D
[-A elt

Werk

Titel: Intrinsic atomic characterizations of function spaces on domains.
Autor: Triebel, Hans, Winkelvol3, Heike

Jahr: 1996

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0221 | log55

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Math. Z. 221, 647 - 673 (1996)

Mathematische
Zeitschrift

© Springer-Verlag 1996

Intrinsic atomic characterizations of function spaces
on domains

Hans Triebel, Heike WinkelvoB

Mathematisches Institut, Friedrich-Schiller-Universitit Jena, D-07740 Jena, Germany
(e-mail: triebel@minet.uni-jena.de)

Received 18 January 1994; in final form 24 October 1994

1 Introduction

The two scales of function spaces B, (R") and F, (R") on the euclidean
n-space R" with s € R, 0 < p < oo (p < oo for the F-scale), 0 < g < oo,

cover many well-known classical spaces:

(1) the Holder-Zygmund spaces %°(IR") = BS__ (R") with s > 0;

(2) the classical Besov spaces B, (R") with s >0, 1 < p<oo, | £
q = oo

(3) the fractional Sobolev spaces Hy(R") = F(R") with s € R, 1 < p
< 00, where W,f(lR”) = H,f(lR”) with s € Ny, 1 < p < oo, are the classical
Sobolev spaces

(4) and the (inhomogeneous) Hardy spaces #,(R") = F’f’z(lR") with 0 <
p < 0.

Corresponding spaces on domains Q in IR” have been studied in great detail,
especially, of course, the spaces mentioned in (1)—(3). There are two possi-
bilities:

(i) spaces on Q are defined by restriction of corresponding spaces on R”;
(ii) intrinsic definition of the corresponding spaces on Q.

Both possibilities have their advantages and disadvantages, and the related prob-
lems are quite clear.

As for (i), defining the spaces B, () and F,(2) by restriction, leads
more or less immediately to the problem of an intrinsic characterization of
these spaces. The state of the art has been described in [34], Ch.5. If Q is a
bounded C*°-domain in IR" and s > n(4-1), then one has some intrinsic char-
acterizations of By, (£2) and F,, () via oscillations, derivatives and differences
of functions. There is not much known in this generality if Q is non-smooth

or if s < n(L-1)+. It might be considered as the main aim of this paper to
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seal the gap by providing intrinsic atomic characterizations for all these spaces
under very mild and natural restrictions on the (non-smooth) domain Q. A
second problem connected with the approach (i) is the question whether there
exists a (linear bounded) extension operator from the spaces on £ into the
corresponding spaces on R”. If Q is a bounded C°°-domain in IR” then one
has a satisfactory affirmative answer for all these spaces, see [34], 5.1.3. If
Q is non-smooth the situation is more delicate, but we shall not discuss this
problem in this paper.

The second above-mentioned possibility (ii), defining directly spaces on
Q, is apparently restricted to some of these spaces. A lot has been done
to study Sobolev spaces WZ‘(Q) with k€N and 1 < p < oo (occasion-
ally including p = 1 and p = o0) in non-smooth domains, especially whether
there exists a linear extension operator, see [23] and [24] and the refer-
ences given there. Recall Whitney’s intrinsic description of Holder spaces
(Lipschitz spaces) on closed sets in R”, and the construction of a linear
and bounded extension operator to corresponding spaces on IR”, see e.g.
[28], Ch. 6. Extending this procedure Jonsson and Wallin studied more gen-
eral spaces, especially Besov spaces, but also Hardy spaces on closed sets
in IR”, see [19],[36]. If there exist extension operators in these cases, then
one has on admissible domains not only atomic characterizations but also
characterizations via derivatives or differences of functions, approximation
procedures etc.

The plan of the paper is the following. Sect.2 deals with spaces on IR": def-
initions and atomic characterizations, where the latter is a modification of what
has been done by Frazier and Jawerth, see [13] and [14], adapted to our needs.
Sect. 3 deals with spaces on domains. First we describe the type of domains
we have in mind and compare our definition with other proposals in the rele-
vant literature. In particular if Q is a bounded (¢, )-domain in IR” according to
[16] which coincides with the interior of its closure, then it belongs to the class
IR(n) introduced in Definition 3.2(i), see also the more detailed discussion in
3.2. In 3.5 and 3.6 we prove our main result, the intrinsic atomic characteriza-
tions. The arguments are quite simple but we obtain a rather satisfactory and
final answer. We wish to emphasize that our paper should also be considered as
a contribution to the delicate question of adequate definitions and formulations
of what is meant by atoms and atomic representations and which (non-smooth)
domains should naturally be treated in this context. In particular we introduce
in 3.3 the interior and boundary atoms in domains. By Definition 3.3/2(ii) an
interior atom is essentially the same as its counterpart on R" according to
Definition 2.2(ii), inclusively the cancellation condition (3.3/9), which reflects
the desired behavior of the Fourier transform of these types of atoms near the
origin. As for the boundary atoms in domains introduced in Definition 3.3/2(iii)
this cancellation condition is no longer needed. This is the point where the type
of the underlying domain comes in: one tries to extend these boundary atoms
from Q to R” such that the extended atoms satisfy the necessary cancellation
conditions. Boundary atoms of similar type may also be found in [25] and [1],
where atomic decompositions of Hardy spaces 4,(£2) with 0 < p < 1 in some
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types of domains were considered. In these two papers the related atoms extend
the classical atoms for Hardy spaces on IR". Our approach is different. As far
as IR" is concerned we rely essentially on what has been done in [12],[13]
and [14].

Section 4 complements the obtained results. In 4.1 we add a remark about
C>°-domains. In 4.2 we give a rather final description of the entropy numbers
of compact embeddings between the considered function spaces. Atomic char-
acterizations on the one hand and the correct asymptotics of entropy numbers
on the other hand pave the way to a spectral theory of non-smooth (integral,
partial differential, pseudodifferential) operators in non-smooth domains. We
shift this task to a later paper. But in 4.2 we wish to provide an understanding
why atomic decompositions and entropy numbers can be used to study spectral
properties of non-smooth and degenerate operators. Finally, in 4.3 we add some
complements, in order to compare our results with what is known in literature.
But we restrict ourselves mostly to references.

All unimportant positive constants are denoted by c, occasionally with
additional subscripts within the same formula or the same step of the proof.
Furthermore, (k.I/m) refers to formula (m) in subsection k.|, whereas )
means formula (j) in the same subsection. Similarly we refer to remarks,
theorems etc.

