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Remark.

a) By this Atiyah-Bott type formula for py,, it is obvious that uy, :
R(G) — € is a homomorphism of groups, but it is not obvious that puy , takes
values in Q.

b) Theorem 3.17 together with Theorem 3.5 are a generalization of re-
sults of Atiyah-Segal-Singer ([A-Se 68], Theorem 3.5) and Reid ([Re 87],
pp. 405-407).

(3.18) In (3.10) and (3.12) we introduced local Chern classes and local Chern
numbers of locally free sheaves with respect to a given resolution of an isolated
quotient singularity. We now want to calculate such numbers for two special
locally free sheaves.

Proposition. Let ¢ : (X,E) — (X,x) be a good resolution of an isolated
quotient singularity of dimension n. Then

a) ca(x, @) = (=1)" - (e(E) — 75).

b) cu(x, Qs (log E)) = (—1)"*' - .

Proof. Let us choose projective~models X of (X,x) respectively X of (X,E),
such that X is smooth and o : X — E — X — {x} is biholomorphic.

a) Set ¥ = Q,, F = (6.F)"Y, hence F = Q). By Proposition
3.14, c,(x,#) = ca(F) — cn(F). Hence, using Theorem 2.14, c,(x,%) =
(=1 e(X)—(—1)" - eon(X ) = (=1)" - ((e(X — E)+e(E))~(e(X)~(1 - 55;)))
=(-1)" - (e(B) - 32)-

b) Set # := QL(logE), F := (6.%)"V, hence F = Q). Then c,(x, %) =
en(F)—en(F)=(-1)" - e(X —E) = (=1)" - en(X) = (~1)" - (e(X —E)—
(e(X) — (1 — 35))) = (=1)"+ (—55;), where we used Proposition 3.14,
Theorem 2.14, and [B-H-H 87], p.236. [0

4 Local and global asymptotic Riemann—Roch Theorems for symmetric
products of locally free sheaves

We discuss asymptotic RR Theorems, i.e. formulas for the asymptotic behaviour
of the Euler characteristic of the symmetric products S*#, where k goes to
infinity; the main results are Theorem 4.1 (local version) and Theorem 4.7
(global version). Theorem 4.1 is related to a conjecture of J. Wahl, cf. section
(4.8). In [Wa 93], local Chern numbers for locally free rank two sheaves on
resolutions of normal surface singularities are introduced; using Theorem 4.1,
these are compared to our local Chern numbers in Proposition 4.10.
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(4.1) Definition. For every n € N, let On € Z[Z,,...,Z,] be the following
universal homogeneous polynomial of degree n, where degZ; ;=i for all i.
Oy is the degree n-part of the formal power series A+z1+---+2)'=
2o @+ +Z) ez(z,...,2,])

Theorem. Let o : (X,E) — (X,x) be a good resolution of an isolated quotient
singularity of dimensiorl n. Let & be a locally free sheaf of rankr on X and
assume that = (a,.% )"V is a V-free sheaf on X. Then

k g _
lim xS F) 1
k—oo fntr—1 (n+r-1)

] 5 Q,,(C](x,j),---acn(x’g}))’

where S denotes the k-th symmetric product of %.

Recall that (X,x) is allowed to be smooth (i.e. isomorphic to (C”,0)),
and that “good resolution” means that £ is a normal crossing divisor and that
o(E) = {x}. See (3.9) for the Definition of the local holomorphic Euler char-
acteristic y(x,S*%), see (3.10) and (3.12) for the Definition of the local Chern
number Q,(ci(x, #),...,ca(x, F)) = Qu(c(x, )). Notice that (0.(SK(F )V
=5 F = (SKF)VV is V-free for all k € N because F is V-free.

Remark. (1 + 3,5, Z) ' =1~ Z\+ 2} ~ 2, - Z3 + 22,2, — Zy + ... , and
hence 01 = -7y, ) =7} -2, O3 = -Z} +22,2,~Z;,... . (The O;’s are the
polynomials which give the Segre classes when applied to the Chern classes,
cf. [Fu 84], p.50.)

