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0 Introduction and results

This paper is a continuation of the previous note [T2] where we studied a class
of degenerate boundary value problems for second-order elliptic differential
operators and proved that this class of boundary value problems generates
analytic semigroups both in the L” topology and in the topology of uniform
convergence. The purpose of this paper is to extend these results to the elliptic
integro-differential operator case.

Let D be a bounded, convex domain of Euclidean space RY , wWith C*®
boundary 0D; its closure D = DUJD is an N-dimensional, compact C*° mani-
fold with boundary.

Let W be a second-order, elliptic integro-differential operator with real
coefficients such that

Wu(x) = Au(x) + Su(x)

2
= ( > a) af,-;,("’ + gb«x)ggunc(x)u(x))

ij=1 x

N Ou
+ [ (u(x +z)—u(x)— 3 z,-;,;—(x)) s(x,z)m(dz) .
j=1 0%

RY\{0}
Here:
1) a¥ € C*(D), a” = a’' and there exists a constant a; > 0 such that
N s
> d'(x)6ié; 2 aolél’, xeD,EeRY.

ij=1
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2) b € C=(D).

3) c € C®(D), and ¢ £ 0 in D but ¢ F 0 in D.

4) s € C(D x R¥)and 0 < 5 £ 1in D x R", and there exist constants
Co > 0and 0 < 6y < 1 such that

Is(x,2) — s(»,2)| £ Colx — y|®, x,y €D, zeR",

and
s(x,z)=0 if x+z4D. (0.1)

Condition (0.1) implies that the integral operator S may be considered as an
operator acting on functions u defined on the closure D (see [G-M, Chapter II,
Remark 1.19]).

5) The measure m(dz) is a Radon measure on RY\ {0} such that

[ |ePmdz)+ [ |zlm(dz) < . 0.2)
{251} {lz1>1}

The operator W is called a second-order Waldenfels operator. The dif-
ferential operator 4 is called a diffusion operator which describes analytically
a strong Markov process with continuous paths in the interior D. The inte-
gral operator S is called a second-order Lévy operator which is supposed to
correspond to the jump phenomenon in the closure D (see [B-C-P], [T1]).

Let L be a first-order, boundary condition with real coefficients such that

0
Lu(@) = ) 3 (&) 9@ ulx')

Here:

1) p € C>(8D) and pu = 0 on dD.
2) y € C*®(8D) and y < 0 on dD.
3) n = (n1,ny,...,ny) is the unit interior normal to the boundary 0D.

The boundary condition L is called a first-order Ventcel’ boundary condi-
tion. The terms pudu/on and yu of L are supposed to correspond to the reflection
phenomenon and the absorption phenomenon, respectively.

Our fundamental hypothesis is the following:

u(x’) = p(x") > 0 on aD. (H)

The intuitive meaning of hypothesis (H) is that either the reflection phe-
nomenon or the absorption phenomenon occurs at each point of the bound-
ary 0D.

The first purpose of this paper is to prove an existence and uniqueness
theorem for the following nonhomogeneous boundary value problem in the
framework of Holder spaces:

{Wu=f in D,

Lu=¢ ondD. (*)
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The crucial point is how to define a version of Holder spaces in which problem
(*) is uniquely solvable.

We introduce a subspace of the Holder space C'*%(dD), 0 < 6 < 1, which
is associated with the boundary condition L in the following way: We let

C1*(0D) = {9 = pp1 — 925 ¢1 € C'*0(@D), @, € C*(aD)} ,

and define a norm
lq"'CL'“’(aD) = inf{|@1|c1r0py + [@2]c2+0ap); @ = o1 — 702} .

Then it is easy to verify that the space CL'+0(6D) is a Banach space with
respect to the norm | - Ic'*"woy We remark that the space C}*%(D) is an
L

“interpolation space” between C>*%(D) and C'*%(dD). More precisely, we
have
{ C}*%oD) = C**9oD) if u=0 on oD,

Ci*oD) = C'*9(oD) if > 0 on oD .
Now we can state our existence and uniqueness theorem for problem (x):
Theorem 1 If hypothesis (H) is satisfied, then the mapping
(W,L) : C**(D) — C’(D) @ C}*%(éD)

is an algebraic and topological isomorphism for all 0 < 0 < 0. In particular,
Jor any f € C%D) and any ¢ € C}t(0D), there exists a unique solution
u € C**%(D) of problem ().

As an application of Theorem 1, we consider the problem of existence of
Markov processes in probability theory. To do so, we let

M = {x' € oD; u(x") = 0} .

Then, in view of condition (H), it follows that the boundary condition Lu = 0
on 0D includes the condition ¥ = 0 on M. With this fact in mind, we let

Co(D\M) = {u € C(D);u=0 on M} .

The space Co(D\M) is a closed subspace of C(D); hence it is a Banach space.
A strongly continuous semigroup {7;},»¢ on the space Co(D\M) is called
a Feller semigroup on D\M if it is non-negative and contractive on Co(D\M):

fECDWM), 0= f<1 onDMM=0=<T,f<1 onD\M.