2 Function spaces on R"
2.1 Definitions

Let R” be the euclidean n-space. The Schwartz space S(IR") and its dual space
S’'(R") of all complex-valued tempered distributions have the usual mean-
ing here. Furthermore, L,(IR") with 0 < p < oo, is the usual quasi-Banach
space with respect to Lebesgue measure, quasi-normed by |« |L,(R")||. Let
¢ € S(R") be such that

() swppoC{yeR": |y <2} and p(x)=1if x| <1:

let @;(x) = ¢(27/x) — p(27/*!x) for each j € N (natural numbers) and put
®o = ¢. Then since 1 = 37 ¢,(x) for all x € R”, the @; form a dyadic
resolution of unity. Let f and f be the Fourier transform agd its inverse,

respectively, of f € S’(IR"). Then for any f € S'(R™), (¢@; f) is an entire
analytic function on R”.

Definition. (i) Let s e R, 0 < p < 0o and 0 < q < oo. Then B (R") is
the collection of all f € S'(R") such that

1

) 1/ By (Rl = (ff 2fsq||(<p,f‘)‘|Lp(m")||‘f)

J=0

(with the usual modification if q = o) is finite.
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(i) Let se R, 0 < p < 00,0 < g = 00. Then F,(R") is the collection
of all f € S'(R") such that

®) 11 Fpg(R™) o = (@ /) )"’) Lp(R")

i 2754
Jj=0

(with the usual modification if g = 00) is finite.

Remark. Systematic treatments of the theory of these spaces may be found in
[33] and [34]. In particular, both B (R") and Fy,(R") are quasi-Banach spaces
which are independent of the function ¢ € S(R™) chosen according to (1), in
the sense of equivalent quasi-norms. This justifies our omission of the subscript
@ in (2) and (3) in what follows. If p = 1 and ¢ = 1 both B;q(lR") and
F;q(]R") are Banach spaces. These two scales cover many well-known classical
spaces, mentioned briefly in the introduction (1/1)—(1/4). Recall that for k € N
and 1 < p <

4) £ Wy (RM)|| = | % |D* £ | Ly (RM|

is an equivalent norm in the Sobolev space W[f (R") = F[fz(lR"). Of pe-
culiar interest for us will be the Holder spaces @ (R") = BS_(R") with
0 < s = [s] + {s}, where [s] € No={0} UN and 0 < {s} < 1, with the
equivalent norm

L]

o _Da
G) IfIE®D| = ¥ ID*f[Loo(RM)[|+ > sup e (x)_ {s}f .
o< 0s) la=ls) b=l

where the supremum is taken over all x € R"” and y € R" with x= y.

2.2 Atoms

We adapt the atoms introduced by Frazier and Jawerth in [12],[13] and [14]
to our later purposes. Let again IN be the natural numbers, No = {0} UN,
and Z" be the lattice of all points in R” with integer-valued components. Let
b > 0 be given, v € Ng and k € Z". Then Q,; denotes a cube in R” with
sides parallel to the axes, centered at x"¥ € R" with

(1) [x"% - 27| £ b2

and with side-length 27". Let Q be a cube in R”" and > 0, then r Q is the
cube in IR” concentric with Q and with side-length r times the side-length of Q.
We always tacitly assume in the sequel, that d > 0 is chosen in dependence -
on b such that for all choices v € Ny and all choices of x** in (1)

2) U dQw =R".

kezr
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Recall that ¥°(IR") with 0 < ¢ ¢ N may be normed by (2.1/5). Let €°(IR™)
be the usual space of all complex-valued bounded continuous functions on IR”
equipped with the L. -norm.

Definition. (i) Let 0 < o ¢ N. Then a(x) is called a 1-atom (or more precisely
15-atom) if

3) supp a C d Qo for some k € Z"
and
4) a€ € (R") with |a|€°(R")|| £ 1.

(ii)LetsGIRandO<p§ooLet0§a¢lNandL+l€lNo.

Then a(x) is called an (s, p)-atom (or more precisely (s, p),..-atom) if

) supp a C dQw  for some v € N and some k € Z" ,
(6 a € C(R") with [la2™" ) |7 (R")]| < 27"~ H)
and
(7) [ *Pa(x)ydx=0 for |p| < L.

|Rn

Remark 1 We begin with some technical explanations. The number d has the
above meaning, see (2), and is assumed to be fixed throughout this paper.
Recall that Qo is a cube with side-length 1. If g satisfies (5) and (6) then

(8) 2" 5)a(2 ")

is a 1,-atom, inclusively (3) with a(2~" - ) instead of a. Recall xf = x‘lB' - -xf"
if x = (x),...,x,) € R” and f is a multi-index. Then the moment conditions
(7) are equivalent to

) (D*a)(0)=0 for |f| < L.

If L = —1, then (7) simply means that there are no moment conditions. The
reason for the normalizing factors in (6) (and also in (4)) is that there exists
a constant ¢ such that for all these atoms

(10) lalBye(R)| < e, |la|Fp(RM)]| S c.

In other words, atoms are normalized smooth building blocks, satisfying some
moment conditions.

Remark 2 The above definition is adapted to our later needs, where we carry
over this definition from IR” to (bounded, non-smooth) domains Q in IR”. Then
the Whitney extension plays a decisive role. This explains why we used #°
with 0 < ¢ ¢ N. In case of R" one would otherwise prefer CX, the space of
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all f € %° with D*f € €° if |a| < K. Doing so the normalizing condition in
(6) can be re-written as

(11) ID%a(x)| £ 2772, o] K.

This is the usual way to introduce atoms, see the above mentioned papers by
Frazier and Jawerth or [34],1.9.2,3.2.2.

