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1 Introduction

In 1985, Gromov [G] introduced the notion of pseudo-holomorphic curves,
proved existence theorems of such curves in various situations and developed
various ways of using them to prove many nontrivial results in symplectic
geometry which cannot have been proven in other methods. One of such
results in [G] is the existence of holomorphic discs with boundary on any given
(compact) Lagrangian submanifold in €" with respect to the standard complex
structure. This, as a corollary, proves the non-existence of any compact exact
(embedded) Lagrangian submanifold in €”, which in turn gives rise to the
existence of an exotic symplectic structure on C" (for n = 2). The non-
existence of any compact exact Lagrangian submanifold L into ©" can be
rephrased as follows: For the standard symplectic structure @ on C" the
homomorphism 1, : 7,(C",L) — R defined by

I,(w)= [ w'o
D2

is not trivial for any embedded compact Lagrangian submanifold. Later
Polterovich [P1] carefully analyzed Gromov’s proof of the above existence
result to control the Maslov index of Gromov’s J-holomorphic disc and proved
that one can choose a generic almost complex structure J so that there exists
a J-holomorphic disc w with Maslov index bound

3—n=uwyw)£n+1. (1.1)

In particular, when » = 2, this implies the non-triviality of the Maslov class of
any compact Lagrangian embedding.

The purpose of the present paper is two-fold: One is to introduce a new
approach to Gromov techniques in the study of Lagrangian embeddings in
Kéhler manifolds (e.g. € or CP") which uses the perturbation of boundary



506 Y.-G. Oh

conditions (with complex structure fixed) instead of almost complex structures
as used in the traditional Gromov theory, and the other, which has been possible
by this new approach, is to address this important existence result in the purely
complex analytic context which would benefit those from the area of several
complex variables. One of the advantages of keeping the integrable complex
structure is that one can do precise local calculations, which have enabled
us to prove an optimal criterion for the Fredholm-regularity of holomorphic
discs in terms of the so-called partial indices (see [03]), which resembles the
well-known regularity criterion for holomorphic spheres in terms of the partial
Chern numbers in the complex geometry.
There are three levels of perturbing boundary conditions:

i) Hamiltonian isotopies of Lagrangian boundary conditions,
ii) Lagrangian isotopies of Lagrangian boundary conditions,
iii) Totally real isotopies of totally real boundary conditions.

The proofs of the perturbation results below are entirely similar for all of
these cases, but i) requires the most careful treatment. Therefore we give the
complete proof for the case i) and indicate needed modifications for the other
cases.

Now, we start with the case i). We denote by ¢}, the time one-map of
Hamilton’s equation % = Xy (%)

for H: M x I — R a smooth function and by 2,(M) the set of such ¢,,’s,
i.e., the set of exact (or Hamiltonian) diffeomorphism of (M, w):

Do = Do(M) = {¢ € Diff (M) | ¢ = ¢}, for some H} .

And let J be an almost complex structure on (M,w) such that the triple
(M, ,J) defines a Kihler structure, i.e., such that J is integrable and the
bilinear form g( -, + ) := w( -,J - ) defines a Riemannian metric on M. Indeed,
we do not need the integrability of J for this theorem to hold (see Remark 3.5)
but we assume it for the coherence of our exposition.

Theorem I. Let (M,w,J) as above and let L C (M,w) be a given compact
Lagrangian submanifold. Then there exists a dense subset (D )eg C D SUch

that for ¢ € (9, )';eg, any (not multiply covered) holomorphic disc
w: (D?,0D%) — (M, $(L))

is Fredholm-regular. Furthermore, the same kind of genericity result as above
also holds under the Lagrangian isotopies.

We refer to Sect. 2 for the precise definition of the Fredholm-regularity.
This theorem makes unnecessary introducing almost complex structures in the
study, via Gromov’s techniques of pseudo-holomorphic discs, of Lagrangian
embeddings on Kihler manifolds (e.g., €" or CP") and enables us to work
only with the standard integrable complex structure. Because of this, together
with the optimal regularity criterion we prove in [O3], we hope that one might
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be able to exploit the classical theory of analytic discs in several complex
variables in the study of Lagrangian embeddings.