It is known (see [T1, Chapter 9]) that if 7, is a Feller semigroup on D\M,
then there exists a unique Markov transition function p, on D\M such that

Lf®)=_[ plxdy)f(y), fe€CoD\M),
D\M
and further p;, is the transition function of some strong Markov process.
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We define a linear operator %~ from Co(D\M) into itself as follows:
(a) The domain of definition D(#") is the set

D(W) = {u € C¥D) N Co(D\M); Wu € Co(D\M ), Lu = 0} .

(b) Wu= Wu, uc D(W').

The next theorem is a generalization of Theorem 4 of [T2] to the integro-
differential operator case:

Theorem 2 If _}_lypothesis (H) is satisfied, then the operator W' is closable in
the space Co(D\M), and its minimal closed extension W’ is the infinitesimal
generator of some Feller semigroup {T,}iz0 on D\M.

Theorem 2 asserts that there exists a Feller semigroup on D\M correspond-
ing to such a diffusion phenomenon that a Markovian particle moves both by
jumps and continuously in the state space D\M until it “dies” at the time
when it reaches the set M where the particle is definitely absorbed (see [K,
Theorem 5.2], [S, Theorem 2.2], [G-M, Chapter VIII, Theorem 3.3]).

The second purpose of this paper is to study problem (x) from the point
of view of analytic semigroup theory in functional analysis. The forthcoming
two theorems generalize Theorems 2 and 3 of [T2] to the integro-differential
operator case.

First we state a generation theorem of analytic semigroups in the L” topol-
ogy. To do so, we associate with problem () an unbounded linear operator
W, from LP(D) into itself as follows:

(a) The domain of definition D(W,) is the set
D(W,) = {u € H*?(D);Lu = 0} .

(b) Wou = Wu, u € D(W,).
Then we can prove the following:

Theorem 3 Let 1 < p < oo. Assume that hypothesis (H) is satisfied. Then
we have the following: .

(i) For every € > 0, there exists a constant rp(€) > 0 such that the
resolvent set of W, contains the set Zy(e) = {1 = r2er 2 rp(e),-n+e =
¥ < n — ¢}, and that the resolvent (W, — A1 )~! satisfies the estimate

cp(s)

-1
0% - D' S e,

e Z,(e), 0.3)

where c,(e) > 0 is a constant depending on e.

(ii) The operator W, generates a semigroup & on the space LP(D)
which is analytic in the sector A, = {z =t +is;z+0, |argz| < 7/2 - e} for
any 0 < ¢ < m/2.
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Secondly, we state a generation theorem of analytic semigroups in the topol-
ogy of uniform convergence. We introduce a linear operator 9 from Co(D\M)
into itself as follows:

(a) The domain of definition D(B) is the set
D(W) = {u € Co(D\M) N H*>P(D); Wu € Co(D\M ), Lu = 0} .
(b) Wu = Wu, u € D(W).

Here we remark that the domain D(B) is independent of N < p < oo (see
the proof of Lemma 4.2).

Then Theorem 3 remains valid with L?(D) and W, replaced by Co(D\M)
and B, respectively:

Theorem 4 If hypothesis (H) is satisfied, then we have the following:

(i) For every ¢ > 0, there exists a constant r(¢) > 0 such that the
resolvent set of W contains the set X(e) = {A = r?e;r = r(e),—-n+¢ <
Y < n— ¢}, and that the resolvent (W — A1)~ satisfies the estimate

I — 0| < % re 2, (0.4)

where c(e) > 0 is a constant depending on e.

(ii) The operator W generates a semigroup & on the space Co(D\M)
which is analytic in the sector A, = {z = t + is;z+0, |argz| < n/2 — &} for
any 0 < ¢ < m/2.

Theorems 3 and 4 express a regularizing effect for the parabolic integro-
differential operator 0/0t — W with homogeneous boundary condition L (see
[G-M, Chapter VIII, Theorem 3.1]).

The rest of this paper is organized as follows. In Section 1 we study
problem (*) in the framework of Holder spaces, and prove Theorem 1. The
essential point in the proof is to estimate the integral operator S in terms
of Holder norms. We show that the operator (W,L) may be considered as
a perturbation of a compact operator to the operator (4,L) in the frame-
work of Holder spaces. Thus the proof of Theorem 1 is reduced to the
differential operator case which is studied in detail in [T2]. Section 2 is
devoted to the proof of Theorem 2. The proof is based on a version of
the Hille-Yosida theorem in semigroup theory in terms of the maximum
principle. In Section 3 we prove Theorem 3. We estimate the integral op-
erator § in terms of L” norms, and show that S is an A4 p-completely contin-
uous operator in the sense of Gohberg and Krein [G-K]. Section 4 is devoted
to the proof of Theorem 4. Theorem 4 follows from Theorem 3 by using
Sobolev’s imbedding theorems and a A-dependent localization argument, just
as in [T2].
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1 Proof of Theorem 1