2.3 Atomic characterizations

First we introduce two sequence spaces. Let
(1) Az{lvkzlv,,ed?, v e Ny andkeZ"}

and let xf,f) be the p-normalized characteristic function with respect to the
above cube O, that means

@) 1Px)=2% ifxeQu and {2x) =0 ifxeR"\ Qu,
where 0 < p £ oo.
Definition. Let 0 < p £ oo and 0 < g = oo

(i) Then by, is the collection of all sequences A given by (1) such that

1

N q
© 1418yl = ( 5 (5 ) )

(with the usual modifications if p andlor q is infinite) is finite.
(ii) Then f,q is the collection of all sequences /. given by (1) such that

L
@ 121 foall = (2 > uvkxs:’(-)lq) L, (R")
v=0 ke€Z"

(with the usual modifications if q is infinite) is finite.
Proposition 1 Let 0 < p S 00 and 0 < g = . Then

(5) b p,min(p.q) C Sra C bpmax(p.g) -

Proof. By the triangle inequality, in dependence on whether p = g or p = ¢,
one has

(6) ”’pr,max(p,q)“ 2 ”prq” = HMbp,min(p,q)“ »

see [33], p. 47, for this type of argument. One has to use

(N X2 | L,(RM)| =1 and [|A|ppll = 14| opll -
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Remark 1 This proposition is the direct counterpart of the embedding

() By, min(p,q)(R") C Fpg(R") C B, max(p.g)(R")

both in formulation and proof, see [33], p.47.

If ¢ € R, then we put ¢, = max(c,0) and denote by [c] the largest integer
less than or equal to c¢. Furthermore, if 0 < p < oo and 0 < g £ oo then
we use the abbreviations

1 1
9) o=n(——1> and o =n<.——l> -
: g P . w min( p, q) N

If the atom a(x) is supported by dQ,, in the sense of (2.2/3) or (2.2/5) then
we write a,;(x), hence

(10) supp ay CdQvw; veE Ny and ke Z".

Proposition 2 Let s € R, 0 < p < ocoand 0 < g < o0. Let 0 < o ¢ N,
s<aoand L+ 1 € Ny with L max([o, — s],—1). Let either A€ by,
or A € fp in the sense of the above definition. Let a,;(x) with v € Ny
and k € Z" be 1,-atoms (v =0) and (s, p)s_-atoms (v € N) in the sense of
Definition 2.2 (i) and (ii), respectively, with (10). Then

=
2

o0

(11) Y 2 Avkaw(x)

v=0 keZn
converges in S'(R").

Remark 2 The proof of this proposition is a by-product of the proof of the
following theorem, which, in turn, is essentially covered by what has been
done by Frazier and Jawerth, see especially [13]. Our modification compared
with the original formulation described in Remark 2.2/2 is immaterial in this
context. So we do not go into detail.

Theorem. (i) Let s € R, 0 < p S oo and 0 < g < oo. Let 0 < 6 ¢ N,
s <oand L+ 1€ Ny with L Z max([o, — s],—1).

Then f € S'(R") belongs to B,,(R") if and only if it can be represented
as

o0
(12) =33 Awaw(x), convergence in S'(R"),

V=0 kEZ"
where a, (x) are ls-atoms (v = 0) or (s, p)s,.-atoms (v € N) in the sense of
Definition 2.2(i) and (ii), respectively, with (10), and A € byy. Furthermore,

(13) inf || 4| bpg|l »
where the infimum is taken over all admissible representations (12), is an
equivalent quasi-norm in B, (R").

(iiyLet se R, 0 < p<ooand 0 < g <00 Let 0 o ¢N,s <o
and L+ 1 € Ny with L =2 max([op, — s],—1).
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Then f € S'(R") belongs to Fp(R™) if and only if it can be represented
by (12), where the atoms a,i(x) have the same meaning as in part (i) (now,
maybe, with a different value of L), and A € Jpq- Furthermore,

(14) inf || 4] fpgll

where the infimum is taken over all admissible representations (12), is an
equivalent quasi-norm in Fo (R}

Remark 3 As we said this theorem is at least in principle covered by the work
of Frazier and Jawerth, see [12],[13] and [14]. Our formulation is different and,
as we hope, more handsome, even on IR”, and we switched from requirements
like (2.2/11) to their counterparts (2.2/6). This latter modification prepares
the atomic approach to spaces on domains. Starting from (2.2/11) one has to
replace 0 < g ¢ N, s < ¢ in the above theorem by K = ([s] + 1);. In this
sense the above theorem offers also a slight improvement compared with what
is known so far. But this is not crucial for our further considerations and would
not justify to present a long and complicated proof. In other words we take
the above theorem for granted.

3 Function spaces on domains
3.1 Definitions

An open connected set in IR” is called a domain. As usual D’(Q) stands for all
complex distributions on the domain Q in R”. The restriction of g € S'(IR")
to Q is denoted by g|Q and is considered as an element of D'(Q).

Definition 1 Let Q be a domain in R". Let s€ R and 0 < g < .

(i) Let 0 < p £ oo. Then B, (Q) is the restriction of B, (R") to Q,
quasi-normed by

) 1f By, (@)]| = inf ||| B3, (R
where the infimum is taken over all g € B (R") with g|Q = f.
(ii) Let 0 < p < oo. Then F,,(Q) is the restriction of Fp(R") to Q,
quasi-normed by
(2) 1S 1 Fpg()]| = inf ||g|F,, (R™)]
where the infimum is taken over all g € Fp (R") with g|Q = f.
Remark 1 By standard arguments all these spaces are quasi-Banach spaces. Fur-

thermore, simply by definition, all embedding theorems between spaces known
on IR" can be carried over to the corresponding spaces on Q.

Admissible domains. The above definition applies to any domain in R”. But in
this generality the introduction of spaces on Q via restriction of corresponding
spaces on IR” is not very reasonable. Let, for example, g be a continuous
function on R". Then, of course, /' = g|Q2 can be extended continuously to Q.
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For instance, coming that way, the teeth of the comb domain in Fig. 1 are
completely ignored. The atomic decomposition given in Theorem 2.3 provides
the feeling that this argument applies also to more general functions and distri-
butions, and related spaces. In other words, it seems to be reasonable to restrict
the considerations to those domains Q which coincide with the interior of their
closure, Q2 = int(ﬁ). This excludes the comb domain in Fig. 1, but it does not
exclude the bow-tie domain in Fig.2, where we took out two triangles as indi-
cated of a square. The above arguments apply to the centre of this domain and
thus make clear that some care is necessary. Furthermore, we assume in the
sequel that Q is bounded. This is neither necessary nor natural, but convenient
for us. It is quite clear that adding some uniformity conditions most of what
we have to say can be carried over to appropriate unbounded domains. An
exception is subsection 4.2, where the boundedness of the underlying domains
is natural to study the behaviour of entropy numbers. We formalize the above
considerations.

Definition 2 Let MR(n) (minimally regular) be the collection of all bounded
domains Q in R" with

(3) Q=int(Q),
that means, Q coincides with the interior of its closure Q.

