

Werk

Titel: Boundary value problems for elliptic integro-differential operators.

Autor: Taira, Kazuaki

Jahr: 1996

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0222 | log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Boundary value problems for elliptic integro-differential operators

Kazuaki Taira*

Institute of Mathematics, University of Tsukuba, Tsukuba 305, Japan

Received 11 November 1994; in final form 13 February 1995

Dedicated to Professor Kiyosi Itô on his 80th birthday

0 Introduction and results

This paper is a continuation of the previous note [T2] where we studied a class of degenerate boundary value problems for second-order elliptic differential operators and proved that this class of boundary value problems generates analytic semigroups both in the L^p topology and in the topology of uniform convergence. The purpose of this paper is to extend these results to the elliptic integro-differential operator case.

Let D be a bounded, *convex* domain of Euclidean space \mathbb{R}^N , with C^{∞} boundary ∂D ; its closure $\overline{D} = D \cup \partial D$ is an N-dimensional, compact C^{∞} manifold with boundary.

Let W be a second-order, elliptic integro-differential operator with real coefficients such that

$$Wu(x) = Au(x) + Su(x)$$

$$:= \left(\sum_{i,j=1}^{N} a^{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j}(x) + \sum_{i=1}^{N} b^i(x) \frac{\partial u}{\partial x_i}(x) + c(x)u(x) \right)$$

$$+ \int_{\mathbb{R}^N \setminus \{0\}} \left(u(x+z) - u(x) - \sum_{j=1}^{N} z_j \frac{\partial u}{\partial x_j}(x) \right) s(x,z) m(dz) .$$

Here:

1) $a^{ij} \in C^{\infty}(\overline{D})$, $a^{ij} = a^{ji}$ and there exists a constant $a_0 > 0$ such that

$$\sum_{i,j=1}^N a^{ij}(x)\xi_i\xi_j \geq a_0|\xi|^2, \quad x \in D, \xi \in \mathbf{R}^N.$$

^{*} Current address: Department of Mathematics, Hiroshima University, Higashi-Hiroshima 739, Japan

- 2) $b^i \in C^{\infty}(\overline{D})$.
 - 3) $c \in C^{\infty}(\overline{D})$, and $c \leq 0$ in D but $c \neq 0$ in D.
- 4) $s \in C(\overline{D} \times \mathbb{R}^N)$ and $0 \le s \le 1$ in $D \times \mathbb{R}^N$, and there exist constants $C_0 > 0$ and $0 < \theta_0 < 1$ such that

$$|s(x,z)-s(y,z)| \le C_0|x-y|^{\theta_0}, \quad x,y \in D, \ z \in \mathbf{R}^N,$$

and

$$s(x,z) = 0 \quad \text{if } x + z \notin \overline{D}$$
. (0.1)

Condition (0.1) implies that the integral operator S may be considered as an operator acting on functions u defined on the closure \overline{D} (see [G-M, Chapter II, Remark 1.19]).

5) The measure m(dz) is a Radon measure on $\mathbf{R}^N \setminus \{0\}$ such that

$$\int_{\{|z| \le 1\}} |z|^2 m(dz) + \int_{\{|z| > 1\}} |z| m(dz) < \infty.$$
 (0.2)

The operator W is called a second-order Waldenfels operator. The differential operator A is called a diffusion operator which describes analytically a strong Markov process with continuous paths in the interior D. The integral operator S is called a second-order Lévy operator which is supposed to correspond to the jump phenomenon in the closure \overline{D} (see [B-C-P], [T1]).

Let L be a first-order, boundary condition with real coefficients such that

$$Lu(x') = \mu(x')\frac{\partial u}{\partial \mathbf{n}}(x') + \gamma(x')u(x').$$

Here:

- 1) $\mu \in C^{\infty}(\partial D)$ and $\mu \geq 0$ on ∂D .
- 2) $\gamma \in C^{\infty}(\partial D)$ and $\gamma \leq 0$ on ∂D .
- 3) $\mathbf{n} = (n_1, n_2, \dots, n_N)$ is the unit interior normal to the boundary ∂D .

The boundary condition L is called a first-order *Ventcel' boundary condition*. The terms $\mu \partial u/\partial \mathbf{n}$ and γu of L are supposed to correspond to the reflection phenomenon and the absorption phenomenon, respectively.

Our fundamental hypothesis is the following:

$$\mu(x') - \gamma(x') > 0 \text{ on } \partial D. \tag{H}$$

The intuitive meaning of hypothesis (H) is that either the reflection phenomenon or the absorption phenomenon occurs at each point of the boundary ∂D

The first purpose of this paper is to prove an existence and uniqueness theorem for the following nonhomogeneous boundary value problem in the framework of *Hölder spaces*:

$$\begin{cases} Wu = f & \text{in } D, \\ Lu = \varphi & \text{on } \partial D. \end{cases}$$
 (*)

The crucial point is how to define a version of Hölder spaces in which problem (*) is uniquely solvable.

We introduce a subspace of the Hölder space $C^{1+\theta}(\partial D)$, $0 < \theta < 1$, which is associated with the boundary condition L in the following way: We let

$$C_L^{1+\theta}(\partial D) = \{ \varphi = \mu \varphi_1 - \gamma \varphi_2; \ \varphi_1 \in C^{1+\theta}(\partial D), \ \varphi_2 \in C^{2+\theta}(\partial D) \},$$

and define a norm

$$|\varphi|_{C_t^{1+\theta}(\partial D)} = \inf\{|\varphi_1|_{C^{1+\theta}(\partial D)} + |\varphi_2|_{C^{2+\theta}(\partial D)}; \ \varphi = \mu \varphi_1 - \gamma \varphi_2\}.$$

Then it is easy to verify that the space $C_L^{1+\theta}(\partial D)$ is a Banach space with respect to the norm $|\cdot|_{C_L^{1+\theta}(\partial D)}$. We remark that the space $C_L^{1+\theta}(\partial D)$ is an "interpolation space" between $C^{2+\theta}(\partial D)$ and $C^{1+\theta}(\partial D)$. More precisely, we have

$$\begin{cases} C_L^{1+\theta}(\partial D) = C^{2+\theta}(\partial D) & \text{if } \mu \equiv 0 \text{ on } \partial D, \\ C_L^{1+\theta}(\partial D) = C^{1+\theta}(\partial D) & \text{if } \mu > 0 \text{ on } \partial D. \end{cases}$$

Now we can state our existence and uniqueness theorem for problem (*):

Theorem 1 If hypothesis (H) is satisfied, then the mapping

$$(W,L): C^{2+\theta}(\overline{D}) \to C^{\theta}(\overline{D}) \oplus C_L^{1+\theta}(\partial D)$$

is an algebraic and topological isomorphism for all $0 < \theta < \theta_0$. In particular, for any $f \in C^{\theta}(\overline{D})$ and any $\varphi \in C_L^{1+\theta}(\partial D)$, there exists a unique solution $u \in C^{2+\theta}(\overline{D})$ of problem (*).

As an application of Theorem 1, we consider the problem of existence of Markov processes in probability theory. To do so, we let

$$M = \{x' \in \partial D; \mu(x') = 0\}$$
.

Then, in view of condition (H), it follows that the boundary condition Lu = 0 on ∂D includes the condition u = 0 on M. With this fact in mind, we let

$$C_0(\overline{D}\backslash M) = \{u \in C(\overline{D}); u = 0 \text{ on } M\}.$$

The space $C_0(\overline{D}\backslash M)$ is a closed subspace of $C(\overline{D})$; hence it is a Banach space. A strongly continuous semigroup $\{T_t\}_{t\geq 0}$ on the space $C_0(\overline{D}\backslash M)$ is called a *Feller semigroup* on $\overline{D}\backslash M$ if it is non-negative and contractive on $C_0(\overline{D}\backslash M)$:

$$f \in C_0(\overline{D}\backslash M), \ 0 \le f \le 1 \quad \text{on } \overline{D}\backslash M \Rightarrow 0 \le T_t f \le 1 \quad \text{on } \overline{D}\backslash M.$$

It is known (see [T1, Chapter 9]) that if T_t is a Feller semigroup on $\overline{D} \backslash M$, then there exists a unique Markov transition function p_t on $\overline{D} \backslash M$ such that

$$T_t f(x) = \int_{\overline{D} \setminus M} p_t(x, dy) f(y), \quad f \in C_0(\overline{D} \setminus M),$$

and further p_t is the transition function of some strong Markov process.