(4.2) Lemma. Let R be a commutative ring, let a € R, b; € R (for all
i € N) be given elements, let by := 0. Set P, := 1, By :=0, 4y := 1. Define
Py = —Z,§i§"+l Puii—i - bi foralln 2 0, B,y :=a - B, + P, for all
n20,A4,41:=a-A,+byy for all n = 0. Then Sor all n 2 1 the following
equality holds in R:

A By—a" ' +a . p = T (“i' 2. Pn_l_f+,~-bn~f>'

0<iZn—2 0<j<i
Proof. For n = 1, this is trivial. Assume that the equality is valid for n. We
have to show that it is then valid for n + 1. Now

2n+1
Ant1Bnyy — @ + a"P,,

= a* (4B, — @) + ad,P, + ab, 1B, + byy1 P, + a"P,,

= a2 ( Z (ai Z Pn—l—H—jbn—j) - an—an) +a Z aib,,_,'P,,
0

Sisn—2\ 0<jsi 0<i<n

+ abn+1 Z a'Pn—I—i =+ bn-HPn + a"Pn+l
0sisn—1
= Y d-x.
0<i<n+l
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We used that B, = 3 o<, @ + P, and that 4, = Yo<i<n @ * by for
all n = 1. Then it is easy to see that k; = Zoéjg Py_irj » bpyi—j for all
i=0,...,n—1 and that , = k,4; = 0; and this proves the claim. []

(4.3) Lemma. Let X be a compact manifold of dimension n, let F be a locally
free sheaf of rankr on X. Let Y := P(F) 5 X be the projectivization of #.
Let { € Hax(Y, ) be the first Chern class of Op#)(1). Then fy 'Ap*n=
Jyn for all n € I'(X,&™).

Proof. Let X = |J, U; be a covering of X by open subsets such that # |y, is
trivial for all i. Let 37, ¢; = | be a partition of unity subordinate to {U;}.
Then [yn =3, Jy, ém and [, U p*n =35, [, ' p*(¢in), where V; =
p~'(U;). Now V; = U; x P, for all i and fp_,(x)C"l =1 for all x € X.
Hence f,,i e p*(¢in) = fU‘_(¢,~q , flpr—l -y = fUi ¢in, and this proves the
claim. [J

(4.4) Proposition. Let X be a manifold of dimension n, let F be a locally
free sheaf of rankr on X. Then

SkF 1
lim XS F)

koo K1 (itr—1) On(c1(F),...,ca(F)) .

Remark. In case n = 2, this was proved by Bogomolov by different methods,

k
of. [Bo 79], p. 535; the formula is then lim_o, 555 — Fane(F)? -
c(F)).

Proof. Set Y:=P(F), &:= Opz)(1), m:=n+r—1=dimY, {:= ca(¥) e
H2(Y,C). Then y(X,S*F) = y(Y, ), cf. [B-P-V 84], Theorem 1.5.1, and
limy o0 x(Y, £®%) = L™ cf. [B-P-V 84, p.21.

Hence we have to show that [, ci(£)" = [, Qu(ci(F),...,ca(F)). By
Lemma 43, [; Qu(ci(F),....cl(F)) = [, p*Ou(ci(F),...,ca(F)) - U,
and thus it is sufficient to show that

On(er(F),....ca(F)) + (L)' =ci(L)" in HZ(Y,CT).

Let us assume, in the following, that » > n; then we have 4n — 2 < 2m.
(If » < n, a similar proof works.) Set a:= ¢|(#),b;:= c|(F),...,by:= cn(F).
Then it follows from Lemma 4.2 that 4, « B, = (Y y<;<, c1(:L)" + comi(F)) -
By=ci(L)Y" ' —ci (L)Y« Quci(F),...,co(F)) in Hix (Y, ) for a suit-
able element B, € Hf,’;‘z(Y, C). (The right hand side of the formula of Lemma
42 vanishes in Hyp *(Y,C) because deg(Pp_i_ij/(ci(F),...,ca(F)) -
en-j(F))=2n—1-i>nforalli <n-2)

Now 4, = 0 in HZ(Y,C), and hence ¢\(L)*"~! = ¢;(L)"! - Qu(c1(F),
cesen(F)) in Hyjp %(Y,C). We multiply this equality by c;(£)"**!, and
obtain ci(L)" = c|(L)"" + Qu(ci(F),...,ca(F)). O

Corollary. Let ch, be the homogeneous polynomial of degree n which is
the degree n-part of the Chern series ch. Then, in the situation of
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the Proposition:

1
Jm g o [eh(S¥F) - td(X) = Jim
- 00 X

e - chu(5"%)

o0 fntr—1
1

“mtr-1)

Remark. This reverses the order of Bogomolov’s proof of the Proposition in

case n = 2: He first determines the asymptotic behaviour of ch(S¥#) - td(X)

(using the splitting principle for the calculation of the ¢;(S¥#)’s in terms of
the c;(#)’s) and then deduces the proposition.

