has self-adjoint extensions with non-empty
singular continuous spectrum. Actually we shall prove the following stronger.

Theorem 1 Let H be a symmetric operator in some Hilbert space #'. Suppose
that the operator H has some gap J and infinite deficiency indices. Let Jo
be any open subset of J. Then H has a self-adjoint extension H with the
following properties:

(i) o(H)NJ = Oess(H)NJ =To N J.
(i) oac(H)NJ = 0. .
(iii) H has no eigenvalue in JoNJ.

Here 0,0,,0s and o.s denote the spectrum, the absolutely continuous,
the singular continuous and the essential spectrum, respectively. S denotes the
closure of the set S.

The method of proof is as follows. Without loss of generality we assume
0 € J. First one constructs an auxiliary invertible self-adjoint extension Haux
of H such that Hyy has pure point spectrum within the gap J of H, the
eigenvalues of Hy,x within J are simple and form a dense subset of Jy. Then
one chooses a vector g € ran(H)* such that (g,e)+0 for every eigenvector
e of Hyy corresponding to an eigenvalue in J and shows that the operator
Hg) +a(g,-)g is invertible and its inverse H, is a self-adjoint extension of H
for every real number «. Finally one proves that for every « in some dense
G;-subset of R the operator H,, has the required spectral properties. This easily
follows from the following recent result by A. Gordon resp. by R. del Rio,
N. Makarov and B. Simon. ‘

Theorem 2 (A. Gordon [8]; R. del Rio, N. Makarov, B. Simon [6], Theorem 3)
Let A be a self-adjoint operator and g a cyclic vector of A. Then the set

{xcR:4+ag,-)g has no eigenvalue in o(4)}

is a dense Gs subset of R.

For convenience of the reader we shall give a proof of the existence
of the auxiliary operator Ha,x which is more simple and much shorter than
our original proof in [3]. Moreover we shall need the mentioned result by
A. Gordon and by R. del Rio, N. Makarov and B. Simon only in a very special
case. Instead to show that this result can be used in our situation we shall give
a short direct proof that the operator H, has the required spectral properties.
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In our very special case we get absence of eigenvalues in JyNJ even for every
a €R, a#0.

Finally we mention that Theorem 1 allows only to generate so-called “fat”
singular continuous spectrum by extensions, i.e., singular continuous spectrum
which coincides with the closure of its inner points. For spectrum which does
not have this property (so-called “thin” spectrum) we cannot make any con-
clusions. In particular, we cannot generate singular continuous spectrum which
is a Cantor set. The problem is that for thin sets the used proof technique does
not allow to decide whether the generated spectrum is really singular contin-
uous or results from the closure of the discrete spectrum which is outside the
thin set. So the problem remains open for thin sets.

2 The singular continuous spectrum of self-adjoint extensions

In this section we shall prove Theorem 1. We shall use the following

Lemma 3 Let H be a symmetric operator in some separable Hilbert space
H. Let b be a strictly positive real number and J = (—b,b) or J = (—00,b).
Suppose that J is a gap of H. For every A € J let P, : ker(H*) — ker (H*—1)
be the mapping given by

Pif := Prar—1)f, [ €ker(H"), (1)

where Py denotes the orthogonal projection in # onto the subspace £. Then
for every A € J the mapping P; is bijective and

B b+
179l < 2501 g € raneey), @
b— |4
when J = (—b,b) and
b b—2
“la < S dind
17l < max { 52 222, g e, G)

when J = (—o0,b).

Proof. Singe J is a gap ofA H the symmetric operator H has a self-adjoint
extension H such that JNa(H) = 0, e.g., the Friedrichs and the Krein extension
of H in the case when J = (—o0,b) and J = (—b,b), respectively. Note that

JF)dE() f,9) =0
J
for all f,g € # and every Borel-measurable function F where {E(f)}cr
denotes the spectral family of the self-adjoint operator H.
Let A €J. Let f € ker(H*) =ran(H)*, f+0 and g € D(H). We have
A A t
(HH - )7 f,(H - A)g) = f;—_—;l(t — Md(E(1)f,9)

= [td(E(t)f,q) = (f.Hg)=0.
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Thus f := H(H — 4)~'f € ran(H — 2)* = ker(H* — 1) and consequently we

have .
F t/(t — A)d||E(¢)
1Pl 2 (—fr,f) LY, ” f”2 NG
11 {fp /(2 = DYIE@ S|}
Since 5 . 5
v S s <R
when J = (—b,b) and
min{l,z—f—i} < t_-ti < max{l,b—ii}, t€RV,
when J = (—o0,b) this implies that
A b—|A|
and .
1P 2 miLOB DL (6)

max{1,b/(b — A)}

when J = (—b,b) and J = (—00,b), respectively. Thus P; is invertible and
(2) and (3) hold.