We define a linear operator \mathscr{W} from $C_0(\overline{D}\backslash M)$ into itself as follows:

(a) The domain of definition $D(\mathcal{W})$ is the set

$$D(\mathcal{W}) = \{ u \in C^2(\overline{D}) \cap C_0(\overline{D} \backslash M); Wu \in C_0(\overline{D} \backslash M), Lu = 0 \}.$$

(b) $\mathcal{W}u = Wu, u \in D(\mathcal{W})$.

The next theorem is a generalization of Theorem 4 of [T2] to the integrodifferential operator case:

Theorem 2 If hypothesis (H) is satisfied, then the operator W is closable in the space $C_0(\overline{D}\backslash M)$, and its minimal closed extension \overline{W} is the infinitesimal generator of some Feller semigroup $\{T_t\}_{t\geq 0}$ on $\overline{D}\backslash M$.

Theorem 2 asserts that there exists a Feller semigroup on $\overline{D}\backslash M$ corresponding to such a diffusion phenomenon that a Markovian particle moves both by jumps and continuously in the state space $\overline{D}\backslash M$ until it "dies" at the time when it reaches the set M where the particle is definitely absorbed (see [K, Theorem 5.2], [S, Theorem 2.2], [G-M, Chapter VIII, Theorem 3.3]).

The second purpose of this paper is to study problem (*) from the point of view of analytic semigroup theory in functional analysis. The forthcoming two theorems generalize Theorems 2 and 3 of [T2] to the integro-differential operator case.

First we state a generation theorem of analytic semigroups in the L^p topology. To do so, we associate with problem (*) an unbounded linear operator W_p from $L^p(D)$ into itself as follows:

(a) The domain of definition $D(W_p)$ is the set

$$D(W_p) = \{u \in H^{2, p}(D); Lu = 0\}.$$

(b) $W_p u = Wu, u \in D(W_p).$

Then we can prove the following:

Theorem 3 Let 1 . Assume that hypothesis (H) is satisfied. Then we have the following:

(i) For every $\varepsilon > 0$, there exists a constant $r_p(\varepsilon) > 0$ such that the resolvent set of W_p contains the set $\Sigma_p(\varepsilon) = \{\lambda = r^2 e^{i\vartheta}; r \ge r_p(\varepsilon), -\pi + \varepsilon \le \vartheta \le \pi - \varepsilon\}$, and that the resolvent $(W_p - \lambda I)^{-1}$ satisfies the estimate

$$\|(W_p - \lambda I)^{-1}\| \le \frac{c_p(\varepsilon)}{|\lambda|}, \quad \lambda \in \Sigma_p(\varepsilon),$$
 (0.3)

where $c_p(\varepsilon) > 0$ is a constant depending on ε .

(ii) The operator W_p generates a semigroup e^{zW_p} on the space $L^p(D)$ which is analytic in the sector $\Delta_{\varepsilon} = \{z = t + is; z \neq 0, |\arg z| < \pi/2 - \varepsilon\}$ for any $0 < \varepsilon < \pi/2$.

Secondly, we state a generation theorem of analytic semigroups in the topology of uniform convergence. We introduce a linear operator $\mathfrak B$ from $C_0(\overline{D}\backslash M)$ into itself as follows:

(a) The domain of definition $D(\mathfrak{W})$ is the set

$$D(\mathfrak{W}) = \{ u \in C_0(\overline{D} \backslash M) \cap H^{2,p}(D); Wu \in C_0(\overline{D} \backslash M), Lu = 0 \}.$$

(b) $\mathfrak{W}u = Wu, u \in D(\mathfrak{W}).$

Here we remark that the domain $D(\mathfrak{W})$ is independent of N (see the proof of Lemma 4.2).

Then Theorem 3 remains valid with $L^p(D)$ and W_p replaced by $C_0(\overline{D}\backslash M)$ and \mathfrak{W} , respectively:

Theorem 4 If hypothesis (H) is satisfied, then we have the following:

(i) For every $\varepsilon > 0$, there exists a constant $r(\varepsilon) > 0$ such that the resolvent set of \mathfrak{W} contains the set $\Sigma(\varepsilon) = \{\lambda = r^2 e^{i\vartheta}; r \ge r(\varepsilon), -\pi + \varepsilon \le \vartheta \le \pi - \varepsilon\}$, and that the resolvent $(\mathfrak{W} - \lambda I)^{-1}$ satisfies the estimate

$$\|(\mathfrak{W} - \lambda I)^{-1}\| \le \frac{c(\varepsilon)}{|\lambda|}, \quad \lambda \in \Sigma(\varepsilon),$$
 (0.4)

where $c(\varepsilon) > 0$ is a constant depending on ε .

(ii) The operator \mathfrak{W} generates a semigroup $e^{z\mathfrak{W}}$ on the space $C_0(\overline{D}\backslash M)$ which is analytic in the sector $\Delta_{\varepsilon} = \{z = t + is; z \neq 0, |\arg z| < \pi/2 - \varepsilon\}$ for any $0 < \varepsilon < \pi/2$.

Theorems 3 and 4 express a regularizing effect for the parabolic integrodifferential operator $\partial/\partial t - W$ with homogeneous boundary condition L (see [G-M, Chapter VIII, Theorem 3.1]).

The rest of this paper is organized as follows. In Section 1 we study problem (*) in the framework of Hölder spaces, and prove Theorem 1. The essential point in the proof is to estimate the integral operator S in terms of Hölder norms. We show that the operator (W,L) may be considered as a perturbation of a compact operator to the operator (A,L) in the framework of Hölder spaces. Thus the proof of Theorem 1 is reduced to the differential operator case which is studied in detail in [T2]. Section 2 is devoted to the proof of Theorem 2. The proof is based on a version of the Hille-Yosida theorem in semigroup theory in terms of the maximum principle. In Section 3 we prove Theorem 3. We estimate the integral operator S in terms of L^p norms, and show that S is an A_p -completely continuous operator in the sense of Gohberg and Kreın [G-K]. Section 4 is devoted to the proof of Theorem 4. Theorem 4 follows from Theorem 3 by using Sobolev's imbedding theorems and a λ -dependent localization argument, just as in [T2].

1 Proof of Theorem 1

I) First we prove Theorem 1 in the case when $S \equiv 0$:

Theorem 1.1 If hypothesis (H) is satisfied, then the mapping

$$(A,L): C^{2+\theta}(\overline{D}) \to C^{\theta}(\overline{D}) \oplus C_L^{1+\theta}(\partial D)$$

is an algebraic and topological isomorphism for all $0 < \theta < 1$.

Proof. The proof is divided into four steps.

i) Let (f, φ) be an arbitrary element of $C^{\theta}(\overline{D}) \oplus C_L^{1+\theta}(\partial D)$ with $\varphi = \mu \varphi_1 - \gamma \varphi_2$.

First we show that the boundary value problem

$$\begin{cases} Au = f & \text{in } D, \\ Lu = \varphi & \text{on } \partial D \end{cases}$$
 (**)

can be reduced to the study of an operator on the boundary.

To do so, we consider the following Neumann problem:

$$\begin{cases} Av = f & \text{in } D, \\ \frac{\partial v}{\partial \mathbf{n}} = \varphi_1 & \text{on } \partial D. \end{cases}$$
 (N)

Recall that the existence and uniqueness theorem for problem (N) is well established in the framework of Hölder spaces (see [G-T, Theorem 6.31]). Thus we find that a function $u \in C^{2+\theta}(\overline{D})$ is a solution of problem (*) if and only if the function $w = u - v \in C^{2+\theta}(\overline{D})$ is a solution of the problem

$$\begin{cases} Aw = 0 & \text{in } D, \\ Lw = \varphi - Lv & \text{on } \partial D. \end{cases}$$

Here we remark that

$$Lv = \mu \frac{\partial v}{\partial \mathbf{n}} + \gamma v = \mu \varphi_1 + \gamma v ;$$

so that

$$Lw = -\gamma(\varphi_2 + v) \in C^{2+\theta}(\partial D).$$

But we know that every solution $w \in C^{2+\theta}(\overline{D})$ of the homogeneous equation: Aw = 0 in D can be expressed as follows (see [G-T, Theorem 6.14]):

$$w = \mathscr{P}\psi, \quad \psi \in C^{2+\theta}(\partial D)$$
.