In this respect, it would be useful to know the existence of Fredholm-regular
holomorphic discs. For any compact Lagrangian submanifold in C”", Gromov
[G] proved the existence of a non-trivial holomorphic disc w : (D?,6D?) —
(€",L) which is a limit of J-holomorphic discs as J converges to the stan-
dard complex structure on C". Because of the way how the construction goes,
the disc found may not be regular in general. There exists a Lagrangian sub-
manifold for which we have a non-regular holomorphic disc (see Example 3.1).
After we prove Theorem I, it is straightforward to modify Polterovich’s argu-
ment [P1] to prove the following complex analytic analogue of Polterovich’s
result in [P1], replacing the perturbation of almost complex structures by the
one of Lagrangian submanifolds (with the standard complex structure on C”
fixed).

Theorem II (Compare with [P1]). Ler L € (ALy(C"))eg. Then there exists a
non-trivial regular holomorphic disc w : (D?,6D*) — (C",L) i.e., a non-trivial
solution of the equation

w=0 in D?
wl@DZ CcL

such that
3—n=wyw)sn+1.

Finally we study a Fredholm theory similar to Theorem I for holomorphic
discs with totally real boundary conditions in (almost) complex manifolds
(M,J). We denote by J (M) the set of totally real embeddings in (M,J) and
for each given totally real embedding Ry, we define

Try(M) = {R € T (M)|R isotopic to Ry through totally real embeddings} .
Then we also prove the following theorem.

Theorem I1L. Let (M,J) be a (almost) complex manifold and R, be a given to-
tally real submanifold. Then there exists a dense subset TRy reg(M) C T (M)
such that if R € gy reg(M), any (not multiply-covered) J -holomorphic
disc w: (D* 0D*) — (M,R) is Fredholm-regular.

Now comes the organization of this paper. In Sect. 2, we briefly summarize
basic facts on the Maslov index and its relation to the Fredholm index of
holomorphic discs. Section 3 starts with an example of non-regular holomorphic
disc showed to us by Polterovich and then develops a new Fredholm theory
of holomorphic discs under Hamiltonian (also under Lagrangian) pertubations
of Lagrangian embeddings and proves Theorem I. We also take this chance
to point out some nontrivial technical points in relation to the structure of the
image of J-holomorphic discs, which has not been addressed in the literature
[P1,2], [S] and [L]. Finally in Sect. 4, we study the case of totally real boundary
conditions and prove Theorem III.
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2 Maslov index and Fredholm index

In this section, we summarize the well-known facts on the Masolv index and its
relation to the Fredholm index of (pseudo)-holomorphic discs in a calibration
(or an almost Kihler structure) (M,w,J): We call a triple (M, ®,J) a cali-
bration or an almost Kihler structure if the bilinear form g(-, ) :=w(-,J *)
defines a Riemannian metric on M.

First, we recall the definition of the Maslov index p (w) for any smooth
disc w : (D?,8D%) — (M, L) that is not necessarily (pseudo)-holomorphic: For
a smooth disc w : (D% 0D?) — (M,L), we can find a unique trivialization
(up to homotopy) of the pull-back bundle w*TM =~ D? x C" as a symplectic
vector bundle. This trivialization defines a map a, from S' = 0D? to
A(n) = A(C") := the set of Lagrangian planes in €" on which there is the
well-known universal Maslov class u € H'(A(C"),Z) (see [A] for a detailed
description). We define the Maslov index p;(w) of the disc w : (D?,0D?%) —
(M, L) by

p(w) = (o) €Z .
This definition depends only on the homotopy class in my(M,L). If we have
another disc w' with

WlaDZ = W/laDZ cL ’

then we have (see [V] for the proof)

p(w) — p(w') = 2¢i(w — w') (2.1)

where ¢; is the first Chern class of (M,J) and the map w —w' : §? —» M is
defined by

w(z) if z€D?