By (5) and (6) the operator P; has a trivial kernel and a closed range.
Hence it remains to show that f € ker(H* — ) and (f,h) = 0 for each h e
ker(H*) yields f = 0. Since

D(H*) = D(H) +ker(H*),

we obtain elements g € D(H) and k € ker(H*) such that f = g + k. By
H*f = Af and (f,h) =0, h € ker(H*), we find H* f € ran(H). Hence one
gets H*f = Hg € ran(H). However, this yields g € D(H). Using that we
obtain

(H-M)g=xk."
Since k € ker(H*) we have
(Hg,(H — 2)g) = |Hg|* — i(Hg,g) =0

which implies
IHgll < |Alllgll -

Let |A| < b. Since bl|g|| < ||Hg|| we immediately find

bllgll = IHgll = |41llgll

which proves g = 0. If 1 £ —b, then the result is obvious. Therefore k£ = 0 and
f=0. 0



Spectrum of self-adjoint extensions 537

Proof of Theorem 1. Since H has a self-adjoint extension A such that the gap
J is contained in the resolvent set of A the theorem is true (with H = H ) in
the special case when Jy = (). Thus we may assume that Jy & (. Moreover we
may assume that J = (—b,b) or J = (—o00,b) for some strictly positive real

number b. i . . o
It suffices to show that there exists a self-adjoint extension H of H such

that oes(H)NJ =Ty NJ, 6a(H)NJ =0 and A has no eigenvalue in Jy NJ.
In fact, then on the one hand every A € Jy belongs to the singular continuous
spectrum of A and consequently we have Jy C oy (H ), on the other hand we
have g (H) C 0es(H) and consequently os.(H)NJ C Jo.

We choose any square summable sequence {a,},en of numbers such that
%, +0 for every n€N and any sequence {#,}nen in J; ' := {1/t :t € Jo,t %0}

such that n, +n, for n+m and for every n € J; .

na —n| < Ianl (7)

for infinitely many n € N.

Such sequences always exist. For instance we start with a partion I'; of the
real axis into intervals [k,k+1), k € Z. Dividing the intervals [k,k+1) into two
intervals [k, k + %) and [k + %, k+1) we get a new partion I',. Dividing again
the intervals [k, k + %) and [k+ %,k+ 1) into two subintervals of half length we
get a further partion I';. Repeating this procedure again and again we obtain a
sequence of partions {I';},;en. Choosing now from the intersection of Jo_] with
the intervals of the partion I';, provided this intersection is not empty, points
we get for each /€N a sequence of points {#y }mcz. Obviously all those points
Nim can be chosen different from each other. Making a suitable renumeration
of the sequence {#m}ieN,mez We find the desired sequence {#,}nen Of JO_I.

For notational brevity we put 4, := 1/, and p, := P;, for every ne N
where for every 4 € J the linear mapping P; : ker(H*) — ker(H* — 1) is
given by (1).

We choose any e; € ker(H* — 4;) such that ||e;|| = 1. Let n€N and sup-
pose that e; €ker(H* —4;),1 < j < n, have been chosen. Then we choose any
eny1 €ker(H* — A,41) such that |le,4| =1,

-1
€n+1 1 €, €n+1 L pj €,

—1 -1 -1
Duyi€nt1 L P €, Ppi1€n+1 Le,

1 £ j = n. Since, by Lemma 3, for every 4 € J the linear mapping P; is
bijective and consequently the space ker(H* — A) is infinite dimensional each
of these choices is possible. In this way we get, by induction, an orthonormal
system {e,},en With the following properties:

e, € ker(H* —1,), neN, (8)

(Gns9m) =0 = (gn,en) for n+m 9)



538 J. Brasche, H. Neidhardt

where
gn:=py;'en, neN. (10)
Next we shall show that there exists an auxiliary self-adjoint extension Hyyx
of H with the following properties:

(i) Haux has a pure point spectrum within J.

(i) 4, is a simple eigenvalue of Hyy and e, a corresponding eigenvector
for every n € N.

(iii) 0p(Haw) NJ = {4 : n€N}.
Since {4, : n€N} is a dense subset of Jo and A, %0 for every neN it follows
from (i) and (iii) that such an operator also satisfies

(iv) Oess(Hax) NJ = Jo ndJd.

(v) Haux is invertible.