Thus one can reduce the study of problem (**) to that of the equation

$$T\psi := L\mathcal{P}\psi = -\gamma(\varphi_2 + v) \quad \text{on } \partial D.$$
 (+)

More precisely, we have the following:

Proposition 1.2 For functions $f \in C^{\theta}(\overline{D})$ and $\varphi \in C_L^{1+\theta}(\partial D)$, there exists a solution $u \in C^{2+\theta}(\overline{D})$ of problem (**) if and only if there exists a solution $\psi \in C^{2+\theta}(\partial D)$ of equation (+).

ii) We study the operator T in question. It is known (see [H, Chapter XX]) that the operator

$$T\psi = L\mathscr{P}\psi = \mu \frac{\partial}{\partial \mathbf{n}} (\mathscr{P}\psi) + \gamma \psi$$

is a first-order, pseudo-differential operator on the boundary ∂D . The next proposition is an essential step in the proof of Theorem 1.1:

Proposition 1.3 If hypothesis (H) is satisfied, then there exists a parametrix E in the Hörmander class $L^0_{1,1/2}(\partial D)$ for T which maps $C^{k+\theta}(\partial D)$ continuously into itself for any integer $k \ge 0$.

Proof. By making use of Theorem 22.1.3 of [H, Chapter XXII] just as in [T2, Lemma 4.2], one can construct a parametrix E in the Hörmander class $L_{1,1/2}^0(\partial D)$ for T:

$$ET \equiv TE \equiv I \bmod L^{-\infty}(\partial D).$$

The boundedness of $E: C^{k+\theta}(\partial D) \to C^{k+\theta}(\partial D)$ follows from an application of [B, Theorem 1], since $C^{k+\theta}(\partial D) = B^{k+\theta}_{\infty,\infty}(\partial D)$. \square

iii) We consider problem (**) in the framework of Sobolev spaces of L^p style, and prove an L^p version of Theorem 1.1.

If k is a positive integer and 1 , we define the Sobolev space

$$H^{k,p}(D)$$
 = the space of (equivalence classes of) functions $u \in L^p(D)$ whose derivatives $D^{\alpha}u$, $|\alpha| \leq k$, in the sense of distributions are in $L^p(D)$,

and the Besov space

$$B^{k-1/p,p}(\partial D)$$
 = the space of the boundary values φ of functions $u \in H^{k,p}(D)$.

In the space $B^{k-1/p,p}(\partial D)$, we introduce a norm

$$|\varphi|_{B^{k-1/p,p}(\partial D)}=\inf \|u\|_{H^{k,p}(D)},$$

where the infimum is taken over all functions $u \in H^{k,p}(D)$ which equal φ on the boundary ∂D . The space $B^{k-1/p,p}(\partial D)$ is a Banach space with respect to this norm $|\cdot|_{B^{k-1/p,p}(\partial D)}$ (cf. [B-L]).

We introduce a subspace of $B^{1-1/p,p}(\partial D)$ which is an L^p version of $C_L^{1+\theta}(\partial D)$. We let

$$B_L^{1-1/p,p}(\partial D) = \{ \varphi = \mu \varphi_1 - \gamma \varphi_2; \varphi_1 \in B^{1-1/p,p}(\partial D), \ \varphi_2 \in B^{2-1/p,p}(\partial D) \},$$

and define a norm

$$|\varphi|_{B_L^{1-1/p,p}(\partial D)} = \inf\{|\varphi_1|_{B^{1-1/p,p}(\partial D)} + |\varphi_2|_{B^{2-1/p,p}(\partial D)}; \varphi = \mu \varphi_1 - \gamma \varphi_2\}.$$

Then it is easy to verify that the space $B_L^{1-1/p,p}(\partial D)$ is a Banach space with respect to the norm $|\cdot|_{B_r^{1-1/p,p}(\partial D)}$.

Then, arguing just as in the proof of [T2, Theorem 1], we can obtain the following L^p version of Theorem 1.1:

Theorem 1.4 If hypothesis (H) is satisfied, then the mapping

$$(A,L): H^{2,p}(D) \to L^p(D) \oplus B_L^{1-1/p,p}(\partial D)$$

is an algebraic and topological isomorphism.

iv) Now we remark that

$$\left\{ \begin{array}{l} C^{\theta}(\overline{D}) \subset L^{p}(D) \;, \\ C_{L}^{1+\theta}(\partial D) \subset B_{L}^{1-1/p,p}(\partial D) \;. \end{array} \right.$$

Thus, we find from Theorem 1.4 that problem (**) has a unique solution $u \in H^{2,p}(D)$ for any $f \in C^{\theta}(\overline{D})$ and any $\varphi \in C_L^{1+\theta}(\partial D)$. Furthermore, by virtue of Proposition 1.2, it follows that the solution u can be written in the form

$$u = v + \mathscr{P}\psi, \quad v \in C^{2+\theta}(\overline{D}), \quad \psi \in B^{2-1/p,p}(\partial D).$$

But, Proposition 1.3 tells us that

$$\psi \in C^{2+\theta}(\partial D)$$
,

since we have $\psi \equiv E(T\psi) = -E(\gamma(\varphi_2 + v)) \mod C^{\infty}(\partial D)$.

Therefore, we obtain that

$$u = v + \mathscr{P}\psi \in C^{2+\theta}(\overline{D})$$
.

The proof of Theorem 1.1 is complete. \Box

II) Next we study the integral operator S in the framework of Hölder spaces. To do so, we need the following elementary estimates for the measure m(dz):

Claim 1.5 For $\varepsilon > 0$, we let

$$\sigma(\varepsilon) = \int\limits_{\{|z| \le \varepsilon\}} |z|^2 m(dz) ,$$

$$\delta(\varepsilon) = \int\limits_{\{|z| > \varepsilon\}} |z| m(dz) ,$$

$$\tau(\varepsilon) = \int\limits_{\{|z| > \varepsilon\}} m(dz) .$$

Then we have, as $\varepsilon \downarrow 0$,

$$\sigma(\varepsilon) \to 0$$
, (1.1)

$$\delta(\varepsilon) \le \frac{C_1}{\varepsilon} + C_2 \,, \tag{1.2}$$

$$\tau(\varepsilon) \le \frac{C_1}{\varepsilon^2} + C_2 \,, \tag{1.3}$$

where

$$C_1 = \int_{\{|z| \le 1\}} |z|^2 m(dz), \qquad C_2 = \int_{\{|z| > 1\}} |z| m(dz).$$

Proof. Assertion (1.1) follows immediately from condition (0.2). The term $\delta(\varepsilon)$ can be estimated as follows:

$$\begin{split} \delta(\varepsilon) &= \int\limits_{\{|z|>1\}} |z| m(dz) + \int\limits_{\{\varepsilon<|z|\leq 1\}} |z| m(dz) \\ &\leq \int\limits_{\{|z|>1\}} |z| m(dz) + \frac{1}{\varepsilon} \int\limits_{\{\varepsilon<|z|\leq 1\}} |z|^2 m(dz) \\ &\leq \int\limits_{\{|z|>1\}} |z| m(dz) + \frac{1}{\varepsilon} \int\limits_{\{|z|\leq 1\}} |z|^2 m(dz) \;. \end{split}$$

The term $\tau(\varepsilon)$ is estimated in a similar way. \square

By virtue of Claim 1.5, we can estimate the term Su in terms of Hölder norms, just as in [G-M, Chapter II, Lemmas 1.2 and 1.5]:

Lemma 1.6 For every $\eta > 0$, there exists a constant $C_{\eta} > 0$ such that we have, for all $u \in C^2(\overline{D})$,

$$||Su||_{\infty} \leq \eta ||\nabla^2 u||_{\infty} + C_{\eta}(||u||_{\infty} + ||\nabla u||_{\infty}).$$

Here

$$||u||_{\infty} = \sup_{x \in D} |u(x)|.$$

Lemma 1.7 For every $\eta > 0$, there exists a constant $C_{\eta} > 0$ such that we have, for all $u \in C^{2+\theta_0}(\overline{D})$,

$$\|Su\|_{C^{\theta_{0}(\overline{D})}} \leq \eta \|\nabla^{2}u\|_{C^{\theta_{0}(\overline{D})}} + C_{\eta}(\|u\|_{C^{\theta_{0}(\overline{D})}} + \|\nabla u\|_{C^{\theta_{0}(\overline{D})}}).$$

Here

$$\|u\|_{C^{\theta_0}(\overline{D})} = \|u\|_{\infty} + [u]_{\theta_0}, \qquad [u]_{\theta_0} = \sup_{\substack{x,y \in D \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\theta_0}}.$$

III) End of Proof of Theorem 1. First, Theorem 1.1 implies that

$$ind(A,L) = 0$$
.