- On(#F) (in Hij(X,C)=C).

(4.5) Lemma. Ler (X,x) be an isolated quotient singularity. Then there is a
rational constant v(X,x) such that |ux(¥)| < rank & - v(X,x) for all V-free

sheaves F on (X, x).

Proof. By Corollary 2.6, we know that there is a finite set {#,..., %} of

V-free sheaves on (X,x) such that every & is isomorphic to a sum % ®h g
@ Z®" for suitable /; € Ny. Let us assume that lex (Al > “‘X"(f” for

rank 4 = rank %
all i. Then px (F) = Zl§i§, l; + ux (&), and hence

- = |xx(F)|
g < ;| o . P < TP i ek SIS
I”X,x( )l = 5 ' |#Xx(~/1)| = E l; - rank % rank 7.
lux(F)|
< O i A cw(Xx). O
rank & rank 7, =:rank ¥ - v(X,x)

Corollary. limy_, ki, . ;1,‘(,,,(3"(9'~ ) = 0 for every V-free sheaf # oun X, where
r:=rank F

Proof. limy_,o0 2 ¥ rankS =0. O

(4.6) Proof of Theorem 4.1. Let Y 55 Z = Y/G be a globalization of (X,x)
as in Lemma 3.6, let % and %; be the respective globalizations of #.
Let 0 : Z — Z be the induced resolution of Z, %; the induced sheaf on
Z Setm :=n+r—1. Set N := #SingZ. By Proposition 4.4, we know
that limi_,c0 i x(V,S*Fy) = L0.(Fy) and that limy_.oo = 2(Z,8F;) =
L0.(F). Now (Z,8F;) = y(Z,5°F2) + N + pxx(S*F), and hence
limy — 00 r',; 22,8 Fz) = limy 00 1 Xorn(Z, S¥F7), by Lemma 4.5. Thus

1
hm e x(z SkF,) = hm n Yoro(Z, S¥F7) = 11m
1
G«

1 1 o
k—m e Yo (Y, ¥ Fy)

11m ——x(Y SkFy) = e ml On(Fy)= — Qn('/'Z)

Then
lim L (x,8*#) = lim £ ((Z, 85 F) — y(Z,5*F3))
k—oo k™ XX k—oo k™ N ’ % ’ <

11 -1 .
= m N (On(F2) — On(F3)) = P On(c(x, %)),

where we used Lemma 3.9 and Proposition 3.14. [
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(4.7) We now generalize Proposition 4.4:

Theorem. Let X be a compact Vi-manifold of dimension n. Let & be a locally
V-free sheaf of rankr on X. Then

k
o KSEF)
k—oo  kntr—l (n+r-—1)

s Ou(ei(F),....ca(F)).

Proof. This follows from Theorem 4.1 and Proposition 4.4 by arguments which
were already used in the proof of Theorem 3.5. [J

(4.8) In sections (4.8) to (4.10) we want to compare some of our concepts
and results to some concepts and results of J. Wahl, cf. [Wa 93]. There, Wahl
considers the following situation: Let (X,x) be a normal surface singularity,
let o : (X,E) — (X, x) be a good resolution (in the sense that E is a normal
crossing divisor), let # be a locally free sheaf of rank2 on (X,E). Then he
defines local Chern numbers cz(x,./') (in @) and &(x, Z) (in R), and he
conjectures (and proves in some special cases) an asymptotic RR Formula for
x(x,8¥F) = dim I'(X ,E) — E,S¥%)/T(X,E),S*%) + h°(R'6.(S*%)).
Definition ([Wa 93]).

a) Let % be an invertible sheaf on (X,E). Then there is a unique divisor
D =) oE; (0; € Q for all i) such that E; - D = degE P for all j. Then set

&(x, £) = D~ Similarly one defines a rational number ¢\(x, P) - é(x, M)

for mvertzble sheaves & and M on (X,E ).

b) Let F be a locally free sheaf on (X,E). Then &(x,F) := &(x,det ).