—w)(z) = :
e Xe) {w’(f) if zeD’

Here we identify S? with D? U D’ where D’ is the disc with the opposite
orientation. In particular when ¢, vanishes (e.g., in €" or more generally in
Ricci-flat Kihler manifolds), the Maslov index u;(w) depends only on the
homotopy class in m;(L) of the boundary map of the disc, and so defines
a cohomology class in H'(L;Z). If one restricts to Lagrangian submanifolds
in €", this cohomology class is exactly the one defined by Maslov (see [A]),
which is called the Maslov class of the Lagrangian submanifold L C C".
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Now if we are given a J-holomorphic disc w: (D* 0D*) — (M,L), the
linearization operator E,, := Dd;(w) of the map 0, = %((—;’; +J%) at wis a
Fredholm operator of Fredholm index given by

Index E,, = pr(w)+n (2.2)

(see [G] for more details). Note that if w is non-trivial, the automorphism
group of the disc (D?,0D?) gives 3-dimensional family of J-holomorphic disc
and so generates at least 3 dimensional kernel of the linearization E,. This
implies
3 < dim KerE,, = Index E,, = u(w) +n

and so

uw) 2 3—n (2.3)
provided w is Fredholm-regular, i.e. provided Coker E,, = {0}.

3 Proof of Theorem I

One might wonder if there may not exist any non-regular holomorphic disc
w : (D*,0D*) — (C",L), but this is not the case and the following exam-
ple, provided by Polterovich, shows that there really exists a non-regular (not
multiply covered) holomorphic disc w unless we perturb the given Lagrangian
embedding.

Example 3.1 [Polterovich]. Consider the standard torus 72 = T2(l,r) =
S'(1) x S'(r) C €2, where S'(r) is the circle with radius » and with its
center at the origin in €. The loop S'(1) x {r} C T? obviously bounds the
standard holomorphic disc wy defined by

wo(z) = (z,r) € C%.

We will construct a Lagrangian submanifold L C €? that is a Hamiltonian
deformation of 72 which still bounds the holomorphic disc but its Maslov index
with respect L can be arbitrarily large non-positive even number, if we vary
the radius ». Note that the above standard disc has Maslov index B, (Owg) = 2
and the symplectic period

w[wo] = 0(0wp) = . (3.1)

We now recall a fact, which seems to be known to some experts for
some times, that any two embedded smooth loops in C” with the same
symplectic periods are isotopic through an ambient Hamiltonian isotopy
(see e.g. [LO; Appendix 1] for the proof of this fact). Then we consider the
radii r given by

r=vk, kel,.

For a fixed k € Z, the loop A; C T? defined by
11(0) - (e—i(k—l)ﬂ, \/%eiﬂ)
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has its Maslov index and symplectic period given by
pr2(h)=-2(k=2), O(h)=nm (3.2)

Since A9 = 0wp and A, have the same symplectic period, there exists an exact
symplectic diffeomorphism ¢ of €" that maps Ao to 4,. Now, we choose

L= ¢o(T?)

and then L still bounds the same holomorphic disc wy. However the boundary
of the disc lying on L = ¢o(T?) has Maslov index

pr(Ao) = =2(k —2).

This is because the Maslov index is invariant under Hamiltonian isotopies in
the sense that

By (P(A)) = pur(4)

for any given L and 4 C L. In particular, p;(wp) < 0 if £ 2 2, and so
wo cannot be regular by (2.3). Hence the theorem in this section will show
that this kind of holomorphic discs are non-generic under the perturbation of
Lagrangian boundary conditions.