We denote by #, the closure of the span of {e,: n€ N} and by M the
self-adjoint operator in the Hilbert space #% given by

D(M) = {ff Bren: S (14 2)Bal? < oo} ,
n=1 n=1

M Z Bren == Z AnPBnen, Z (1+ 'ﬁ)lﬁnv < o0.
n=1 n=1 n=1

Obviously the operator M has a pure point spectrum, A, is a simple eigen-
value of M and e, a corresponding eigenvector for every n€N,

op(M)={An:n €N}
and
Mf,f) S bIfI>, feDM), (11)

in the case when J = (—o0,b) and

IMfIl < BlfNl,  f €DM),

in the case when J = (—b,b).
M is a restriction of H* since e, € ker(H* — A,) for every n € N and H*
is a closed operator. Thus we can define an extension H " of H by

D(H'):= D(H)+D(M), H'g:=H"g, geDH').

A short computation shows that H’ is a symmetric operator.
Let f € D(H'). For every n € N we have

(H’f’en) = (f’Men) = An(faen) .
Thus .
z_:‘ 2|(f,en))* = ||P,>f0H’f||2 < 00.
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Hence Py, f € D(M). For every n € N we have

(P-#'oHlfaen) = (f,Me,,) = (MPfof’en) J

Thus
P#OH'f = MPfOf, f e D(H') .

This implies that the operator H’ can be written in the form
=M &Gy,
where the symmetric operator Gy in the Hilbert space Hy is given by

7
Go:=H |D(H’)r\)$’J- :
We shall show by contradiction that the gap J of H is also a gap of Gy. We
shall give the proof for J = (—o0,b). The proof in the other case is virtually
the same. Suppose that

(Gof, f) < bl f|? (12)

for some f € D(Gy). We choose g € D(H) and h € DM ) such that
f =g+ h. Then we have

(Hg,g) = (H'(f = h), f = h) = (Gof. ) + (Mh, h)
< bIAI + BllA|? = bllf  hl* = bllg]> .

Here we have used that H' = M & G, as well as our assumption (12) and
(11). Thus the assumption (12) leads to a contradiction to the hypothesis that
(—o0,b) is a gap of H. Thus J is also a gap of G.

Since J is a gap of symmetric operator Gy in #- there exists a self-adjoint
operator G in #°g such that Gy C G and 6(G) OJ (0. We put

Hyy = M®G.

Obviously Hyy has the required properties.
We put
o0
=Ll
where the g,,n€N, are given by (10) and the ,,n€N, are any numbers dif-
ferent from zero such that the sequence {a,},en is square summable and (7)
holds. Since, by (9), {ga/||gn||}nen is an orthonormal system the series con-
verges and g is well-defined. Since g, eker(H*) for every n€N and ker(H*)
is closed we have that g€ ker(H*). Obviously g=0.
We choose any a € R, #0. Since along with H, also the inverse H,,' of
Hyyy is a self-adjoint operator and a(g,-)g is a bounded self-adjoint operator
the sum Hg! + a(g,+)g is also self-adjoint. Let & € D(H,;!) be such that

Hoih+o(g,h)g =
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Then (g,h)g € ran(H!) = D(Hax). If g would be in D(Hayy) then we would
have Hyxg = H*g = 0 which is impossible since Hayy is invertible. Thus we
have (g,h) = 0. It follows that Hglh = 0 which implies that h = 0. Thus we
have shown that the operator H,,, + a(g,)g is invertible. Along with this
operator also its inverse
H = (Hpy +a(9:)9) ™"

is self-adjoint.

Let h € D(H™') = ran(H). Since H C Hax and g € ker(H™) = ran(H)*
we have that H='h = Hi,lh = H ~'h. Thus H is a self-adjoint extension of H.

Since the resolvent difference A —I~— Hg,: of the self-adjoint operators H and
H,ux is nuclear we have that o,.(H) = Oac(Haux) and Oess(H ) = Oess(Haux). In
particular, we have

Ou(H)NT =0,  de(H)NJ =JoNJ .

Thus we have only to show that H has no eigenvalue inJoNJ.
The point zero is not an eigenvalue of H since H is invertible. Let
A€ JonJ and A+0. We have only to show that 1 := 1/A is not an eigenvalue

of A" Let he DU~ ') = D(Hg!) and

A 'h=H='h+a(g,h)g=nh.

aux

By taking the scalar product with e, we get from the last relation that

o
n emh + o ’h — = rl(emh)
tleadd + HGRN L
for every n € N. Thus we have
xp
11— 1llCen )] = la(g,hn}g—‘”, nEN. (13)

By (7), there exists a subsequence {rp,,j} jeN of {Mn}neN such that
Irp,,j—nl < oy, jEN. (14)

By (2) resp. (3) in the Lemma 3 and (10) there exists a finite constant ¢ such
that
lgnll <c JjEN. (15)

Since .20, [(en M)* = [[Paohl* < oo it follows from (13), (14) and (15)
that
(9:)=0.