On the other hand, Lemma 1.7 tells us that the operator S maps $C^{2+\theta_0}(\overline{D})$ continuously into $C^{\theta_0}(\overline{D})$. Hence it follows from an application of [B-C-P, Théorème XXII] that S is a *compact* operator from $C^{2+\theta}(\overline{D})$ into $C^{\theta}(\overline{D})$ for all $0 < \theta < \theta_0$. This implies that the operator (W, L) is a perturbation of a compact operator to the operator (A, L).

Hence we find that

$$ind(W,L) = ind(A,L) = 0$$
.

Therefore, in order to show the bijectivity of (W,L), it suffices to prove its *injectivity*:

$$\begin{cases} u \in C^{2+\theta}(\overline{D}), Wu = 0 & \text{in } D, \quad Lu = 0 & \text{on } \partial D \\ \Rightarrow u = 0 & \text{in } D. \end{cases}$$

But, this is an immediate consequence of the following maximum principle:

Proposition 1.8 If hypothesis (H) is satisfied, then we have:

$$\begin{cases} u \in C^2(\overline{D}), Wu \ge 0 & in D, \quad Lu \ge 0 \quad on \ \partial D \\ \Rightarrow u \le 0 & on \ \overline{D} \ . \end{cases}$$

Proof. If u is a constant m, then we have $0 \le Wu = mc$ in D. This implies that $u \equiv m$ is non-positive, since $c \le 0$ and $c \not\equiv 0$ in D.

Now we consider the case when u is not a constant. Assume to the contrary that:

$$m=\max_{\overline{D}}\,u\,>\,0\;.$$

Then, applying the strong maximum principle (see [B-C-P, Théorème VII]) to the operator W, we obtain that there exists a point x'_0 of ∂D such that

$$\begin{cases} u(x'_0) = m, \\ u(x) < u(x'_0) & \text{for all } x \in D. \end{cases}$$

Furthermore, it follows from an application of the boundary point lemma (see [B-C-P, Théorème VIII]) that

$$\frac{\partial u}{\partial \mathbf{n}}(x_0') < 0.$$

Hence we have

$$\mu(x_0') = 0, \qquad \gamma(x_0') = 0,$$

since $Lu(x'_0) \ge 0$. This contradicts hypothesis (H). \Box

The proof of Theorem 1 is now complete. \Box

2 Proof of Theorem 2

The proof of Theorem 2 is based on the following version of the Hille-Yosida theorem in terms of the maximum principle (see [B-C-P, Théorème de Hille-Yosida-Ray]):

Theorem 2.1 Let \mathscr{A} be a linear operator from the space $C_0(\overline{D}\backslash M)$ into itself, and assume that:

- (a) The domain $D(\mathcal{A})$ is dense in the space $C_0(\overline{D}\backslash M)$.
- (β) For any $u \in D(\mathcal{A})$ such that $\sup u > 0$, there exists a point $x \in \overline{D} \setminus M$ such that $u(x) = \sup u$ and $\mathcal{A}u(x) \leq 0$.
 - (γ) For all $\alpha > 0$, the range $R(\mathcal{A} \alpha I)$ is dense in the space $C_0(\overline{D}\backslash M)$.

Then the operator \mathscr{A} is closable in the space $C_0(\overline{\mathbb{D}}\backslash M)$, and its minimal closed extension $\overline{\mathscr{A}}$ generates a Feller semigroup $\{T_t\}_{t\geq 0}$ on $\overline{\mathbb{D}}\backslash M$.

Proof of Theorem 2. We have only to verify conditions (α) , (β) and (γ) in Theorem 2.1 for the operator \mathcal{W} .

(y) We obtain from Theorem 1 (and its proof) that the mapping

$$(W - \alpha, L) : C^{2+\theta}(\overline{D}) \to C^{\theta}(\overline{D}) \oplus C_I^{1+\theta}(\partial D)$$

is an algebraic and topological isomorphism for all $\alpha > 0$. This verifies condition (γ) , since the range $R(\mathcal{W} - \alpha I)$ contains the space $C^{\theta}(\overline{D}) \cap C_0(\overline{D} \backslash M)$ which is dense in $C_0(\overline{D} \backslash M)$.

(β) First let x_0 be a point of D such that $u(x_0) = \sup u$. Then it follows from an application of [B-C-P, Théorème V] that

$$\mathscr{W}u(x_0)=\mathscr{W}u(x_0)\leq 0.$$

Next let x_0' be a point of $\partial D \setminus M$ such that $u(x_0') = \sup u$. Assume to the contrary that

$$\mathcal{W}u(x_0') = Wu(x_0') > 0.$$

We have only to consider the case when u is not a constant. Then it follows from an application of the boundary point lemma that $(\partial u/\partial \mathbf{n})(x_0') < 0$. Hence we have

$$\mu(x_0')=0\;,$$

since $Lu(x_0') = 0$. This contradicts the hypothesis: $x_0' \in \partial D \setminus M$, that is, $\mu(x_0') > 0$.

(α) The density of the domain $D(\mathcal{W})$ can be proved just as in the proof of [T2, Theorem 8.20], by using [B-C-P, Proposition III.1.6].

The proof of Theorem 2 is complete. \Box

3 Proof of Theorem 3

The next theorem, which is a generalization of [T2, Theorem 6.1] to the integrodifferential operator case, proves Theorem 3:

Theorem 3.1 If hypothesis (H) is satisfied, then, for every $0 < \varepsilon < \pi/2$, there exists a constant $r_p(\varepsilon) > 0$ such that the resolvent set of W_p contains the set $\Sigma_p(\varepsilon) = \{\lambda = r^2 e^{i\vartheta}; r \ge r_p(\varepsilon), -\pi + \varepsilon \le \vartheta \le \pi - \varepsilon\}$, and that the resolvent $(W_p - \lambda I)^{-1}$ satisfies estimate (0.3).

Proof. The proof is divided into three steps.

i) We show that there exist constants $r_p(\varepsilon)$ and $c_p(\varepsilon)$ such that we have, for all $\lambda = r^2 e^{i\vartheta}$ satisfying $r \ge r_p(\varepsilon)$ and $-\pi + \varepsilon \le \vartheta \le \pi + \varepsilon$,

$$|u|_{2,p} + |\lambda|^{1/2} |u|_{1,p} + |\lambda| ||u||_p \le c_p(\varepsilon) ||(W_p - \lambda I)u||_p.$$
 (3.1)

Here

$$||u||_p = ||u||_{L^p(D)}, \qquad |u|_{1,p} = ||\nabla u||_{L^p(D)}, \qquad |u|_{2,p} = ||\nabla^2 u||_{L^p(D)}.$$

First we recall (see [T2, formula (6.2)]) that estimate (3.1) is proved for the differential operator A:

$$|u|_{2,p} + |\lambda|^{1/2} |u|_{1,p} + |\lambda| ||u||_p \le c_p'(\varepsilon) ||(A_p - \lambda I)u||_p.$$
 (3.2)

Here the operator A_p is an unbounded linear operator from $L^p(D)$ into itself defined by the following:

(a) The domain of definition $D(A_p)$ is the set

$$D(A_p) = \{ u \in H^{2,p}(D); Lu = 0 \} .$$

(b)
$$A_p u = Au, u \in D(A_p)$$
.