Remark 2 The comb domain in Fig. 1 does not belong to MR(2), whereas the
bow-tie domain in Fig.2 belongs to MR(2).

A discussion. Let 1 < p < oo and k € N. Then as usual
4) Wi (Q)={f €L,(R):D*f € L,(Q),|a| <k}

are the classical Sobolev spaces. Let 2 € MR(2) be the bow-tie domain in
Fig. 2. Then, looking at traces on lines, it follows that the restriction of Wlf (R?)
to Q on the one hand and W]f (£2) on the other hand do not coincide (at least

if kp > 2, where all elements of W,f‘(]RZ) are continuous). So we have in that
case

(5) Wy(R*) = Flp(R?) and W (Q)+Fh(Q),

1
Q Q

Fig. 1. Fig. 2.
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with F:Z(Q) € WZ‘(Q), k€N, 1< p < ooandkp > 2. The equality in (5)
is the well-known Paley-Littlewood characterization of Sobolev spaces, see,
for example, [33], Theorem 2.5.6. In the second part of (5), the space Wlf (Q)
is given by (4) and F:Z(Q) by part (ii) of Definition 1. If Q ¢ MR(2) is the
comb domain in Fig. 1, then we have also (5). How big the difference between
W,f () and F,fz(Q) is in that case can be imagined by the recent observation
in [15] that in similar comb domains any given set of non-negative numbers
may serve as the essential spectrum of the Neumann Laplacian on Q. In 4.3
further discussions may be found, including references.

3.2 Regular domains

Our aim is to find intrinsic atomic characterizations of the spaces B, (L) and
F,,(R2) introduced in Definition 3.1/1. We describe now those types of domains
which, how we believe, are naturally connected with this task.

Definition. (i) Let IR(n) (interior regular) be the collection of all domains
Q € MR(n) for which one finds a positive number ¢ such that Sfor any cube Q
centered at 0Q with side-length less than or equal 1

(1) RNl 2 Q.

(ii) Let ER(n) (exterior regular) be the collection of all domains
Q € MR(n) for which one finds a positive number ¢ such that for any cube
Q centered at 0Q with side-length | less than or equal 1 there exists a sub-
cube Q° with side-length cl and

) 0 CON(R"\9).
(iii) Let _
3) R(n) = IR(n) N ER(n)

be the collection of all domains Q € MR(n) which are both interior and
exterior regular.

Remark. Of course, Q = Q\ Q denotes the boundary of Q. As we said,
our restriction to bounded domains is convenient for us but not necessary, at
least in this stage. Cubes may always be considered as having sides parallel to
the axes.

A discussion. In analogy to ER(n), let Q € MR(n) be a domain for which
one finds a positive number ¢ such that for any cube Q centered at 0Q with
side-length / less than or equal 1 there exists a subcube Q' with side-length
¢l and

4) Qg conQ.

Then we have Q € IR(n). In this sense the typical situation connected with
the above definition is shown in Fig. 3. The domain in Fig. 4 with an inward
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Qc

Fig. 3.

Fig. 4. Fig. 5.

cusp belongs to IR(2), but not to ER(2); whereas the domain in Fig.5 with an
outward cusp belongs to ER(2), but not to IR(2). Attempts to specify (non-
smooth) domains in connection with function spaces have a long history, which
we will not discuss here. We only recall that domains Q € MR(n) satisfying
the interior or exterior cone condition belong to /R(n) or ER(n) respectively.
Minimally smooth domains Q € MR(n) which, by definition, have a Lipschitz
boundary are regular in the sense of (3). We refer for definitions and details
to [23],1.1.9 and [28], p. 189. There are also conditions near to ours in the
literature. In [13] there are domains D, and NST (not so terrible), where the
latter are near to the above class IR(n). The condition in [25], Theorem 4,
is similar as our condition (3). If Q € MR(n) is a so-called (&,0)-domain,
see [16] and [23],1.5.1, then it belongs to IR(n). We refer especially to [23]
and [24] for a detailed discussion of non-smooth (or bad) domains, mostly in
connection with the extension property, which we comment on briefly at the
end of this paper.

3.3 Atoms

We look for appropriate counterparts of the definitions and results in 2.2 and 2.3
now in suitable domains. We always assume Q € MR(n). First we need the
counterpart of the spaces ’(IR").

Definition 1 Let Q € MR(n) and let 0 < ¢ = [0] + {0} where [o] € N,
and 0 < {o} < 1. Then %°(Q) consists of all complex-valued continuous
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functions f on Q with the following two properties:

(i) f has classical derivatives D*f in Q for |a| < [o] and there exist
continuous functions f, on Q which coincide with D*f on Q,

(il
D%/ () =D _

W I 1@l =50 % D@l 45w T =00

x€Q |x|=[0] |«]=[0]

s

where the second supremum is taken over all x € Q and y € Q with x+ y.

Remark 1 Of course, ¥°(Q) is a Banach space. It coincides with the Lips-
chitz space Lip(a, Q) in the sense of the usual “jet-definition” via {fy}a|<[o»
(f = fo), see [19], pp-22, 44/45 and [28], p.173. In contrast to the more gen-
eral situation treated there we benefit from the fact that Q is the closure of the
bounded domain Q. Let again ¥°(Q) be the space of all complex-valued con-
tinuous functions on Q. Then all these spaces ¥°(Q2), now with 0 < ¢ ¢ N, can
be extended to ¥?(IR") via Whitney’s extension method, see [28], pp. 170-180.
We will use this in the sequel.

To introduce atoms on domains Q € MR(n) we again rely on the cubes
O, described at the beginning of 2.2. The numbers b and d have the same
meaning as there. We may assume in addition that the centres x"* of the cubes
O with dQ,x N 0Q=+0 are located at 0Q. In this sense we call Oy

) an interior cube if dQ\x C Q, v €N,k e Z",
and
3) a boundary cube if x"* € 0Q, ve NykcZ".

Other cubes are not of interest for us. Let, for brevity,

(4) Q={xeR":27x€Q}, veNy.

Definition 2 Let Q € MR(n).

(i) Let 0 < o ¢ N. Then a(x) is called a 1-atom (or more precisely
1,-atom) in Q if

(%) supp @ C 2 N dQox
for some interior or boundary cube Qo with k € Z" and
(6) a€€°(Q) with ||la|€°(Q)| S 1.