Thus we have Hlh=nh.

Since the only eigenvalues of the operator HZ! in J~! are the numbers 1y,
neN, and 7, is a simple eigenvalue of Haux with corresponding eigenvector ey
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for every n€N this implies that 4 = ae, for some constant a and some n€N.
Since

0=(g,h)=a—
llgnll

it follows that a = 0 and # = 0. Thus # is not an eigenvalue of the operator

o
n

A" and the theorem is proven. [

Remark 4 The operator H given in the proof of the Theorem 1 depends on
{Nn}nen.g and o. Let us write H,,} ., in order to indicate this dependence.
We have shown that the operator H {nn}.9.2 has the spectral properties described
in the Theorem 1 for every a € R, a=0, provided {#,}.en and g are con-
structed as in the Proof of Theorem 1. Actually one can admit a larger class
of sequences {#,}ncn and vectors g. In fact, let {#,},en be any sequence in
Jy ! such that 5, #n, for n4m and {n,: n € N} is dense in Jy ' Let g be
any vector in ker(H*) such that (g,e,)+0 for every n € N. Then with the aid
of the result by A. Gordon resp. by R. del Rio, N. Makarov and B. Simon
mentioned in the introduction one can show that the operator H {nn}.g.« has the

spectral properties described in Theorem 1 for all a from some dense Gy set
in R.

Example 5 Let Q be a bounded non-empty domain in RY,d > 1. Then the
minimal Laplacian on @, i.e. the operator —4%2 in L%(Q) given by

D(—42,) = C(Q),

2. f =—4f, [ECE@),

is a symmetric operator with infinite deficiency indices. Here C5°(£2) denotes
the space of infinitely differentiable functions with compact support in Q. Thus,
by Theorem 1, there exist self-adjoint realizations of the Laplacian on Q, i.e.
self-adjoint extensions of —4%, | with non-empty singular continuous spectrum.
Thus (the proof of) Theorem 1 enables us to construct self-adjoint realizations
of the Laplacian on a bounded domain Q in R%d > 1, with spectral properties
very different from the properties of the self-adjoint realizations investigated
before.

Acknowledgement. In a previous version of this paper we have given a rather different proof
of the Theorem 1 and essentially used an additional hypothesis. We are indebted to an
anonymous referee who showed us how to use the mentioned result by A. Gordon and by
R. del Rio, N. Makarov and B. Simon in order to prove Theorem 1 without any superfluous
hypothesis.

References

1. Brasche, J.F., Neidhardt, H.: Some remarks on Krein’s extension theory. Math. Nachri-
chten 165, 159-181 (1994)

2. Brasche, J.F., Neidhardt, H.: On the absolutely continuous spectrum of self-adjoint ex-
tensions. J. Funct. Analysis 131, No. 2, 364-385 (1995)



542 J. Brasche, H. Neidhardt

3. Brasche, J.F., Neidhardt, H., Weidmann, J.: On the point spectrum of self-adjoint exten-
sions. Math. Zeitschrift 214, 343-355 (1993)

4. Brasche, J.F., Neidhardt, H., Weidmann, J.: On the spectra of self-adjoint extensions. Op-
erator Theory, Advances and Applications 61, 29—45. Birkhauser, Boston-Basel-Stuttgart
1993

5. Derkach, V.A., Malamud, M.M.: Generalized resolvents and the boundary value problems
for Hermitean operators with gap. J. Funct. Analysis 95, 1-95 (1991)

6. del Rio, R., Makarov, N., Simon, B.: Operators with singular continuous spectrum II.
Rank one operators. Comm. Math. Phys. 165, 59-67 (1994)

7. Friedrichs, K.: Spektraltheorie halbbeschriankter Operatoren und Anwendung auf die
Spektralzerlegung von Differentialoperatoren. Math. Ann. 109, 465-487 (1934)

8. Gordon, A.: Pure point spectrum under 1-parameter perturbations and instability of
Anderson localization. Comm. Math. Phys. 164, 489-505 (1994)

9. Krein, M.G.: Theory of self-adjoint extensions of semi-bounded Hermitan operators and
its application. I. Mat. Sbornik 20 (1947), No. 3, 431-490 (in Russian)

10. Malamud, M.M.: On certain classes of extensions of a Hermitean operator with gaps.
Ukrainian Math. Journ. 44, 215-233 (1992)



	
	On the singular continuous spectrum of self-adjoint extensions.