In the rest of this section, we develop a Fredholm theory that takes
a different point of view from the traditional one in the Gromov theory
of pseudoholomorphic discs: we fix the (integrable) complex structure, or
rather the Kihler structure (M, w,J) and vary the given compact Lagrangian
submanifold L in (M, ) through either ambient Hamiltonian isotopies or
Lagrangian isotopies while the traditional approach in the Gromov theory is to
change the complex structure into (non-integrable) almost complex structures
as parameters. This approach is motivated by our attempt to exploit the stan-
dard Kihler structure of €" in the study of the Maslov class of Lagrangian
embeddings in C".

We first start with the problem of Hamiltonian perturbations and then
indicate later how to modify this for the perturbation by Lagrangian isotopies.
We first recall the description by Weinstein [W2] of the space of Hamiltonian
(or exact) deformations of a given Lagrangian submanifold L C (M, w), which
he calls the isodrast of L. Following [W2], we denote by A = A(M,w) the
space of closed, embedded Lagrangian submanifolds of (M, ®) and the isodrast
of L by A; = A;(M, ). Using the cotangent coordinates [W1], we see that the
tangent space to A (as well as the local model) at a given point L is naturally
isomorphic to the space Z'(L) of closed one-forms on L. Then the tangent
space of the isodrast A, = A (M,w) C A(M, ) of L is naturally isomorphic
to the subspace B'(L) in Z'(L) consisting of exact one-forms. Since the tangent
space Ty Ay to Ay of L is isomorphic to the space B'(L), we may also identify
T, A; with the space of the smooth functions of f on L with

[f=o0.
L
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In other words, the map X : f — X; defines an isomorphism between

C(L) := {f e C=(L) Lff = 0}

and T;A; where X; is defined by
Xr(x):=Jgrad, f(x), x€elL.

Here we used the measure on L to integrate that is induced from the ambient
metric on M which is in turn induced from the Kihler structure (M,w,J). The
induced metric on L is also used to define grad; f(x). Similarly, the metric on
M induces a function on C*°(L) defined by

I fllz= 3 & max|D* f(x)| (33)
keN  x€L
which defines a norm on the space

CUL) = {f € C°W)||| fllz < oo} .

This norm has been introduced by Floer [F] in a different context. Furthermore,
one can prove in the same way as in [F: Lemma 5.1] that C%(L) is a Banach
space and can choose € so that C*(L) is dense in Cy°(L) with respect to
L*-norm on C{°(L). We choose r > 0 small enough so that for || f|l; < r,

the cotangent coordinate chart map of A restricted to
CHL) = {f € C°W)||| fllz < r}

is injective, which is possible because the topology given by || - ||; is stronger
than C*°-topology. More precisely, we note that the cotangent coordinate chart
map gives an isomorphism between a neighborhood ¥, of L in M and a neigh-
borhood U, of the zero section in 7*L. We denote this cotangent chart map by

b :VCM—->UCT*L.

We note that each Lagrangian submanifold in 7*L C*-close to the zero section
can be represented by the graph of the exact one-form df for some smooth
function f on L. If we impose the condition fL f =0, this correspondence is
one to one.

Furthermore one can also give a canonical parametrization of the graphs
Graph(df) = {(x,df(x)) e T*L|x € L},
using the unique representative f, by the map
bs x> (x,df (x)).
In this way, once we fix the cotangent coordinate chart

Dy : Viy — Uy,
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we can canonically represent each Lagrangian submanifold L C*°-close to Ly as

L= ¢(Lo)

where ¢ = @,j()'od) 7,9Pr,. Here f is the unique function on Ly with [, » f=0
that represents the Lagrangian submanifold &, (L) C T*L,. Moreover, it is
also well-known (see e.g. [W1]) that this ¢; can be extended to an ambient
Hamiltonian isotopy ¢, : M — M so that

L = i, -

In particular,
1 € Du(M) .