(ii) Let se Rand 0 < p < 00. Let 0 £ 0 ¢ N and L+ 1 € N,.
Then a(x) is called an (s, p)-atom (or more precisely (s, p)s,1 interior-atom)
in Qif

(7) supp a C dQvk
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for some interior cube Q,; with v e N and k € Z",

(8) a € €"(Q) with la2™" )| $°(@)]| < 27¢H
and
©) [xPa(x)dx =0 for || < L.

Q

(iii) Let s€ R and 0 < p < oo. Let 0 < 0 ¢ N. Then a(x) is called an
(s, p)-atom (or more precisely (s, p)s-boundary atom) in Q if

(10) supp a C QN dQOy

and (8) holds for some boundary cube Q,; with ve N and k € Z".

Remark 2 The above parts (i) and (ii) are the natural counterparts of Defini-
tion 2.2. As for part (iii) no moment conditions of type (9) are required. See
Remark 2.2/1 for further explanations. In particular, 1-atoms and normalized
boundary atoms in the sense of (2.2/8) are close to each other.

3.4 Atomic domains

First we introduce the counterparts of the sequence spaces byy and f,, from
Definition 2.3. Let Q € MR(n) and let Q,; be the dyadic cubes in the sense
of 3.3, where we are only interested in interior and boundary cubes described
in (3.3/2) and (3.3/3), respectively. In modification of (2.3/1) we put

(1) A={Ax: 4k €C, ve Ny, k € Z", O, interior or boundary cube} .

Furthermore, ZZ‘EQZ,, means that for fixed v € Ny the sum is taken over those

k € Z" for which Q,; is an interior or boundary cube. Let again xif)(x) be
the normalized characteristic function of Q. in the sense of (2.3/2).

Definition 1 Let Q € MR(n), and let 0 < p < 0o and 0 < q £ .
(1) Then by, () is the collection of all sequences A given by (1) such that

N\ §
@) 141 (@] = (z ( 3 “quup) )
v=0 keZn

(with the usual modification if p andlor q is infinite) is finite.
(ii) Then f,4(L2) is the collection of all sequences J. given by (1) such that

1
(Z e )|") \me)

v=0 k€Z"

(3) 4] fog (| =

(with the usual modification if q is infinite) is finite.
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Remark 1 The desirable counterpart of Proposition 2.3/1 is not clear. It is con-
nected with the question whether L,(£2) in (3) can be replaced by L,(RR"). As
we shall see in 3.5 this is the case if 2 € IR(n). Then we have a full counter-
part of (2.3/5). On the other hand let Q be the cusp domain in Fig.5 then one
constructs easily a sequence of cubes Q,, converging to the edge of this do-
main and a corresponding sequence of numbers 4 = {4,4}, such that 1 belongs
to fpe(82) in (3), but A does not belong neither to the corresponding space with
L,(R") instead of L,(£2), nor to any of the spaces b,,(£2) with 0 < u < oo,
0 < v = oo. In this sense the class IR(n) is at least reasonable in this context.

Next we are interested in the counterpart of Proposition 2.3/2, which we
now convert in a definition of domains having this property. As described in
both parts of Theorem 2.3 we have in IR” natural restrictions for ¢ and L, if
s, p,q are assumed to be given. This justifies to take over this knowledge to
the situation considered now. Let again o, and gy, be given by (2.3/9).

Definition 2 Let s € R and 0 < g < oc.

(i) Let 0 < p < oo,
(4) 00¢N,s<o and L+1€Ny withL = max([o, —s],—1).

Then Atom(B,,)" (atomic B -domain) denotes the collection of all domains
Q € MR(n) such that for all such choices of ¢ and L

(5) > Y " huan(x), x€Q, A€ bu(Q),
v=0 keZ"

converges in D'(Q) to an element of B, (Q), where ay(x) are 1,-atoms
(v =0), (s, p)o,L-interior atoms (v € N), or (s, p)s-boundary atoms (v € N)
in the sense of Definition 3.3/2 with

(6) supp aye C 2NdQu, vEN.
(i) Let 0 < p < o0,
(7) 0<0¢N, s<o and L+1€Ny withL 2 max([opy —s],—1).

Then Atom(F,,)" (atomic F;q-domainj denotes the collection of all domains
Q € MR(n) such that for all such choices of ¢ and L

®) Y P an(x), x€Q A€ fru(),

v=0 k€Z"

converges in D'(Q) to an element of Fp (), where ay(x) are the same atoms
as in part (i).

Remark 2 1t should be noted that the convergence of (5) and (8) is required
only in D'(Q2). But it comes out, that these series under the conditions in the
theorems of the two following subsections converge also in B,,(£2) and F, (),
respectively, if p < oo and ¢ < oco. If p = 0o and/or ¢ = oo then the situation
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is different, but this is well-known even in R” or on smooth domains (smooth
functions are not dense in €%, ¢ > 0).

Remark 3 The conditions (4) and (7) coincide with the corresponding condi-
tions in Theorem 2.3. It is clear that (i) and (ii) shall be understood in that
way that for any fixed couple (o, L) satisfying these requirements the desired
convergence takes place.

3.5 Atomic characterizations: large s

If one wishes to extend boundary atoms in the sense of Definition 3.3/2(iii)
from Q to R", then the moment conditions (2.2/7) for these extended atoms
cause some trouble. So we shift this task to the next subsection and deal with
those cases where in the sense of Theorem 2.3 no moment conditions are
necessarily required, that means where in Theorem 2.3, L = —1 is admissible.
But otherwise we keep the moment conditions for the interior atoms in the
sense of Definition 3.3/2(ii). The aim is to find the counterpart of Theorem 2.3.
Let again 0, and o,, be given by (2.3/9). Furthermore we use the notations
introduced in the previous subsection.

Theorem. (i) Let 0 < p £ 00,0 < q £ 00 and s > 0,. Then

e)) Atom(B,, )" = MR(n) .
Let
) s<o¢N and L+1€N,.

Then f € D'(Q) belongs to B, (Q) if and only if it can be represented as

o0
3) =3 3 “?ixan(x), convergence in D'(Q),
v=0 keZ"
in the sense of Definition 3.4/2(i) with A € by, (Q). Furthermore,
(4) inf [|2|6,g(Q)]] ,

where the infimum is taken over all admissible representations (3), is an
equivalent quasi-norm in B, (Q).
(ii)) Let 0 < p < 00,0 < g < 00 and s > 6,y Then

(5) Atom(F,,)" D IR(n) .
Let again
6) s<od¢éN and L+1€N,.