I) First we prove Theorem 1 in the case when § = 0:

Theorem 1.1 If hypothesis (H) is satisfied, then the mapping
(4,L) : C***(D) — C’(D) ® C; (D)
is an algebraic and topological isomorphism for all 0 < 0 <1

Proof. The proof is divided into four steps.

i) Let (f,) be an arbitrary element of C’(D) & C;**(dD) with ¢ =

Hoy — 79P2.
First we show that the boundary value problem

{Au=f in D,

* %k
Lu=¢ on dD (%)

can be reduced to the study of an operator on the boundary.
To do so, we consider the following Neumann problem:

{Av=f inD,

N
gﬁ=(p1 on 0D . )

Recall that the existence and uniqueness theorem for problem (N) is well
established in the framework of Holder spaces (see [G-T, Theorem 6.31]).
Thus we find that a function u € C*t?(D) is a solution of problem (x) if and
only if the function w = u — v € C**%(D) is a solution of the problem

Aw =0 - inD,
Lw=¢—Lv ondD.

Here we remark that
Ly = v = v
=Hu D YU = U@y YU 5

so that
Lw = —y(¢2 + v) € C**%(3D)..

But we know that every solution w € C2t9(D) of the homogeneous equation:
Aw = 0 in D can be expressed as follows (see [G-T, Theorem 6.14]):

w=2y, YeC0oD).
Thus one can reduce the study of problem (k) to that of the equation

Ty :=LPY = —y(p2+v) on dD. )
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More precisely, we have the following:

Proposition 1.2 For functions f € C'(D) and ¢ € C}*%(dD), there exists a
solution u € C**%(D) of problem (xx) if and only if there exists a solution
Y € C?*9(0D) of equation (+).

ii) We study the operator 7' in question. It is known (see [H, Chapter XX])
that the operator

TV = Loy = (@) + 0

is a first-order, pseudo-differential operator on the boundary éD.
The next proposition is an essential step in the proof of Theorem 1.1:

Proposition 1.3 If hypothesis (H) is satisfied, then there exists a parametrix E
in the Hormander class L}, ,(0D) for T which maps C*+%(aD) continuously
into itself for any integer k = 0.

Proof. By making use of Theorem 22.1.3 of [H, Chapter XXII] just as in
[T2, Lemma 4.2], one can construct a parametrix £ in the Hormander class
LY, ,(0D) for T:

ET =TE =Imod L~*°(dD) .

The boundedness of E : C¥*%(aD) — C*+%(aD) follows from an application
of [B, Theorem 1], since C**(aD) = B5? (oD). O

iii) We consider problem (**) in the framework of Sobolev spaces of L?
style, and prove an L? version of Theorem 1.1.
If k is a positive integer and 1 < p < oo, we define the Sobolev space

H ""’(D) = the space of (equivalence classes of) functions
u € LP(D) whose derivatives D*u, |a| < k, in the
sense of distributions are in L?(D),

and the Besov space

B*~YPP(D) = the space of the boundary values ¢ of functions
u € H*?(D) .

In the space B*~1/PP(4D), we introduce a norm
|‘P|Bk—l/p,p(ao) = inf ”""H’W(D) g

where the infimum is taken over all functions u € H*?(D) which equal ¢ on
the boundary dD. The space B¥~!/7P(9D) is a Banach space with respect to
this norm | - |B,¢_1/p,,,(aD) (cf. [B-L]).

We introduce a subspace of B'~!PP(9D) which is an L? version of
C}%(0D). We let

B, "PP(6D) = {¢ = po1 — y92; 01 € B'"VPP(GD), o, € B PP(AD)}
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and define a norm

|(p‘B,}"/”"’(aD) = inf{"Pl |31-1/p.p(aD) + |(P2|32—l/p.p(au); ® = puey — W’Z} .

Then it is easy to verify that the space Bz_l/ PP(9D) is a Banach space with
respect to the norm | - |BL1_1/p,,,(aD).

Then, arguing just as in the proof of [T2, Theorem 1], we can obtain the
following L? version of Theorem 1.1:

Theorem 1.4 If hypothesis (H) is satisfied, then the mapping
(4,L) : H*P(D) — LP(D) ® B, "/P?(aD)
is an algebraic and topological isomorphism.
iv) Now we remark that

C%D) c L*(D),
c*p) c B, /PP(éD) .

Thus, we find from Theorem 1.4 that problem () has a unique solution
u € H*?(D) for any f € C°(D) and any ¢ € C}*%(8D). Furthermore, by
virtue of Proposition 1.2, it follows that the solution u can be written in the
form

u=v+ Py, veC*D), yeB*VPP(D).

But, Proposition 1.3 tells us that
Y € C*(D),

since we have Y = E(TY) = —E(y(¢2 + v)) mod C*(dD).
Therefore, we obtain that

u=v+ 2y e CHD).