¢) Let & be a locally free sheaf of rank 2 on (X,E). Set

&(x, L) - &(x, M)
deg f ’

where one takes the infimum over all triples (Y,F) © (X E), 2, M) such
that f is a generically finite holomorphic mapping and such that there is an
exact sequence 0 — P — f*F — M — 0, where P and M are invertible
sheaves on (Y,F ), with F = f~Y(E). Here, (Y,F) means the germ of the
smooth surface Y along the compact curve F C Y.

Conjecture ([Wa 93]). Let % be a locally free sheaf of rank 2 on (X,E).
Then

E(x, F) = inf{

1 —1 .
Jim 5 206 S F) = — - (@ F) = & F)).

Thus, the case (n,r) = (2,2) of our Theorem 4.1 is exactly the Wahl-
Conjecture for quotient singularities with respect to our local Chern numbers.

(4.9) Lemma. Let (X,x) be a quotient surface germ, let o : (X,E) — (X, x)
be a resolution, let F be a locally free sheaf on (X,E). Then &(x,%) =
c(x, #), where c, is as in (4.8), ¢ as in (3.10) and (3.12).

Proof. We may globalize: Z a projective Vi-manifold of dimension 2 such that
Sing Z = {2} and (Z,zy) = (X,x), Z > Z the induced resolution, #; a locally
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free sheaf on Z such that Filze = F. Set Z;5 = det(F3), P = det(F),
hence & = &;|; ). There is a divisor D on Z such that &; =~ 03(D). Then
(6.%5)VV = 0z(D), with D := ¢,D, a Weil divisor on Z. Let ¢*D be the
numerical lifting of D, write 6*D = D — D*, hence D" is a Q-divisor with
suppD* C E and D¥ - E; = D - E; for all i. Thus &(x, /) = (D*)%. On the
other hand, —c(x, %) = cX(F ) — }(F3) = A(¥Lz) — X F;) =D* — D? =
—(D*)?; here we used Proposition 3.14; and we used D?> = D? + (D*)?, which
follows from D° = =(6*D+D°) = (¢*D)* + (D’ = D* + (DF)2. O

(4.10) Proposition. Let o : (X,E) — (X,x) be a resolution of a quotient

surface singularity, let % be a locally free sheaf of rank 2 on (X,E). Then
the following two conditions are equivalent:

(i) & F) = ax, F)
(ii) the Wahl-Conjecture is true for the pair (X,E), ).

Here, ¢, is as in (4.8), and c; is as in (3.10) and (3.12).

Proof. This is a direct consequence of Theorem 4.1 together with
Lemma 49. O

Corollary. If, in the situation of the Proposition, the local fundamental group
of (X,x) is cyclic (in other words: G, = Z,, for some m € IN), then éy(x, ¥ ) =
ca(x, F).

Proof. For a cyclic group, every irreducible representation is of rank one,
hence # = & @ ./ for suitable divisorial sheaves % and .# on (X,x), and
thus /l(x ns2&s £y DM |¢2.5)—r for invertible sheaves # and .# on

(X,E). But in this case, the Wahl- -Conjecture is true, cf. [Wa 93], p. 83, and
hence the claim follows. [

Remark. In the situation of the Proposition, let # = Q% (logE).
Then é&(x, %) = —ﬁ = cy(x, #), by Proposition 3.18 and by [Wa 93],
p. 82.

(4.11) In view of the definition of Ez(x,./'”z ), the following result may be of
interest:

Lemma. Let (X,x) be a quotient surface germ, let o : (X E) — (X,x) be a
resolution, let % be a locally free sheaf of rank 2 on (X,E), let (Y,y) 5
(X, x) be the smoothing covering, let (Y,E) be the minimal resolution of the
normalization of (X ,E) xwx.x) (Y, y); let

(.E) — (%)

| |-

X.E) - Xx)

be the resulting commutative diagram.
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