We will abuse our notation so that ¢, also denotes any such Hamiltonian
diffeomorphism. We denote by X, : Ci(Lo) — AL, (M, ) the map defined by

X, (f) = @;, (Graphdf)

and by .4"(Ly) the image of C¥(L,) under the map X1, Then A(L) is certainly
a (open) Banach manifold since C¥(Lo) is an open set of Banach space.
Now, we fix s > 1 and define

F =F = HS+I(D2,M)

which is the Sobolev space of all maps w : D> — M whose (s+ 1)" derivative
is in L2. For a given compact Lagrangian submanifold Ly C (M, w), we define

M= M(N(Lo))

= {(w,L)E FxN(Lo)

0w =0, w|zp2 C L and w™(w(z)) N aD? = {z}
and Dw(z)#0 for some z € 6D?

(34)
where

= 1/0 0
61—5<5;+J5) ‘

Although we are not going to need it in this paper, we state the following
theorem to justify the terminology “multiply-covered” below, which were
implicitly assumed in the previous literature [P1,2], [S] and [L]. This will be
the boundary analogoue of Lemma 4.4 [Mc]. It turns out that the proof for the
boundary case requires a proof which is different from and more complicated
than for the interior case even in C" with respect to the standard complex
structure (see [O2] for details).

Theorem 3.2 [02]. Let (M,J) be an almost complex manifold and R be a
totally real submanifold in (M,J). We assume that (M,J) does not contain
any nontrivial J-holomorphic closed surface. Suppose that a J-holomorphic
disc w : (D?,0D?) — (M, R) does not satisfy the condition

wl(w(z))NdD* = {z} and Dw(z)+0 for some z € dD*.  (3.5)
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Then there exists some J-holomorphic disc w satisfying the condition (3.5)
such that

w=wob in D?

where b : D* — D? is a finite Blaschke product whose multiplicity is greater
than or equal to 2. In other words, b is of the form, with s > 2,

Z — O

_
b(z) =¢€* —
k=1 1 — oz

where c is real and o are complex constants.

In terms of this theorem, we will call a (J)-holomorphic disc multiply-
covered if it does not satisfy (3.5).

Remark 3.3. (i) We remark that without the condition that (M,J) does not
contain any nontrivial J-holomorphic closed surface, the above theorem is not
true in general illustrated by the following example (a similar remark was
made before about the proof of Lemma 5.3 [F] in the appendix of our paper
[O1]): Consider the unit sphere S?(1) with the standard complex structure and
let C C S? be a closed line segment (that is not a point) inside an equator
R C §%. Now consider a Riemann map from D? to S?\C such that 1 and —1
in 0D* maps to each of the ends of the line segment C. One can easily check
that this is a holomorphic disc with boundary in R which does not satisfy the
condition (3.5) but is not of form as in the theorem, i.e, “not multiply-covered”.
(ii) More generally, consider the holomorphic map

w:H—-C w(z) =z

and identify € U {oo} = S and H U {00} = D?* C C. The example (i)
corresponds to the case k = 2. If k is odd at least 5, then this map satisfies
the condition (3.5) but neither injective on an open dense subset of D? nor
multiply-covered in the sense of Theorem 3.2. These examples show that the
structure of the images of J-holomorphic discs is more complex than that of
J-holomorphic spheres (see [02] for further discussions on this matter).

Now, we note that since each L € 4#"(Ly) is Hamiltonian isotopic to L
and L = ¢.(Lo) as above, the pair (w,L) € .4 uniquely defines the homotopy
class [¢; ' ow] € my(M,Ly) where we mean by ¢, any ambient Hamiltonian
diffeomorphism that extends the map ¢, : Ly — L. However this class does
not depend on the choice of the extensions. Hence we can define, for each
A4 € my(M, Ly),

My = My(N (Lo)) = {(w,L) € M|[¢]' ow] = 4 in m(M,Lo)} .
Proposition 3.4. .#, is a Banach submanifold of F* x N (Ly), which does
not depend on s > 1 if s is sufficiently big. Indeed, if we denote F>® =
C>®(D?, M), then we have

My C F*® x N(Lp) .



514 Y.-G. Oh

Proof. The second statement follows from the elliptic regularity and so we
prove only the first statement. The general scheme of the proof is quite standard
by now but our set-up has never been used before and so we give a complete
proof of it.