In order to replace the last term $\|(A_p - \lambda I)u\|_p$ by the term $\|(W_p - \lambda I)u\|_p$, we need the following L^p -estimate for the operator S:

Lemma 3.2 For every $\eta > 0$, there exists a constant $C_{\eta} > 0$ such that we have, for all $u \in H^{2,p}(D)$,

$$||Su||_{p} \le \eta |u|_{2,p} + C_{\eta}(||u||_{p} + |u|_{1,p}). \tag{3.3}$$

Proof. We decompose the term Su into the following three terms:

$$Su(x) = \int_{0}^{1} (1-t)dt \int_{\{|z| \le \varepsilon\}} z \cdot \nabla^{2}u(x+tz)zs(x,z)m(dz)$$

$$+ \int_{\{|z| > \varepsilon\}} (u(x+z) - u(x))s(x,z)m(dz) - \int_{\{|z| > \varepsilon\}} z \cdot \nabla u(x)s(x,z)m(dz)$$

$$:= S_{1}u(x) + S_{2}u(x) - S_{3}u(x).$$

First we estimate the L^p norm of the term $S_3 u$. By using estimate (1.2), we obtain that

$$\left| \int_{\{|z|>\varepsilon\}} z \cdot \nabla u(x) s(x,z) m(dz) \right| \leq \delta(\varepsilon) |\nabla u(x)| \leq \left(\frac{C_1}{\varepsilon} + C_2 \right) |\nabla u(x)|.$$

Hence we have the L^p estimate of the term $S_3 u$:

$$||S_3 u||_p \le \left(\frac{C_1}{\varepsilon} + C_2\right) ||\nabla u||_p.$$

Secondly, we have

$$\left\| \int_{\{|z|>\varepsilon\}} u(\cdot) s(\cdot,z) m(dz) \right\|_{p} \leq \left(\frac{C_{1}}{\varepsilon^{2}} + C_{2} \right) \|u\|_{p}.$$

Furthermore, by using Hölder's inequality and Fubini's theorem, we obtain from condition (0.1) that

$$\int_{\mathbf{R}^{N}} \left| \int_{\{|z| > \varepsilon\}} u(x+z) s(x,z) m(dz) \right|^{p} dx$$

$$\leq \int_{\mathbf{R}^{N}} \left(\int_{\{|z| > \varepsilon\}} |u(x+z)| s(x,z) m(dz) \right)^{p} dx$$

$$\leq \int_{\mathbf{R}^{N}} \left(\int_{\{|z| > \varepsilon\}} |u(x+z)|^{p} s(x,z)^{p} m(dz) \right) \left(\int_{\{|z| > \varepsilon\}} m(dz) \right)^{p/q} dx$$

$$= \tau(\varepsilon)^{p/q} \int_{\mathbf{R}^{N}} \int_{\{|z| > \varepsilon\}} |u(x+z)|^{p} s(x,z)^{p} m(dz) dx$$

$$= \tau(\varepsilon)^{p/q} \int_{\{|z| > \varepsilon\}} \left(\int_{\mathbf{R}^{N}} |u(x+z)|^{p} s(x,z)^{p} dx \right) m(dz)$$

$$\leq \tau(\varepsilon)^{p/q} \left(\int_{D} |u(y)|^{p} dy \right) \left(\int_{\{|z| > \varepsilon\}} m(dz) \right) = \tau(\varepsilon)^{p} ||u||_{p}^{p}.$$

By estimate (1.3), we have the L^p estimate of the term S_2u :

$$||S_2 u||_p \leq \left(\frac{C_1}{\varepsilon^2} + C_2\right) ||u||_p.$$

Similarly, by using Hölders's inequality and Fubini's theorem, we find that

$$\int_{\mathbf{R}^{N}} \left| \int_{0}^{1} (1-t)dt \int_{\{|z| \le \varepsilon\}} z \cdot \nabla^{2}u(x+tz)zs(x,z)m(dz) \right|^{p} dx$$

$$\leq \int_{\mathbf{R}^{N}} \left(\int_{0}^{1} dt \int_{\{|z| \le \varepsilon\}} |z|^{2} |\nabla^{2}u(x+tz)|s(x,z)m(dz) \right)^{p} dx$$

$$\leq \int_{\mathbf{R}^{N}} \int_{0}^{1} dt \left(\int_{\{|z| \le \varepsilon\}} |z|^{2} |\nabla^{2}u(x+tz)|^{p}s(x,z)^{p}m(dz) \right)$$

$$\times \left(\int_{\{|z| \le \varepsilon\}} |z|^{2}m(dz) \right)^{p/q} dx$$

$$= \sigma(\varepsilon)^{p/q} \int_{0}^{1} dt \int_{\{|z| \le \varepsilon\}} |z|^{2} \left(\int_{\mathbf{R}^{N}} |\nabla^{2}u(x+tz)|^{p}s(x,z)^{p}m(dz) \right) dx$$

$$= \sigma(\varepsilon)^{p/q} \int_{0}^{1} dt \int_{\{|z| \le \varepsilon\}} |z|^{2} \left(\int_{\mathbf{R}^{N}} |\nabla^{2}u(x+tz)|^{p}s(x,z)^{p}dx \right) m(dz)$$

$$\leq \sigma(\varepsilon)^{p/q} \left(\int_{D} |\nabla^{2}u(y)|^{p}dy \right) \left(\int_{\{|z| \le \varepsilon\}} |z|^{2}m(dz) \right)$$

$$\leq \sigma(\varepsilon)^{p} \left(\int_{D} |\nabla^{2}u(y)|^{p}dy \right).$$

Hence we have the L^p estimate of the term S_1u :

$$||S_1 u||_p \leq \sigma(\varepsilon) ||\nabla^2 u||_p$$
.

Summing up, we have proved that

$$||Su||_{p} \leq ||S_{1}u||_{p} + ||S_{2}u||_{p} + ||S_{3}u||_{p}$$

$$\leq \sigma(\varepsilon)|u|_{2,p} + \left(\frac{C_{1}}{\varepsilon} + C_{2}\right)|u|_{1,p} + \left(\frac{C_{1}}{\varepsilon^{2}} + C_{2}\right)||u||_{p}.$$

In view of assertion (1.1), this proves estimate (3.3) if we choose ε sufficiently small. \square

Since we have

$$(A-\lambda)u=(W-\lambda)u-Su,$$

it follows from estimate (3.3) that

$$||(A_p - \lambda)u||_p \le ||(W_p - \lambda)u||_p + \eta |u|_{2,p} + C_{\eta}(|u|_{1,p} + ||u||_p).$$

Thus, carrying this estimate into estimate (3.2), we obtain that

$$|u|_{2,p} + |\lambda|^{1/2}|u|_{1,p} + |\lambda| ||u||_{p}$$

$$\leq c'_{p}(\varepsilon)||(W_{p} - \lambda)u||_{p} + \eta c'_{p}(\varepsilon)|u|_{2,p} + C_{\eta}c'_{p}(\varepsilon)(|u|_{1,p} + ||u||_{p}). (3.4)$$

Therefore, the desired estimate (3.1) follows from estimate (3.4) if we take the constant η so small that

$$\eta c_p'(\varepsilon) < 1$$

and the parameter λ so large that

$$|\lambda|^{1/2} > C_{\eta} c_{\rho}'(\varepsilon)$$
.

ii) By estimate (3.1), we find that the operator $W_p - \lambda I$ is injective and its range $R(W_p - \lambda I)$ is closed in $L^p(D)$, for all $\lambda \in \Sigma_p(\varepsilon)$.

We show that the operator $W_p - \lambda I$ is surjective for all $\lambda \in \Sigma_p(\varepsilon)$:

$$R(W_p - \lambda I) = L^p(D), \quad \lambda \in \Sigma_p(\varepsilon).$$

To do so, it suffices to show that the operator $W_p - \lambda I$ is a Fredholm operator with

$$\operatorname{ind}(W_p - \lambda I) = 0, \quad \lambda \in \Sigma_p(\varepsilon),$$
 (3.5)

since $W_p - \lambda I$ is injective for all $\lambda \in \Sigma_p(\varepsilon)$.