Then f € D'(Q) belongs to F,o(Q) if and only if it can be represented by (3)
With A € fpe(R). Furthermore,

) inf || 2] fpg ()] »
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where the infimum is taken over all admissible representations (3), is an
equivalent quasi-norm in Fy, ().

Proof.

Step 1 We prove (i). Let Q € MR(n). First we have to show that the series
(3.4/5) converges in D'(Q). For this purpose we extend each atom a,(x)
individually from @ to R”. Of course, only the boundary atoms in the sense of
Definition 3.3/2 (iii) are of interest, where we may assume that this covers the
1-atoms in the sense of Definition 3.3/2(i) with v =0 in (3.3/8) too. We rely
on Whitney’s extension method as described in [28], pp. 170-180, especially
Theorem 4 on p. 177, and which can be applied to the spaces €°(Q), see
Definition 3.3/1 and Remark 3.3/1. Let E; be the linear extension operator,
constructed in [28], p. 177, formula (18). By Theorem 4 on the same page,
E[4) generates a linear extension operator

®) Ei(Q): 6°(Q) — 6°(R"),

with a bound being independend of Q. Let D, be the dilation operator on R”,
9) D.: f(x) — f(ex), ¢>0.

Then it follows from the explicit construction of Ej4 that

(10) E)(Q) = Dy 0 Ef)(2) o D,—y, vE Ny,

where Q' is given by (3.3/4). Let ¢ be a C* cut-off function with

(11) supp Y C2dQ and yY(x)=1 ifxedQ,

where Q is the unit cube centered at the origin. Here d has the same meaning
as in (3.3/10). We apply Ej)(£2) to the (s, p),-boundary atom a,x(x) and put

(12) bu(x) = Y(2"(x — x"F))E)(Q)aw )(x) ,

where x"¥ is the centre of O, see (3.3/3). By (3.3/8), (10), the existence of an
independent bound for the norms of E[a](ﬁ) of v, and (2.2/6) it follows that by
is an atom on IR” in the sense of Definition 2.2 with L = —1, besides a constant
and after replacing d in (2.2/5) by, say, 2d. Both, of course, is immaterial,
and we neglect it simply. Then the counterpart of (3.4/5) is given by

(13) S Y dubu(x), x€R", A€ by,
v=0 kcZ"

with A = bu(x) = 0 if Q4 is an “exterior” cube. By Proposition 2.3/2
and Theorem 2.3(i), the series (13) converges in S’(R”) and its limit belongs
to B, (R"). Hence, its restriction (3.4/5) to Q converges in D'(Q) and, by
Definition 3.1/1, its limit belongs to B, (€2) . Thus the proof of (1) is complete.
The rest of part (i) is now simple. By the above argument, any f € D'(Q),
given by (3) with 1 € by,(Q2) belongs to B, () . Conversely, by Definition
3.1/1 and Theorem 2.3(i) any f € B, () can be represented in that way. Now
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it follows immediately from Definition 3.1/1 that (4) with (3) is an equivalent
quasi-norm in B, () .

Step 2 We prove (ii). Let Q € IR(n) in the sense of Definition 3.2(i). Let Oy
be a boundary cube with centre x"¥ € 09, see (3.3/3). Let temporarily y ;
and y, be the characteristic functions of O, N Q2 and Oy, respectively, where
i refers to interior. Let (Mg)(x) be the Hardy-Littlewood maximal function of
a function g(x). Then it follows easily from (3.2/1)

(14) Xu(x) = c(Myw,i)(x), x€R", veNy,

where ¢ depends only on the constant in (3.2/1), which does not need to be
the same as in (14). Let 0 < w < min(l, p,q), let xf,,f) be given by (2.3/2)
and similarly X:/ﬁ z(x) = 2"/Py; i(x). Then (14) yields

1 1
(15) () S F (ML )x)

vk, i

with the same constant as in (14). We wish to show that L »(£2) on the right-
hand side of (3.4/3) can be replaced by L,(R") in the sense of equivalent
quasi-norms. We have by (15)

(16) (fj > " - )I")q L,(R™)

v=0 keZ"

<ev (§ > 1AM - )|%)q Lp(R")

v=0 k€Z"

with the same constant ¢ as in (14). Since 1 < £ < coand 1 < 2 < 0o
we may apply the vector-valued Hardy-Littlewood maximal inequality in the
sense of Fefferman and Stein, see [10],[29], pp. 50-56, [34], 2.2.2. Thus, the
right-hand side of (16) can be estimated from above by

1

(i’i S A2 - >|q)"

v=0 kcZ"

(17) ¢ L,(R")

’

which, in turn, can be estimated from above by c’||4| f,4(2)|| given by (3.4/3).
Hence we obtain

(18) (141 fpg ()| ~ Lp(R™)|f .

(ioj Z% "2 2x (- )l")q

v=0 keZ"

Now, after (18) has been established, one can follow the arguments of Step 1.
This proves (5) and the other assertions of part (ii).

Remark 1 The most remarkable feature of the above theorem is the striking
difference between part (i) and part (ii), especially between (1) and (5). It
supports again the well-known fact that spaces of type B, are structurally
simpler than spaces of type F,,, see [33], 2.5.5, and the references given there.
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Remark 2 The equivalence (18) is the crucial desired property. For its proof
we used (14), which, in turn, was based on (3.2/1), with (3.2/4) as a prefer-
ence case. Although (3.2/4) is quite natural in order to have Q € IR(n), there
exist domains 2 € IR(n) for which (3.2/4) is not true. If one takes out of a
square in IR? infinitely many smaller squares such that one obtains a carpet-like
domain, then it might happen, that (3.2/4) is violated, but not (3.2/1). Other
candidates may be recruited from domains with irregular, say, fractal bound-
aries, or from appropriately constructed domains of type “rooms and passages”.
As for domains of these types we refer to [23],[24],[4],[15] and [8]. But as
far as we know, the above question has not yet been studied in detail.