The proof of Theorem 1.1 is complete. [

1) Next we study the integral operator S in the framework of Holder spaces.
To do so, we need the following elementary estimates for the measure m(dz):

Claim 1.5 For ¢ > 0, we let

oe)= [ |z’'mdz),
{lz| =&}

dey= [ |zIm(dz),
{lel>e}

we)= [ m(dz).
{lz|>¢}
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Then we have, as ¢ | 0,

a(e) — 0, (1.1)

o) = % + G, (1.2)
c

2(e) < 8—2‘+Cz, (1.3)

where

Ci= [ |ePm@z), C= [ |imdz).
{lzl=1} {lz|>1}

Proof. Assertion (1.1) follows immediately from condition (0.2).
The term J(¢) can be estimated as follows:

oe)= [ lzlm(dz)+ [ |z|m(dz)

{lz/>1} {e<lzl=1}

1
S [ lmd)+~ [ |zPm(dz)
{lz|>1} 8{s<|z|§l}

1
< [ lzZlm@z)+- [ |z]*m(dz).
{Iz|>1} € lels1}
The term 7(e) is estimated in a similar way. [J

By virtue of Claim 1.5, we can estimate the term Su in terms of Holder
norms, just as in [G-M, Chapter II, Lemmas 1.2 and 1.5]:

Lemma 1.6 For every n > 0, there exists a constant C, > 0 such that we
have, for all u € C*(D),

[1Sulloo = I V2ulloo + Cylllulloo + | Vt]|oo) -
Here

llulloo = sup [u(x)| .
xeD

Lemma 1.7 For every n > 0, there exists a constant C, > 0 such that we
have, for all u € C**%(D),

ISulctupy < 1l Vull ooy + Crllel gy + IVl coogsy) -
Here
ux)—u
el gtz = o + lspy [y = sup XE =4I

xyep  |x— .V|0°
x%y
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1II) End of Proof of Theorem I. First, Theorem 1.1 implies that
ind(4,L)=0.

On the other hand, Lemma 1.7 tells us that the operator S maps C**%(D)
continuously into C%(D). Hence it follows from an application of [B-C-P,
Théoréme XXII] that S is a compact operator from C2*%(D) into C’(D) for
all 0 < 6 < 6,. This implies that the operator (W,L) is a perturbation of a
compact operator to the operator (4,L).

Hence we find that

ind(W,L) = ind(4,L) = 0.
Therefore, in order to show the bijectivity of (W,L), it suffices to prove its
injectivity:
{u € C**D),Wu=0 inD, Lu=0 ondD
= U= 0 in D .
But, this is an immediate consequence of the following maximum principle:
Proposition 1.8 If hypothesis (H) is satisfied, then we have:

{uecz(ﬁ),Wugo inD, Lu=0 ondD
=2u=<0 onD.

Proof. 1f u is a constant m, then we have 0 < Wu = mc in D. This implies
that u = m is non-positive, since ¢ < 0 and ¢% 0 in D.

Now we consider the case when u is not a constant. Assume to the contrary
that:

m=maxu > 0.
D

Then, applying the strong maximum principle (see [B-C-P, Théoréme VII]) to
the operator W, we obtain that there exists a point x of 0D such that

u(xg)=m,
u(x) < u(xh) forallxeD.
Furthermore, it follows from an application of the boundary point lemma (see
[B-C-P, Théoréeme VIII]) that
Ou
3 (x) < 0.
Hence we have
uxg) =0,  x)=0,
since Lu(x}) = 0. This contradicts hypothesis (H). [

The proof of Theorem 1 is now complete. [
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2 Proof of Theorem 2

The proof of Theorem 2 is based on the following version of the Hille—Yosida
theorem in terms of the maximum principle (see [B-C-P, Théoréme de Hille—
Yosida—Ray]):

Theorem 2.1 Let o/ be a linear operator from the space Co(D\M) into itself,
and assume that:

(a) The domain D(f) is dense in the space Co(D\M).
(B) For any u € D(A) such that supu > 0, there exists a point x € D\M
such that u(x) = supu and fu(x) < 0.

(v) For all « > 0, the range R(4 — ol) is dense in the space Co(D\M).

Then the operator of is closable in the space Co(D\M), and its minimal
closed extension s/ generates a Feller semigroup {T,},>o on D\M.

Proof of Theorem 2. We have only to verify conditions (a),(B) and (y) in
Theorem 2.1 for the operator % .

(y) We obtain from Theorem 1 (and its proof) that the mapping
(W —o,L) : C**(D) — C(D) ® C}**(oD)

is an algebraic and topological isomorphism for all « > 0. This verifies con-
dition (y), since the range R(#" — al) contains the space coD)n Co(D\M)
which is dense in Co(D\M).

(B) First let xo be a point of D such that u(xy) = supu. Then it follows
from an application of [B-C-P, Théoréme V] that

Wu(xo) = Wu(xo) <0.