In order to prove assertion (3.5), we need the following:

Lemma 3.3 The operator S is A_p -completely continuous, that is, the operator S: $D(A_p) \to L^p(D)$ is completely continuous where the domain $D(A_p)$ is endowed with the graph norm of A_p .

Proof. Let $\{u_j\}$ be an arbitrary bounded sequence in the domain $D(A_p)$; hence there exists a constant K > 0 such that

$$||u_j||_p \leq K, \qquad ||A_p u_j||_p \leq K.$$

Then we have, by [T2, estimate (0.1)],

$$||u_j||_{2,p} \le C(||A_p u_j||_p + ||u_j||_p) \le 2CK$$
. (3.6)

Therefore, by Rellich's theorem, one may assume that the sequence $\{u_j\}$ itself is a Cauchy sequence in the space $H^{1,p}(D)$. Then, applying estimate (3.3) to the sequence $\{u_j - u_k\}$ and using estimate (3.6), we obtain that

$$||Su_{j} - Su_{k}||_{p} \leq \eta |u_{j} - u_{k}|_{2,p} + C_{\eta}(||u_{j} - u_{k}||_{p} + |u_{j} - u_{k}|_{1,p})$$

$$\leq 4\eta CK + C_{\eta}||u_{j} - u_{k}||_{1,p}.$$

Hence we have

$$\limsup_{j,k\to\infty} \|Su_j - Su_k\|_p \le 4\eta CK.$$

This proves that the sequence $\{Su_j\}$ is a Cauchy sequence in the space $L^p(D)$, since η is arbitrary. \square

In view of Lemma 3.3, assertion (3.5) follows from an application of [G-K, Theorem 2.6]. Indeed, we have, by [T2, Theorem 6.1],

$$\operatorname{ind}(W_p - \lambda I) = \operatorname{ind}(A_p - \lambda I + S) = \operatorname{ind}(A_p - \lambda I) = 0$$
.

iii) Summing up, we have proved that the operator $W_p - \lambda I$ is bijective for all $\lambda \in \Sigma_p(\varepsilon)$ and its inverse $(W_p - \lambda I)^{-1}$ satisfies estimate (0.3).

The proof of Theorem 3.1 is now complete. \Box

4 Proof of Theorem 4

The proof is carried out in a chain of auxilliary lemmas.

I) We begin with a version of estimate (3.1):

Lemma 4.1 Let $N . If hypothesis (H) is satisfied, then, for every <math>\varepsilon > 0$, there exists a constant $r_p(\varepsilon) > 0$ such that if $\lambda = r^2 e^{i\vartheta}$ with $r \ge r_p(\varepsilon)$ and $-\pi + \varepsilon \le \vartheta \le \pi - \varepsilon$, we have, for all $u \in D(W_p)$,

$$|\lambda|^{1/2} ||u||_{C^{1}(\overline{D})} + |\lambda| ||u||_{C(\overline{D})} \le C_{p}(\varepsilon) |\lambda|^{N/2p} ||(W - \lambda)u||_{p}, \qquad (4.1)$$

with a constant $C_p(\varepsilon) > 0$.

Proof. First, it follows an application of the Gagliardo-Nirenberg inequality (see [F, Part I, Theorem 10.1] that

$$||u||_{C(\overline{D})} \le C|u|_{1,p}^{N/p}||u||_p^{1-N/p}, \quad u \in H^{1,p}(D).$$
 (4.2)

Here and in the following the letter C denotes a generic positive constant depending on p and ε , but independent of u and λ .

Combining inequality (4.2) with inequality (3.1), we obtain that

$$||u||_{C(\overline{D})} \le C (|\lambda|^{-1/2} ||(W - \lambda)u||_p)^{N/p} (|\lambda|^{-1} ||(W - \lambda)u||_p)^{1 - N/p}$$

= $C|\lambda|^{-1 + N/2p} ||(W - \lambda)u||_p$,

so that

$$|\lambda| \|u\|_{C(\overline{D})} \le C|\lambda|^{N/2p} \|(W-\lambda)u\|_p, \quad u \in D(W_p).$$
 (4.3)

Similarly, applying inequality (4.2) to the functions $D_i u \in H^{1,p}(D)$ $(1 \le i \le n)$, we obtain that

$$\begin{split} \|\nabla u\|_{C(\overline{D})} &\leq C \|\nabla u\|_{1,p}^{N/p} \|\nabla u\|_{p}^{1-N/p} \leq C \|u\|_{2,p}^{N/p} \|u\|_{1,p}^{1-N/p} \\ &\leq C (\|(W-\lambda)u\|_{p})^{N/p} (\|\lambda\|^{-1/2} \|(W-\lambda)u\|_{p})^{1-N/p} \\ &= C \|\lambda\|^{-1/2+N/2p} \|(W-\lambda)u\|_{p} \,. \end{split}$$

This proves that

$$|\lambda|^{1/2} ||u||_{C^1(\overline{D})} \le C|\lambda|^{N/2p} ||(W-\lambda)u||_p, \quad u \in D(W_p).$$
 (4.4)

Therefore, the desired inequality (4.1) follows from inequalities (4.3) and (4.4).

II) The next lemma proves estimate (0.4):

Lemma 4.2 Let $N . If hypothesis (H) is satisfied, then, for every <math>\varepsilon > 0$, there exists a constant $r(\varepsilon) > 0$ such that if $\lambda = r^2 e^{i\vartheta}$ with $r \ge r(\varepsilon)$ and $-\pi + \varepsilon \le \vartheta \le \pi - \varepsilon$, we have, for all $u \in D(\mathfrak{W})$,

$$|\lambda|^{1/2} ||u||_{C^1(\overline{D})} + |\lambda| ||u||_{C(\overline{D})} \le c(\varepsilon) ||(\mathfrak{W} - \lambda I)u||_{C(\overline{D})}, \tag{4.5}$$

with a constant $c(\varepsilon) > 0$.

Proof. 1) First we show that the domain

$$D(\mathfrak{W}) = \{ u \in C_0(\overline{D} \backslash M) \cap H^{2,p}(D); Wu \in C_0(\overline{D} \backslash M), Lu = 0 \}$$

is independent of N .

We let

$$\mathscr{D}_p = \{ u \in H^{2,p}(D) \cap C_0(\overline{D}\backslash M); Wu \in C_0(\overline{D}\backslash M), Lu = 0 \}.$$

Since we have $L^{p_1}(D) \subset L^{p_2}(D)$ for $p_1 > p_2$, it follows that

$$\mathscr{D}_{p_1} \subset \mathscr{D}_{p_2}$$
 if $p_1 > p_2$.

Conversely, let v be an arbitrary element of \mathcal{D}_{p_2} :

$$v \in H^{2,p_2}(D) \cap C_0(\overline{D}\backslash M), \qquad Wv \in C_0(\overline{D}\backslash M), \qquad Lv = 0.$$

Then, since we have v, $Wv \in C_0(\overline{D}\backslash M) \subset L^{p_1}(D)$, it follows from an application of Theorem 3.1 with $p=p_1$ that there exists a unique function $u \in H^{2,p_1}(D)$ such that

$$\begin{cases} (W - \lambda)u = (W - \lambda)v & \text{in } D, \\ Lu = 0 & \text{on } \partial D, \end{cases}$$

if we choose λ sufficiently large. Hence we have $u - v \in H^{2,p_2}(D)$ and

$$\begin{cases} (W - \lambda)(u - v) = 0 & \text{in } D, \\ L(u - v) = 0 & \text{on } \partial D. \end{cases}$$

Therefore, by applying again Theorem 3.1 with $p=p_2$, we obtain that u-v=0, so that $v=u\in H^{2,p_1}(D)$. This proves that $v\in \mathcal{D}_{p_1}$.

2) We shall make use of a λ -dependent localization argument in order to adjust the term $\|(W - \lambda)u\|_p$ in inequality (4.1) to obtain inequality (4.5), just as in [T2].

2-a) If x_0' is a point of ∂D and if χ is a C^{∞} coordinate transformation such that χ maps $B(x_0', \eta_0) \cap D$ into $B(0, \delta) \cap \mathbb{R}_+^N$ and flattens a part of the boundary ∂D into the plane $x_N = 0$, then we let

$$G_0 = B(x'_0, \eta_0) \cap D$$
, $G' = B(x'_0, \eta) \cap D$, $0 < \eta < \eta_0$,
 $G'' = B(x'_0, \eta/2) \cap D$, $0 < \eta < \eta_0$.