3.6 Atomic characterizations: general s

Whitney’s extension method proved to be a convenient and effective vehicle
to extend atoms from Q (better Q) to IR” as long as no moment conditions of
type (2.2/7) are required. If moment conditions are necessary, then we have to
amend what has been done so far in 3.5 by a special method creating moment
conditions on IR"\Q. For this purpose we need in addition to the previous
assumptions £ € ER(n) in the sense of Definition 3.2(ii). We use the same
notations and formulations as in the Theorems 2.3 and 3.5 without further
explanations.

Theorem. (i) Let 0 < p < 00, 0 < g < 0o and s € R. Then

(1) Atom(B,,)" D ER(n) .

Let

(2) 0s0¢N,s<o and L+1€Ny with L 2 max([o, —s],—1).

Then f € D'(Q) belongs to B, () if and only if it can be represented as

o0
3) =3 3 "iian(x), convergence in D'(Q),
v=0 keZ"

in the sense of Definition 3.4/2(i) with le bpg(R). Furthermore,
4) inf [|4]byg(2)] ,

where the infimum is taken over all admissible representations (3), is an
equivalent quasi-norm in B, () .
(ii) Let 0 < p < 00,0 < g < o0 and s € R. Then
(5) Atom(Fp,)" D R(n) .
Let

(6) 00 ¢N,s<o and L+1€ Ny with L 2 max([op —s],—1).
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Then f € D'(Q) belongs to Fp(2) if and only if it can be represented by
(3) with 4 € f,,(Q). Furthermore,

(7 inf [|2] /g ()] ,

where the infimum is taken over all admissible representations (3), is an
equivalent quasi-norm in Fop(Q).

Proof.

Step I The main idea of the proof of Theorem 3.5 culminated in the atomic
expansion (3.5/13) in R”, by extending boundary atoms a, in Q to corre-
sponding R"-atoms b,. In contrast to the situation in 3.5 we are now forced
to ensure some moment conditions for the extended atoms b,;. For that purpose
we begin in this step with a preparation. Let ¢(x) be a C™-function on the
real line R with a support near the origin and with

(8) [ot)dt=1.
R

Let L € N and let

L m
) )= 3 e 20)

) C/(mec, k:O,...,L.
m=0 dem

Since { [ /%0 dr}%L is a triangular matrix with non-vanishing entries on
the diagonal, the coefficients ¢4, can be uniquely calculated in such a way
that

(10) [tor(t)dt =614, k1=0,....L
R

(1,4 Kronecker symbol).
Let y = (y1,...,y,) be a multi-index and let

(11) ?y(X) = @y (x1) - @y, (xn),  x = (x1,...,x,) € R".

Then we have

(12) [ o x)ydx =065, 0<|B<L 0<p <L.
]Rn

Step 2 We prove (i). Let Q € ER(n). We follow Step 1 of the proof of
Theorem 3.5. Let, as there, a,x(x) be a boundary atom, again l-atoms are in-
cluded (what is convenient but not really necessary, since this case is covered
by 3.5). We extend as there a, by (3.5/12) to an R”-atom by, (besides im-
material constants which are again neglected) in the sense of Definition 2.2
without moment conditions of type (2.2/7). Let Q. be the underlying cube
and let Q5 be the related subcube in the sense of (3.2/2). Assume without
restriction of generality that Q¢ is centered at the origin and assume that the
supports of the functions ¢,(2"x), where ¢,(x) is given by (11), are contained
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in Q0F,. Let
(13) dy= [xX"by(27'x)dx, |y| =L,
and let b, (x) be given by

(14) ba(27'%) = by(27"x) — 3 dyp(x), xE€R".
=L

We claim that I;vk(x), besides immaterial constants, is the R"-atom we are
looking for. It is an extension of a,(x), satisfies (2.2/5) (maybe with 2d instead
of d), and can be estimated as in (2.2/6), since |d,| < c27"“~ % . Finally by
(12) and (13) by has the required moment conditions of type (2.2/7). Now
we are in the same position as in (3.5/13) with by(x) instead of by (x). By
the same arguments as after (3.5/13) we obtain (1) and the other assertions of
part (i).

Step 3 The proof of part (ii) is now almost clear. First we follow Step 2 of
the proof of Theorem 3.5 where we need Q2 € IR(n). Afterwards we use the
construction of the previous step where we need Q € ER(n). This proves (5),
see (3.2/3). The rest is now the same as above.

Remark. If s > o, in the B-case and s > o), in the F-case then we need
no moment conditions for the extended atoms and we have the better as-
sertions of Theorem 3.5 compared with the above theorem. To ensure the
moment conditions we needed 2 € ER(n). One might look for other con-
ditions, but it is hard to see how to ensure the necessary moment condi-
tions for the extended atoms without any additional assumption on the ex-
terior of Q as it was the case in Theorem 3.5. On the other hand it is
not difficult to see that moment conditions are unavoidable in general. Let
0 < p £ 00 and s < 0. Then without moment conditions one cannot expect
that (2.3/12) converges in S'(IR") or that (3.4/5) converges in D'(Q). Let,
for example, Q@ = Q be a cube in IR" with side-length 1, subdivided in the
canonical way in 2" subcubes with side-length 27". Since ¢ = 0 is admissi-
ble in that case we choose continuous functions a,.(x) in (3.4/5) with (3.4/6)
and

(15) law(x)] £ 27¢7%, ve N

in the sense of (3.3/8). To materialize A € b,.(£2) in (3.4/5) we may choose
Ak = 27"P_Then we have

(16) [Aan(x)] £27%, s<0, veENy.

Now it is clear, that we may find, say, non-negative continuous functions a(x)
such that (3.4/5) diverges in any sense.

On the other hand this consideration sheds new light on the role played by
the moment conditions of type (3.3/9). We refer also to [35] where we studied
problems of this type in greater detail.
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4 Complements
4.1 Atoms in C*°-domains

Let Q be a bounded C°°-domam in R” and let 4™ be the m-th power of the
Laplacian, hence (Z/ %= 2)"' m € N. Let again o, = (; —1)4,0<g £
and

(1)

,

5 {—m—l+% ifl <p=oo,
Gp,—m if0<p<l.
Then A™ maps isomorphically
(2) {f €B™Q):D*fl02 =0 if|a] <m—1} onto B} (2)
and (with p < 00)
B) {feF™Q):D*floQ =0 if|e] <m—1} onto F(Q).