Next let xj be a point of dD\M such that u(x}) = supu. Assume to the
contrary that

Wu(xh) = Wu(xh) > 0.

We have only to consider the case when u is not a constant. Then it follows
from an application of the boundary point lemma that (Ou/om)(xy) < 0. Hence
we have

ll(x(')) =0,

since Lu(xg) = 0. This contradicts the hypothesis: x) € OD\M, that is,
u(xp) > 0.

(«) The density of the domain D(#") can be proved just as in the proof
of [T2, Theorem 8.20], by using [B-C-P, Proposition III.1.6].

The proof of Theorem 2 is complete. O
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3 Proof of Theorem 3

The next theorem, which is a generalization of [T2, Theorem 6.1] to the integro-
differential operator case, proves Theorem 3:

Theorem 3.1 If hypothesis (H) is satisfied, then, for every 0 < & < /2, there
exists a constant r,(g) > 0 such that the resolvent set of W), contains the set
Ze)={A= r2e?;r = rp(e),-n+¢e < 9 £ n— ¢}, and that the resolvent
(W, — AI)7! satisfies estimate (0.3).

Proof. The proof is divided into three steps.

i) We show that there exist constants rp(€) and c¢,(&) such that we have,
for all A = r2e” satisfying r = rp(¢) and —n+¢ <9 S n+e,

lulo,p + |42 lul1,p + 1A, < ep@NW, — ADullp - (3.1)
Here

lull p = llullLrco), ul1,, = |VullLro), lula,p = IV?ullLr(D) -

First we recall (see [T2, formula (6.2)]) that estimate (3.1) is proved for
the differential operator 4:

lulo.p + 112 a1 + 1Al S (@I Ap — ADullp - (32)

Here the operator 4, is an unbounded linear operator from LP(D) into itself
defined by the following:

(a) The domain of definition D(4,) is the set
D(4,) = {u € H*P(D); Lu = 0} .
(b) Apu = Au,u € D(4,).

In order to replace the last term (4, —AI)ul| , by the term (W, —AD)ul| p,
we need the following L?-estimate for the operator S:

Lemma 3.2 For every n > 0, there exists a constant Cy > 0 such that we
have, for all u € H*?(D),

I1Sull p < nlulz,p + Colllullp + ful1.p) - (33)

Proof. We decompose the term Su into the following three terms:
1

Su(x)=[(1-tdt [ z- V2u(x + tz)zs(x,z)m(dz)
0 {lzl<e}

+ [ (u(x+2z) — u(x))s(x,z)m(dz) — [z Vu(x)s(x,z)m(dz)
{lz|>¢} {lzl>¢}

= Sju(x) + Su(x) — Ssu(x) .
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First we estimate the L” norm of the term S;u. By using estimate (1.2),
we obtain that

Iz Vu)s(x,z)m(dz)| £ 3(e)|Vu(x)| < (% +C2> |Vu(x)| .

{lzI>¢}

Hence we have the L7 estimate of the term S;u:

C
ISsull, < (= + G2 ) 1Vull, -
€

Secondly, we have

u( + )s( - ,z)m(dz)

C
I < (G+c) .
{lzl>e} p
Furthermore, by using Holder’s inequality and Fubini’s theorem, we obtain
from condition (0.1) that

p
dx

)

RN

[ u(x + z)s(x,z)m(dz)
{lzl>¢}

IIA

p
f ( f |“(X+Z)|S(x,z)m(dz)) dx
RN {|z| > ¢}

I\

plq
f( J |u(x+z)|Ps(x,z)Pm(dZ)>< f m(dz)) dx

RV \{lz|>¢} {lzl>¢}

=1e)” [ [ |u(x+z)|Ps(x,z)’m(dz)dx
RV {|z|>e}

{lz|>e} \RV

=1(e)?? [ (f lu(x-!—z)l”s(x,z)”dx) m(dz)

I\

()P (g!u(y)l"dy) ({! 'f }M(dZ)) = ©(e)”|ull} .

By estimate (1.3), we have the L? estimate of the term S,u:

&
ey < (G + ) ul
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Similarly, by using Holders’s inequality and Fubini’s theorem, we find that

P
dx

fl(l —-tdt [ z- V2u(x + tz)zs(x,z)m(dz)
0

RN {lz|=¢}

p
<f (fldt J |z|ZIV2u(x+tz)|s(x,z)m(dz)) dx
0

RV {lzl=¢}

s
RN

rl
x( J |z|2m(dz)) dx

{lz|=¢}

dt( J |z|2|V2u(x+tz)l%(x,z)”m(dz))
{lz

|<e}

o,

0@ [ | dt( ) |z|2|v2u(x+,z)|ps(x,z)nm(dz)) dx

RN 0 {lz] =¢}

= a(a)”/qfldt [ |zl ( [ |V?u(x + tz)|"s(x,z)”dx> m(dz)