Here and in the following $B(x, \eta)$ denotes the ball of radius η about x.

Similarly, if x_0 is a point of D and if χ is a C^{∞} coordinate transformation such that χ maps $B(x_0, \eta_0)$ into $B(0, \delta)$, then we let

$$G_0 = B(x_0, \eta_0)$$
, $G' = B(x_0, \eta), 0 < \eta < \eta_0$,
 $G'' = B(x_0, \eta/2), 0 < \eta < \eta_0$.

2-b) We take a function $\Phi \in C_0^\infty(\mathbf{R})$ such that Φ equals 1 near the origin, and define

$$\varphi(x) = \Phi(|x'|^2)\Phi(x_N), \quad x = (x', x_N).$$

Here one may assume that the function ϕ is chosen so that

$$\begin{cases} \operatorname{supp} \varphi \subset B(0,1), \\ \varphi(x) = 1 \quad \text{on } B(0,1/2). \end{cases}$$

We introduce a localizing function

$$\varphi_0(x,\eta) := \varphi\left(\frac{x-x_0}{\eta}\right) = \Phi\left(\frac{|x'-x_0'|^2}{\eta^2}\right)\Phi\left(\frac{x_N-t}{\eta}\right), \quad x_0 = (x_0',t).$$

We remark that

$$\begin{cases} \operatorname{supp} \varphi_0 \subset B(x_0, \eta), \\ \varphi_0(x, \eta) = 1 & \text{on } B(x_0, \eta/2). \end{cases}$$

Then it is easy to verify the following (see [T2, Claim 7.5]):

Claim 4.3 If $u \in B(\mathfrak{W})$, then we have $\varphi_0 u \in \mathcal{D}(W_p)$.

3) Now let u be an arbitrary element of $D(\mathfrak{W})$. Then, by Claim 4.3, we can apply inequality (4.1) to the function $\varphi_0 u$ to obtain that

$$|\lambda|^{1/2} ||u||_{C^{1}(\overline{G''})} + |\lambda| ||u||_{C(\overline{G''})} \leq |\lambda|^{1/2} ||\varphi_{0}u||_{C^{1}(\overline{G'})} + |\lambda| ||\varphi_{0}u||_{C(\overline{G'})}$$

$$= |\lambda|^{1/2} ||\varphi_{0}u||_{C^{1}(\overline{D})} + |\lambda| ||\varphi_{0}u||_{C(\overline{D})}$$

$$\leq C|\lambda|^{N/2p} ||(W - \lambda)(\varphi_{0}u)||_{L^{p}(D)}. \tag{4.6}$$

3-a) We estimate the last term $\|(W-\lambda)(\varphi_0u)\|_{L^p(D)}$ in terms of the supremum norm of $C(\overline{D})$.

First we write the term $(W - \lambda)(\varphi_0 u)$ in the following form:

$$(W-\lambda)(\varphi_0 u) = \varphi_0((W-\lambda)u) + [A,\varphi_0]u + [S,\varphi_0]u,$$

where $[A, \varphi_0]$ and $[S, \varphi_0]$ are the commutators of A and φ_0 and of S and φ_0 , respectively:

$$[A, \varphi_0]u = A(\varphi_0 u) - \varphi_0 A u,$$

$$[S, \varphi_0]u = S(\varphi_0 u) - \varphi_0 S u.$$

Now we need the following elementary inequality:

Claim 4.4 We have, for all $v \in C^j(\overline{G}^i)$ (j = 0, 1, 2),

$$||v||_{H^{j,p}(G')} \leq |G'|^{1/p} ||v||_{C^{j}(\overline{G'})},$$

where |G'| is the measure of G'.

Since we have, for some constant c > 0,

$$|G'| \leq |B(x_0,\eta)| \leq c\eta^N$$
,

it follows from an application of Claim 4.4 that

$$\|\varphi_{0}(W-\lambda)u\|_{L^{p}(D)} = \|\varphi_{0}(W-\lambda)u\|_{L^{p}(G')} \leq c^{1/p}\eta^{N/p} \|(W-\lambda)u\|_{C(\overline{G'})}$$

$$\leq c^{1/p}\eta^{N/p} \|(W-\lambda)u\|_{C(\overline{D})}. \tag{4.7}$$

On the other hand, we can estimate the commutators $[A, \varphi_0]u$ and $[S, \varphi_0]u$ as follows:

Claim 4.5 We have, as $\eta \downarrow 0$,

$$||[A, \varphi_0]u||_{L^p(D)} \leq C(\eta^{-1+N/p}||u||_{C^1(\overline{D})} + \eta^{-2+N/p}||u||_{C(\overline{D})}), \qquad (4.8)$$

$$||[S, \varphi_0]u||_{L^p(D)} \le C(\eta^{-1+N/p}||u||_{C^1(\overline{D})} + \eta^{-2+N/p}||u||_{C(\overline{D})}). \tag{4.9}$$

Proof. Estimate (4.8) is proved in [T2, inequality (7.9)]. In order to prove estimate (4.9), we remark that

$$\begin{split} S(\varphi_{0}u)(x) &= \int\limits_{\mathbb{R}^{N}\setminus\{0\}} (\varphi_{0}(x+z)u(x+z) - \varphi_{0}(x)u(x) - z \cdot \nabla(\varphi_{0}u)(x))s(x,z)m(dz) \\ &= \varphi_{0}(x) \int\limits_{\mathbb{R}^{N}\setminus\{0\}} (u(x+z) - u(x) - z \cdot \nabla u(x))s(x,z)m(dz) \\ &+ \left(\int\limits_{\mathbb{R}^{N}\setminus\{0\}} (u(x+z) - u(x))zs(x,z)m(dz)\right) \cdot \nabla \varphi_{0}(x) \\ &+ \int\limits_{\mathbb{R}^{N}\setminus\{0\}} (\varphi_{0}(x+z) - \varphi_{0}(x) - z \cdot \nabla \varphi_{0}(x))u(x+z)s(x,z)m(dz) \\ &= \varphi_{0}(x)Su(x) + \left(\int\limits_{\mathbb{R}^{N}\setminus\{0\}} (u(x+z) - u(x))zs(x,z)m(dz)\right) \cdot \nabla \varphi_{0}(x) \\ &+ \int\limits_{\mathbb{R}^{N}\setminus\{0\}} (\varphi_{0}(x+z) - \varphi_{0}(x) - z \cdot \nabla \varphi_{0}(x))u(x+z)s(x,z)m(dz) \,. \end{split}$$

Hence we can write the commutator $[S, \varphi_0]u$ in the following form:

$$[S, \varphi_0]u(x) = \left(\int_{\mathbf{R}^N \setminus \{0\}} (u(x+z) - u(x))zs(x,z)m(dz)\right) \cdot \nabla \varphi_0(x)$$

$$+ \int_{\mathbf{R}^N \setminus \{0\}} (\varphi_0(x+z) - \varphi_0(x) - z \cdot \nabla \varphi_0(x))u(x+z)s(x,z)m(dz)$$

$$:= S_0^{(1)}u(x) + S_0^{(2)}u(x).$$

First, just as in Lemma 1.6, we can estimate the term $S_0^{(1)}u$ as follows:

$$\begin{split} \|S_0^{(1)}u\|_{L^p(D)} &= \|S_0^{(1)}u\|_{L^p(G')} \\ &\leq 2(\sigma(\eta)\|u\|_{C^1(\overline{D})} + \delta(\eta)\|u\|_{C(\overline{D})})\|\nabla\varphi_0\|_{L^p(G')} \\ &\leq 2\left(\sigma(\eta)\|u\|_{C^1(\overline{D})} + \left(\frac{C_1}{\eta} + C_2\right)\|u\|_{C(\overline{D})}\right)\|\nabla\varphi_0\|_{L^p(G')} \,. \end{split}$$