We define for each w € £,

H, = H(W*TM)
the space of H’-sections of w*TM on D? and

#= #= U HWTM),
weF wEF

which becomes a smooth vector bundle over #. We also define QM) =
@ (M) = H*1(S'; M) and
QLo) = @HE(Le) = H*HH(S', Lo) := H*H(S', M) N C*(S', Lo)

which is the space of H (”%)-maps for S! to Ly. Note that by the trace theorem
(see e.g. [LM]), for each map w € H*tY(D?,M), its boundary map w|yn lies

in H**3(S',M). Now, we define a smooth map

A:F x N(Ly) — # x QM)
by B
Aw,L) = (ajw,qSL_l ow|zp2) -

Then we have
My = A_l({O} x Q4(Lo))

where
Qu(Lo) = {0 € X+I(Lo) |a = w2 for some w € F with [w] = 4} .

Therefore to prove the proposition, it is enough to prove that the map
A:F x N(Ly) — H x QM) is transverse to the submanifold

{0} x Qu(Lo) C # x QM) .
Let (w,L) € Ay, i.e., it satisfy
ow=0 in D?

¢ owlapz C Lo (3.6)
¢ ow] =4 in my(M,L).

To prove the transversality, we need to show

Im(Tw,1)4) + {0} & Ty—10y , (Ru(Lo)) = T(°'¢Z'°W|a1>2)

=,}?WGBT¢L—1°

(A x QM)
Laon. (3

wla
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Now, we note that each function f € Ci°(Lo) gives rise to a function
f qu[‘ € C°°(L) and so an element Xfo o1 € Ty A/ (Lo) and vice versa (since
L

L is contained in the cotangent coordinate neighborhood of Lj). Because of

this, we will represent an element in 74" (Lo) with Xfo 6! for a function f

L
in C§°(Ly). If (C,)(fo¢_1) € Tiw,1)(F x N (Ly)), then a straightforward com-
L
putation shows

nw,Lo)A(éy"\,f°¢;l) = (Vi Xp(d; " o wlap2) — &L " o wlap2))

EHDT

(0, ¢L_ ! °W|5DZ )

QM) (38)

where V is the Hermitian connection on TM and

== 1 /D D

Note that since we assume (M,w,J) is Kihler, the Hermitian connection
coincides with the Levi-Civita connection. We denote E = Eawry := T4
and its adjoint by

E* = (#y ® Ty, QM) — (Tou)(F x N(Lo)))* .
¢ oWlap2
Since the L?-inner product gives an isomorphism between #7% = (H*(w*TM))*

and H ~*(w*TM) and between (Ty=100, Q@I(M))* and T, _, Q=+(M),
L °%lap2 ¢, oWl
we define the Z2-adjoint of E, denoted by E*,

EYH W' TM) x Ty, DZQ‘(“%)(M) — (Towif(F x N (Lo)))*
L [3)

by the composition of £* and the above isomorphism. Now, to show (3.7), it
is enough to prove

(Im Ego.r) + {0} © Ty, Q(Lo))" = {0}, (39)

where ()1 is the L?-orthogonal complement of (-) in H~S(w*TM) &

Ty-1,, 2Q_(“”%)(M )- On the other hand, we note that
L aD:

i LI A 1
(ImE(w,L)+ {0} @ TZIOWL;DZQ(LO)) —(ImE(w,L)) n ({0} @ %L"IOWIBDZQ(LO))

=(ImEy, 1))t N {HW*TM) & (TL_IMM2 QLo))'} . (3.10)
Therefore, if (y,a) € (Im E,, 1)+ {0}®T oty Q(Ly))*, then we in particular
have o € (7;’[5”1@92 Q(Ly))* ie.