0 {lzl=e} RV

éa(e)”/"(fleu(y)l”dy)( 1) |z|2m(dz)>
D

{lz1=e}
< a(e)” (f|V2u(y)|"dy) .
D
Hence we have the L? estimate of the term Sju:
IS1ull, < a(e)|V2ull, -

Summing up, we have proved that

ISull, < ISiullp + 1S2ull p + 1S3 ull

C C
o(e)|ulap + (7‘ + cz) lul1,p + (?‘ 4 cz) llull -

IIA

In view of assertion (1.1), this proves estimate (3.3) if we choose & sufficiently
small. O

Since we have
A—ANDu=(W —A)u-—Su,

it follows from estimate (3.3) that

(4 — Dullp < N(Wp — Wutllp + mlualz.p + Collulr,p + llull ) -
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Thus, carrying this estimate into estimate (3.2), we obtain that
lulz,p + 21 |uly,p + 4] [lull »
= c’p(e)”(Wp = A, + ’1C’p(3)|“|2,p +* ch;,(a)(|u||,p +llullp) . (3:4)

Therefore, the desired estimate (3.1) follows from estimate (3.4) if we take
the constant  so small that

ne,(e) < 1
and the parameter A so large that

1'% > Cyelyle) .

ii) By estimate (3.1), we find that the operator W, — Al is injective and its
range R(W, — Al) is closed in LP(D), for all 1 2 5(8).
We show that the operator W, — A/ is surjective for all 1 € X p(€):

R(W, — AI) = LP(D), 1€ Z,(e).

To do so, it suffices to show that the operator W, — A/ is a Fredholm operator
with
ind(W, — A1) =0, A€ ZXye), (3.5)
since W, — Al is injective for all 1 € Z,(¢).
In order to prove assertion (3.5), we need the following:

Lemma 3.3 The operator S is Ap-completely continuous, that is, the operator
S: D(4,) — LP(D) is completely continuous where the domain D(4,) is
endowed with the graph norm of A,

Proof. Let {u;} be an arbitrary bounded sequence in the domain D(4,); hence
there exists a constant K > 0 such that

luill, < K, Apull, < K.
Then we have, by [T2, estimate (0.1)],
luillzp = CCll4pu;ll, + llugll ) < 2CK . (3:6)

Therefore, by Rellich’s theorem, one may assume that the sequence {u;} itself
is a Cauchy sequence in the space H"#(D). Then, applying estimate (3.3) to
the sequence {u; — ux} and using estimate (3.6), we obtain that

[|Su; — Sull, = nlu; — ul2,p + Co(||uj - “k”p + |uj — uk|1,p)
S 4nCK + Cylluy — ug)s,p -

Hence we have

lim sup ||Su; — S|, < 4nCK .

Jok—o00
This proves that the sequence {Su;} is a Cauchy sequence in the space L?(D),
since 7 is arbitrary. [
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In view of Lemma3.3, assertion (3.5) follows from an application of [G-K,
Theorem 2.6]. Indeed, we have, by [T2, Theorem 6.1],

ind(W, — AI) = ind(4, — Al + ) = ind(4, — A1) = 0.

iii) Summing up, we have proved that the operator W, — Al is bijective
for all 4 € Z,(¢) and its inverse (W) — AI)~! satisfies estimate (0.3).

The proof of Theorem 3.1 is now complete. [

4 Proof of Theorem 4

The proof is carried out in a chain of auxilliary lemmas.
1) We begin with a version of estimate (3.1):

Lemma 4.1 Let N < p < oo. If hypothesis (H) is satisfied, then, for every
¢ > 0, there exists a constant rp(g) > 0 such that if 2 = r2e? with r = rp(e)
and —m+¢ < 9 < n— ¢, we have, for all u € D(W,),

A2l cry + 1A lllegy < Cp@IAM2PIOF = Dull,, - (41)

with a constant Cp(e) > 0.

Proof. First, it follows an application of the Gagliardo—Nirenberg inequality
(see [F, Part I, Theorem 10.1] that

lulley < Clul?ull 7, ue H"?(D). (42)

Here and in the following the letter C denotes a generic positive constant
depending on p and &, but independent of u and A.
Combining inequality (4.2) with inequality (3.1), we obtain that
- N/ - -
lulle, = € (207 = Ayull)"" A4~ IO = Dull )=
= Cla|~" V2P = Ayul,
so that
M lull ey S CIAMPPIW — Aullp,  u € D). (43)

Similarly, applying inequality (4.2) to the functions Diu € H"?(D)
(1 £ i £ n), we obtain that

Vullem, < CIVUlZIVulls™ < Cluly luli ;"
< C(|(W - Dull VP = Ayl ) NP

= C|A| NP \(W = Ayullp -
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This proves that
M2l zy < CIAMP I = Ayull,,  u € DW,). (44)

Therefore, the desired inequality (4.1) follows from inequalities (4.3) and
(44).