But it follows from an application of Claim 4.4 that

$$\|\nabla \varphi_0\|_{L^p(G')} \le C\eta^{N/p} \|\nabla \varphi_0\|_{C(\overline{G'})} \le C'\eta^{-1+N/p} ,$$

$$\|\nabla^2 \varphi_0\|_{L^p(G')} \le C\eta^{N/p} \|\nabla^2 \varphi_0\|_{C(\overline{G'})} \le C'\eta^{-2+N/p} ,$$

since we have, as $\eta \downarrow 0$,

$$|\nabla \varphi_0| = O(\eta^{-1}), \qquad |\nabla^2 \varphi_0| = O(\eta^{-2}).$$

Therefore we obtain that

$$||S_0^{(1)}u||_{L^p(D)} \le C(\eta^{-1+N/p}||u||_{C^1(\overline{D})} + \eta^{-2+N/p}||u||_{C(\overline{D})}). \tag{4.10}$$

Similarly, arguing as in the proof of Lemma 3.2, we can estimate the term $S_0^{(2)}u$ as follows:

$$||S_0^{(2)}u||_{L^p(D)} \le C||u||_{C(\overline{D})}||\nabla^2 \varphi_0||_{L^p(G')}$$

$$\le C||u||_{C(\overline{D})}\eta^{N/p}||\nabla^2 \varphi_0||_{C(\overline{G'})}$$

$$\le C\eta^{-2+N/p}||u||_{C(\overline{D})}. \tag{4.11}$$

Thus, the desired estimate (4.9) follows by combining estimates (4.10) and (4.11). $\ \Box$

Therefore, combining estimates (4.6), (4.7), (4.8) and (4.9), we obtain that $|\lambda|^{1/2} ||u||_{C^1(\overline{G''})} + |\lambda| ||u||_{C(\overline{G''})}$ $\leq C|\lambda|^{N/2p} ||(W - \lambda)(\varphi_0 u)||_{L^p(D)}$ $= C|\lambda|^{N/2p} ||\varphi_0((W - \lambda)u) + [A, \varphi_0]u + [S, \varphi_0]u||_{L^p(D)}$ $\leq C|\lambda|^{N/2p} (\eta^{N/p} ||(W - \lambda)u||_{C(\overline{G'})} + \eta^{-1+N/p} ||u||_{C^1(\overline{G'})} + \eta^{-2+N/p} ||u||_{C(\overline{G'})})$ $\leq C|\lambda|^{N/2p} (\eta^{N/p} ||(W - \lambda)u||_{C(\overline{D})} + \eta^{-1+N/p} ||u||_{C^1(\overline{D})} + \eta^{-2+N/p} ||u||_{C(\overline{D})}).$ (4.12)

3-b) We remark that the closure $\overline{D}=D\cup\partial D$ can be covered by a finite number of sets of the forms

$$\begin{cases} B(x_0, \eta/2), & x_0 \in D, \\ B(x'_0, \eta/2) \cap \overline{D}, & x'_0 \in \partial D. \end{cases}$$

Therefore, taking the supremum of inequality (4.12) over $x \in \overline{D}$, we find that

$$|\lambda|^{1/2} ||u||_{C^{1}(\overline{D})} + |\lambda| ||u||_{C(\overline{D})}$$

$$\leq C|\lambda|^{N/2p} \eta^{N/p} (||(W - \lambda)u||_{C(\overline{D})} + \eta^{-1} ||u||_{C^{1}(\overline{D})} + \eta^{-2} ||u||_{C(\overline{D})}). \quad (4.13)$$

4) We now choose the localization parameter η . We let

$$\eta=\frac{\eta_0}{|\lambda|^{1/2}}K,$$

where K is a positive constant (to be chosen later) satisfying

$$0 < \eta = \frac{\eta_0}{|\lambda|^{1/2}} K < \eta_0$$
,

that is,

$$0 < K < |\lambda|^{1/2}.$$

Then we obtain from inequality (4.13) that

$$|\lambda|^{1/2} ||u||_{C^{1}(\overline{D})} + |\lambda| ||u||_{C(\overline{D})}$$

$$\leq C \eta_{0}^{N/p} K^{N/p} ||(W - \lambda)u||_{C(\overline{D})} + (C \eta_{0}^{N/p-1} K^{-1+N/p}) |\lambda|^{1/2} ||u||_{C^{1}(\overline{D})}$$

$$+ (C \eta_{0}^{N/p-2} K^{-2+N/p}) |\lambda| ||u||_{C(\overline{D})}. \tag{4.14}$$

But, since the exponents -1 + N/p and -2 + N/p are negative, we can choose the constant K so large that

$$C\eta_0^{N/p-1}K^{-1+N/p} < 1$$
,

and

$$C\eta_0^{N/p-2}K^{-2+N/p} < 1$$
.

Then, the desired inequality (4.5) follows from inequality (4.14). The proof of Lemma 4.2 is complete. \Box

III) The next lemma, together with Lemma 4.2, proves that the resolvent set of $\mathfrak B$ contains the set $\Sigma(\varepsilon) = \{\lambda = r^2 e^{i\vartheta}; r \ge r(\varepsilon), -\pi + \varepsilon \le \vartheta \le \pi - \varepsilon\}$:

Lemma 4.6 If $\lambda \in \Sigma(\varepsilon)$, then, for any $f \in C_0(\overline{D}\backslash M)$, there exists a unique function $u \in D(\mathfrak{W})$ such that $(\mathfrak{W} - \lambda I)u = f$.

Proof. Since we have, for all 1 ,

$$f \in C_0(\overline{D}\backslash M) \subset L^p(D)$$
,

it follows from an application of Theorem 3 that if $\lambda \in \Sigma_p(\varepsilon)$, there exists a unique function $u \in H^{2,p}(D)$ such that

$$(W - \lambda)u = f \quad \text{in } D, \tag{4.15}$$

and

$$Lu = \mu \frac{\partial u}{\partial \mathbf{n}} + \gamma u = 0 \quad \text{on } \partial D$$
. (4.16)

But, by Sobolev's imbedding theorem, it follows that

$$u \in H^{2,p}(D) \subset C^{2-N/p}(\overline{D}) \subset C^1(\overline{D})$$
 if $N .$

Hence we have, by formula (4.16) and condition (H),

$$u = 0$$
 on $M = \{x' \in \partial D; \mu(x') = 0\}$,

so that

$$u \in C_0(\overline{D}\backslash M)$$
.

Further, in view of equation (4.15), we find that

$$Wu = f + \lambda u \in C_0(\overline{D}\backslash M)$$
.

Summing up, we have proved that

$$\begin{cases} u \in D(\mathfrak{W}), \\ (\mathfrak{W} - \lambda I)u = f. \end{cases}$$

Now the proof of Theorem 4 is complete. \Box

References

- [B-L] Bergh, J., Löfström, J.: Interpolation spaces, an introduction. Springer-Verlag, Berlin, 1976
- [B-C-P] Bony, J.-M., Courrège, P., Priouret, P.: Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble) 18, 369-521 (1968)
 - [B] Bourdaud, G.: L^p -estimates for certain non-regular pseudo-differential operators. Comm. Partial Differential Equations 7, 1023–1033 (1982)
 - [F] Friedman, A.: Partial differential equations. Holt, Rinehart and Winston, New York, 1969
- [G-M] Garroni, M.G., Menaldi, J.L.: Green functions for second order integro-differential problems. Pitman Research Notes in Mathematics Series No. 275, Longman Scientific & Technical, Harlow, 1992
- [G-T] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, New York Berlin Heidelberg Tokyo, 1983
- [G-K] Gohberg, I.C., Krein, M.G.: The basic propositions on defect numbers, root numbers and indices of linear operators. Uspehi Mat. Nauk. 12, 43-118 (1957) (in Russian); English translation Amer. Math. Soc. Transl. 13, 185-264 (1960)
 - [H] Hörmander, L.: The analysis of linear partial differential operators III. Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985
 - [K] Komatsu, T.: Markov processes, associated with certain integro-differential operators. Osaka J. Math. 10, 271-303 (1973)
 - [S] Stroock, D.W.: Diffusion processes associated with Lévy generators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 209-244 (1975)
- [T1] Taira, K.: Diffusion processes and partial differential equations. Academic Press, San Diego New York London Tokyo, 1988
- [T2] Taira, K.: Boundary value problems and Markov processes. Lecture Notes in Math. No. 1499, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1991