A0) = Ny, gyLo, 0 € 0D (3.11)
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where NL; is the normal bundle of Ly in M. Since we will not lose any
generality for the following discussions, we will assume from now on that
¢ =id, i.e. L = L, for the simplicity of the exposition. Now, we characterize

the element E¥(y,a), for each (y,a) € H'(W*TM) x T, , Q" (s+7)(M) by the
equation

(E* (1,0, (&Xp)) = [ (V&) + [ (Xp(Wlap2) — Elap2, @)
D? aD?

where ((- , -)) is the natural pairing between T(y,.)(# x A"(Lo)) and its dual.
If (y,2) € (ImEg,1) + {0} & (Ty=14,, DZ.Q(LO))l, then we have in particular
L g

E*(y,a) = 0 from (3.10), and so we are given

f(ij N+ | XrWlop2) — Elap2.#) = (3.12)
ap?

for all (&, f) € H*t'(w*TM ) x C(Lo). Since 7 is smooth by elliptic regularity,
we can integrate by parts to get

0=— (& + [ (&e™y)do+ [ (Xp(wlop2) — &lap2,®)
D? oD? oD?
== —f(é, Vi) + [ (& —a+ey)do+ [ (Xyow|yp,a)do
aD? oD?

for all ¢ and f where V, := 2 E —J ) Therefore, we have proven that
(y,a) satisfies

Vyy=0 in D?
—a+ey=0 on doD?
A= on some open subset A C 8D?

where ol is the normal component of a to Lo. The third equation follows
because of set of X (x)’s span NyLo for each x = w(z) € Lo at which w
satisfies the condition (3.5) (Recall the definition of .# in (3.4)). However
from (3.11), this implies

«=0 on AC dD*. (3.13)

Then the second equation and (3.13) imply that y|;2 =0 on 4 C oD?. This
together with the equation V,y = 0 implies

y=0 in D? (3.14)

by the unique continuation theorem [Ar] adapted for J-holomorphic maps (see
Theorem 2.1) [02]). Then back from the second equation and (3.14), we have

«=0 on dD?. (3.15)
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Combining (3.14) and (3.15), we have proved (7,2) = 0 which proves (3.9)
and so (3.7). Hence the proof. [

Now, it is straightforward to check from the ellipticity of the d,-equation
that the projection map

My =My, : My(N(Lo)) — N (Lo)

is Fredholm. Then by the Sard—Smale theorem, there is a subset of the second
category A (Lo)r’ig C A(Lo) which consists of regular elements. For these
L € #(Ly), the inverse image H;l(L) becomes a smooth manifold. Now let
AﬂO(M,a))reg C Ary(M,®) be the union of all ./V(L);{eg for L € A (M, ).
Then the intersection Az (M, ®)reg := ienyt,10) 1AL (M, @)reg} is a dense
subset of A, (M,w) as well as each A’L’O(M,w) is dense in Ary(M, w). Now
the standard index formula [G] implies

Index IT4 = py (4) +n .

Hence we have finally finished the proof of Theorem I.

Theorem 3.5. Let (M,w,J) be a Kihler manifold and let I C (M, w) be
a compact Lagrangian submanifold. Then there exists a dense subset of
¢ €(9Dy )rLeg C D, such that any (not multiply-covered) holomorphic disc

w: (D?,8D*) — (M, (L))

is Fredholm regular.

Proof. We define
(Zo)reg = {$ € Du|$(L) € AL(M, ®)reg}

and then the denseness of (2, reg In 9, follows from that ALM, @)reg is
dense in A,(M,w). O

Remark 3.6. (i) One can check, by carefully looking at the above proof, that
Theorem 3.5 holds even for general calibrations (M, w,J) for which J is not
necessarily integrable. The only difference from the integrable case is that the
linearization operator E,, = ng(w) which is the first component of Tiw,1)4,
will contain a torsion term in addition to ¥, and so its L2-adjoint will be
a sum of V; and some zero order operator. But this does not keep us from
applying the unique continuation theorem [O2] in the last step like in (3.13).
We emphasize here that the boundary condition does not change at all from
the integrable case.