II) The next lemma proves estimate (0.4):

Lemma 4.2 Let N < p < oo. If hypothesis (H) is satisfied, then, for every
€ > 0, there exists a constant r(e) > 0 such that if i = r*e”® with r > r(e)
and —n+¢ < 9 < n— ¢, we have, for all u € D(1B),

A Wl + A lle) < @I = ADulegy, (45)

with a constant c(e) > 0.

Proof. 1) First we show that the domain
D() = {u € Co(D\M) N H*P(D); Wu € Co(D\M), Lu = 0}

is independent of N < p < oo.
We let

Dp = {u € H*?(D) N Co(D\M); Wu € Co(D\M ), Lu = 0} .
Since we have LP1(D) C LP2(D) for p; > p,, it follows that
Dy, C Dy, if pr > ps.
Conversely, let v be an arbitrary element of 9 P
ve H*2(D)N Co(D\M),  Wve Co(D\M), Lv=0.

Then, since we have v, Wo € Co(D\M) C LP/(D), it follows from an ap-
plication of Theorem 3.1 with p = p; that there exists a unique function

u € H*P1(D) such that
{(W—l)u:(W—/I)v inD,
Lu=0 on oD,

if we choose A sufficiently large. Hence we have u — v € H %r2(D) and

W—-MDu—-v)=0 inD,
{L(u—v)=0 on D .

Therefore, by applying again Theorem 3.1 with p = p,, we obtain that
u—v =0, so that v = u € H>P1(D). This proves that v € 9,

2) We shall make use of a i-dependent localization argument in order to
adjust the term ||(W — A)ul| , in inequality (4.1) to obtain inequality (4.5), just
as in [T2].
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2-a) If x{ is a point of D and if x is a C® coordinate transformation such
that ¥ maps B(x{,10) N D into B(0,6)N Rﬁ and flattens a part of the boundary
oD into the plane xy = 0, then we let

Go = B(x,mo)ND, G' = B(xp,n)ND,0 < n < 1o,
G" = B(xy,n/2)ND,0 < n < 1o .

Here and in the following B(x,7) denotes the ball of radius n about x.
Similarly, if xo is a point of D and if x is a C*° coordinate transformation
such that ¥ maps B(xo, 7o) into B(0,0), then we let

GO = B(x()ano) ) Gl = B(xo,ﬂ),o <n<mno,
G" = B(x0,n/2),0 <1 < 1o -

2-b) We take a function ® € C§°(R) such that @ equals 1 near the origin,
and define

o(x) = (X' )P(xn), x=(',xn).

Here one may assume that the function ¢ is chosen so that

{supptp C B(0,1),
e(x)=1 on B(0,1/2).

We introduce a localizing function

X —Xo |x’—x(’)2) (xN—t> ,
x,n) = =¢ () , xo = (x,1) .
Po(x,1) <p( 7 ) ( 7 - 0 = (xg,1)

We remark that

{Suppcpo C B(xo,1) »
@o(x,n) =1 on B(xo,n/2) .

Then it is easy to verify the following (see [T2, Claim 7.5]):
Claim 4.3 If u € B(T), then we have pou € D(W)).

3) Now let u be an arbitrary element of D(1). Then, by Claim 4.3, we
can apply inequality (4.1) to the function @ou to obtain that

|'1|l/2nu“cl(c_"‘) + |'1| “u“C(F) = |'1|1/2||<P0u||cx(57) + |'1I ”(POuHC(E)
= |}~|I/2H‘P0““cl(5) + |4 ”‘PO“”C(B)
< ClANPP(W = A)(@o)|lLepy - (4:6)

3-a) We estimate the last term (W — 2)(@ou)||Lr(py in terms of the supre-
mum norm of C(D).
First we write the term (W — A)(@ou) in the following form:

(W — A)(@ou) = @o((W — A)u) + [4, polu + [S, polu ,
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where [4, @o] and [S, o] are the commutators of 4 and ¢ and of S and ®o,
respectively:
[4, @olu = A(pou) — @oAu,

[S, @olu = S(pou) — @oSu .
Now we need the following elementary inequality:
Claim 4.4 We have, for all v € C/(G') (j =0,1,2),
Iollmirary < 1617 lI0llesr, »
where |G'| is the measure of G'.
Since we have, for some constant ¢ > 0,
G’ < |B(xo,n)| < en™,
it follows from an application of Claim 4.4 that
lleo(W — Dullzepy = l[@o(W — DullLeery < '/PnP||(W — Al e
< PP = Dl o, - (4.7)

On the other hand, we can estimate the commutators [4, ¢oJu and [S, @o]u
as follows:

Claim 4.5 We have, as 5 | 0,
It4, @olullroy < COr= P llull iy + 17> lull ), (48)
IES, @oJullrpy < CO™ P llull iy + 172 P |full e 5)) . (49)

Proof. Estimate (4.8) is proved in [T2, inequality (7.9)].
In order to prove estimate (4.9), we remark that