(ii) One can also check that the above proof can be easily modified to
deal with the Fredholm theory under the Lagrangian isotopies. For this case,
we replace the isodrast A, = A;(M,w) by A = A(M, w), B'(L) by Z'(L) and
give Z'(L) a Floer norm that is similar to the one used n (3.3) for C*°(L) and
so for B'(L). The remaining argument goes through with obvious modifications.
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By applying the reasoning in Remark 3.6 (ii) to each connected component
of A(M,w), we have the following theorem.

Theorem 3.7. Let (M,w,J) be a Kihler manifold. Then there exists a dense
subset Areg(M,®) of A(M, ) such that for L € Arg(M, ), any (not multiply
covered) holomorphic disc

w: (D?,0D%) — (M,L)

is Fredholm-regular.

4 Fredholm theory of holomorphic discs with totally real boundary
conditions

The proof of Theorem I in Sect. 3 can be equally carried out for the totally
real boundary condition once we set up the framework and modify the proof
appropriately, which turns out to be easier to deal with than the case in Sect.3.
In this section, we explain the necessary modifications to deal with totally real
boundary conditions.

Let (M,J) be a complex manifold. We note that the set of totally real
embeddings is an open subset of all smooth embeddings and so the local
structure of the set of totally real embeddings, denoted by 7 (M), is the
same as the set of all smooth embeddings. For a given totally real embedding
Ry C (M,J), we denote

Try(M) = {R € 7 (M)|R isotopic to R, through totally real embeddings} .

We denote by NR the normal bundle of R in M with respect any fixed metric.
Then the tangent space to Jg,(M) (as well as the local model) at a given
point R € Jg,(M) is isomorphic to the space A(NR) of all smooth sections of
NR. As in Sect. 3, we define a Floer norm on A(NR) by

IX1ls = ¥ & max |D*X(x)]
kEN xX€ER

and _ R
A¥(NR) = {x € AQNR)|||X s < o0}

AX(NR) = {x € ANR)IX |}z < r},
We denote by expg : NR — M the exponential map on NR and then it defines
a diffeomorphism
expgr: URCNR—= TR CM
where Up and Vi are open neighborhoods of the zero section of NR and R
in M respectively. As before, A¥(NR) becomes a Banach space and one can
choose & so that A%(NR) is dense in A(NR) with respect to L?-norm on A(NR).

We choose > 0 small enough so that for |[X||s < r, the induced map
éXpg : AZ(NR) — T,(M) defined by

expr(X) = (expg o X )(R)
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is injective. Now we denote by .4#°(R) the image of A% under the map €XPg»
which is certainly a Banach manifold.
Now we fix sufficiently large s > 1 and define

F =F° =H"' (D", M)
and

M= MN(Ry)) = (WR) € F x N(Rp)| ¥ =0 W2 CR |
and w satisfies (3.5)

Since by definition R € A"(R) is isotopic to Ry through totally real embed-
dings, the pair (w,R) € .# uniquely defines the homotopy class [(w,R)] in
(M, Ry). Now we define as before

My = Msy(N (Ro)) = {(W,R) € M |[(W,R)] = 4 in m(M,Ryg)} .

Once we have set up these framework, the proof of Proposition 3.4 with minor
modifications gives the following proposition. (See Remark 3.6 (1)).

Proposition 4.1. .#, is a Banach submanifold of #° x N (Ry), which does
not depend on s > 1 if s is sufficiently big. Indeed, we have

J//AC9"°°><JV(R0).

Again by applying the Sard-Smale theorem, we immediately get the fol-
lowing theorem as in Sect. 3.

Theorem 4.2. Let (M,J) be a complex manifold and Ry be a given totally real
submanifold. Then there exists a dense subset TRoreg(M) C Tg,(M) such that
if R € Ty reg(M), any J-holomorphic disc (satisfying (3.5)) w : (D?,0D%) —
(M, R) is Fredholm-reqgular.

Again, the integrability of the complex structure can be dropped in the
hypotheses as in Remark 3.6 (i).
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