S(pou)(x)
= | (@olx+2)u(x +2) — @o(x)u(x) — z + V(pou)(x))s(x,z)m(dz)
RN\ {0}
=@o(x) [ (ux+2)—ux)—z - Vu(x))s(x,z)m(dz)
RY\{0}

+ ( | (ux+z)- u(x))zs(x,z)m(dz)) - Vo(x)
RV\ {0}
+ [ (@o(x+2)— @o(x) — z + Voo(x))u(x + 2)s(x,z)m(dz)
RV\ {0}

= @o(x)Su(x) + ( [ (ux+z)- u(x))zs(x,z)m(dz)) « Vo(x)
RV\{0}
+ [ (@o(x+2) = @o(x) — 2 + Vo(x))u(x + 2)s(x,z)m(dz) .
RV\{0}
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Hence we can write the commutator [S, @oJu in the following form:
[S, pou(x) = ( [ ux+z)— u(X))ZS(LZ)M(d’Z)) » Vo(x)
RM\{0}

+ [ (@o(x +2) = @o(x) — z + Vo(x))u(x + 2)s(x,z)m(dz)
RY\{0}

= S((,l)u(x) + S(()z)u(x) .

First, just as in Lemma 1.6, we can estimate the term S(()”u as follows:

1 1
1S5 ull oy = 185 ullLor)

IIA

2(a(m)llull 1y + M lull @)1V @ollLrar

G
<2 (o(n)\luch(ﬁ) n (7 t cz) ||u||c@) IV eolluron

But it follows from an application of Claim 4.4 that
IVollunc < CHYP(Vgull oy < Cn V7,
IV2ollry < CHP V200l oy < C 7277,
since we have, as 1 | 0,
Vool =0(™"), V@0l = 0(n™?).
Therefore we obtain that
158wl oy < COr Y2 |uller gy + 172 lulle ) - (4.10)

Similarly, arguing as in the proof of Lemma 3.2, we can estimate the term
S(()z)u as follows:

2
IS ulley < Cllull oy IV @ollzrier)
< Clull eyt 11V 00l ¢,
< 2Pl oy - (4.11)

Thus, the desired estimate (4.9) follows by combining estimates (4.10) and
4.11). O
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Therefore, combining estimates (4.6), (4.7), (4.8) and (4.9), we obtain that
A e i, + 1Al o
< CIAMP||(W = A)(@ow)||Lr (o)
= CIA2l|go((W — A)u) + [4, @olu + [S, polul|r(o)
= CLAMP VPN = Dl ey + ™ VPl o g, + 172 o)
< CLP MW = Dl gy + 172l agpy + 172V ull o 5,) -

(4.12)

3-b) We remark that the closure D = D U dD can be covered by a finite
number of sets of the forms

{B(XO,’?/Z), X0 ED:
B(xy,n/2)ND, xh€aD.

Therefore, taking the supremum of inequality (4.12) over x € D, we find
that

141" lull 1y + 1Al o 5
< ClA2PM P\ = Dl oy + 1 Nl er ) + N ullemy) - (4.13)
4) We now choose the localization parameter . We let
"o

"= et

where K is a positive constant (to be chosen later) satisfying

Mo
0<n= _W'/ZK <o,
that is,
0 <K< |,

Then we obtain from inequality (4.13) that
Mll/zllu“cl(ﬁ) * Ml”u”c(ﬁ)
< Cr]g/pKN/"Il(W _ M”“C(B) +(Cngl/p—lK—1+N/p)M|1/2”u”01(5)

+(Crg P22 2 ) o i, - (4.14)
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But, since the exponents —1+ N/p and —2+ N/p are negative, we can choose
the constant K so large that

Cng/P—‘K—1+N/p <1,

and
CrllP2K NP < 1

Then, the desired inequality (4.5) follows from inequality (4.14).
The proof of Lemma 4.2 is complete. [

III) The next lemma, together with Lemma 4.2, proves that the resolvent set
of M contains the set Z(g) = {4 =r2e;r 2 r(e), —n+e <9 < n—¢h:

Lemma 4.6 If A € X(¢), then, for any f € Co(D\M), there exists a unique
function u € D(W) such that (W — Al)u = f.

Proof. Since we have, for all 1 < p < o0,
f € Co(D\M) C LP(D),

it follows from an application of Theorem 3 that if A € Z(¢), there exists a
unique function u € H*P(D) such that

(W-Au=f inD, (4.15)

and 4
Luzua—::+yu=0 on D . (4.16)

But, by Sobolev’s imbedding theorem, it follows that
uec H*»(D)c C*NeDyc C'(D) if N< p < oo.
Hence we have, by formula (4.16) and condition (H),
u=0 onM = {x' €dD;u(x") =0},

so that
ueE CO(B\M ).

Further, in view of equation (4.15), we find that

Wu = f + iu € Co(D\M) .

Summing up, we have proved that

u e D(IB),
{(ﬂB—AI)u=f.

Now the proof of Theorem 4 is complete. [
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