By the trace theorem, see [33], 3.3.3, p.200, the left-hand spaces in (2) and A3)
make sense. In the case of the Sobolev spaces F () =W;(2),1 < p < o0,
0 = s € Ny, the above assertion is classical and goes back to Agmon, Douglis,
Nlrenberg Also its extension to the fractional Sobolev spaces H‘(Q)
Fo(2), 1 < p < 00,0 <5 < o0, the classical Besov spaces B 5q(€2) 5

l < p<oo,1=¢g=00,0<s < oo, and the Holder—Zygmund spaces
E(Q) = Booo(£2), 0 < 5 < 00, is well-known, see [32], Ch. 5, and the ref-
erences given there. The inclusion of spaces with s < 0 goes back to Lions
and Magenes, see [22]. Extensions to p < 1 had been considered by the first-
named author of this paper, see [33] and the references given there. Finally
the above result in its full generality is due to J. Franke, see [11]. By (1)
any space B, (2) and any space F,,(£2) may function as a target space. Let
S EB,(Q)or fe F,,(2) and f = 4™g in the above sense, then any atomic
decomposition of g produces an atomic decomposition of f since 4™a,; is an
(s, p)-atom in the sense of Definition 3.3/2 and (3.4/6) if a, is a sufficiently
smooth (s +2m, p)-atom. It can easily be seen that this includes the necessary
moment conditions if s < 6, or s < g, in the sense of the Theorems 2.3 and
3.6. The theorem below must be understood in this sense. We use the same
notations as in 3.5 and 3.6.

Theorem. Let Q be a bounded C*°-domain in R".

(i) Let 0 < p £ 00,0 < g <00, me N and let s € R be restricted by
(1). Then f € D'(Q) belongs to By (2) if and only if it can be represented
as

00
(4) = ¥ LU L convergence in D'(Q),
v=0 keZ"

with A € byy(Q), where ay(x) are 15-atoms (v = 0), (s + 2m, p), ;-interior
atoms (v € N), or (s + 2m, p)s-boundary atoms (v € N) with (3.4/6),

5) s+2m <o éN and L+1e€Ng.
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Furthermore,
(6) inf [|A[bpe ()]

where the infimum is taken over all admissible representations (4), is an
equivalent quasi-norm in B, (Q) .

(ii)) Let 0 < p < 00,0 < g <00, m €N and let s € R be restricted
by (1).

Then f € D'(Q) belongs to F,,(Q) if and only if it can be represented
by (4) with A € f,4(Q), where the atoms a(x) have the same meaning as in
part (i) now with

(7) s+2m <o ¢N and L+1€NyL 2 max([opy —s —2m],—1).
Furthermore,

(8) inf || 4] fpg (I,

where the infimum is taken over all admissible representations (4), is an
equivalent quasi-norm in Fo.(2).

Proof. We prove part (ii). The proof of part (i) is the same. Let f be given
by (4) with 4 € f,,(2). By the assumptions (7) for the atoms a(x) it follows
that

©) g= i_'fo 3 P (x)

belongs to F;q+ 2m(Q). Since in any case 4™ is a bounded map from Fps;fz’"(Q)
into F, (Q) it follows
(10) If 1F5e(D < crllglFps ™ (DI < call A fog(Dl

where the latter is a consequence of Theorem 3.6. On the other hand by the
same theorem and by what has been said in front of the above theorem both
inequalities in (10) can be replaced by equivalences if g and its representa-
tion (9) are appropriately chosen. This proves the desired assertion for any
S € F,,(2) which can be represented in this way. But by the isomorphism
property of A™ this applies to any f € F, ().

Remark 1 As for the smoothness assumptions we have
(11) A"ay € €°7(Q),

and ¢ — 2m may be any number larger than s. Hence, 4”a,, may be a “non-
smooth atom”. But, of course, this does not mean, that any such “non-smooth
atom”, equipped with the necessary support and moment conditions, is an ad-
missible atom in the above sense.

Remark 2 The Theorems 3.5 and 3.6 pave the way, so we hope, to interesting
applications to integral and (pseudo-) differential operators in non-smooth
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domains. Whether the above theorem can be used in that way is not so clear.
But it may serve as a hint how to introduce atoms on more general struc-
tures such as boundaries of (smooth and non-smooth) domains, (Riemannian)
manifolds etc. First one assumes that s in the corresponding spaces B, and
F,, is large. Then one has no trouble with “moment conditions” (what ever
this means). Afterwards one can try to introduce atoms with the help of dis-
tinguished operators, for example Laplace-Beltrami operators etc.

4.2 Entropy numbers

The aim of this subsection is to support our opinion that the Theorems 3.5
and 3.6 can be used in spectral theory of integral and (pseudo-) differential
operators in smooth and non-smooth domains. But these applications must be
shifted to a later occasion.

First we define what is meant by entropy numbers. Let B, and B, be two
quasi-Banach spaces with B, continuously and compactly embedded in B;. In
other words, given any & > 0 there are finitely many balls in B, of radius &
which cover the unit ball Uy = {u € By : ||[u[Bi|| £ 1} in B,. Let k € N
and let id : By — B, be the natural embedding. The kth entropy number ey
of id is the infimum of all numbers ¢ > 0 such that there exist 2¢~! balls in
B, of radius ¢ which cover U; (considered as a subset of B;). We took over
this definition from [5], p. 140, where one finds also the necessary references
concerning entropy numbers and their history which we will not repeat here.

Theorem. Let Q € MR(n). Let

(l)—oo<s2<s1<oo,0<p,§pZSoo,0<q1§oo,0<q2§oo

and let
) = e ey
l pP1 2 j28
Then the natural embedding
3) id : By, (2) = B,,,(Q)

is compact. Let e, be the corresponding entropy numbers, then there exist
two positive numbers ¢ and c, such that

51— —4

4) k™7t <o S kT2, keN

Proof. Let K, and K; be two open balls with K| C 2 and Q C K,. We may
assume that the unit ball {f : [|f|B},4,(Q)|| < 1} of B4, () is the restriction
of a subset of {g : [|g|B}q,(K2)|| £ c} for some ¢ > 1. By [5] and [6] there
exist 2¢~1 elements g; € B}3,q,(K;) with

) min g - gi|B,, ()| < k™77, keN.

292
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By restriction one has a similar assertion with € instead of K,. This proves
the right-hand side of (4). Recall that (4) is known for smooth domains, in
particular for K;, see [5] and [6]. Then the left-hand side of (4) follows from
the above arguments with K; and Q instead of Q and K, respectively.

Remark 1 We have

(6) B p.minp.g) (@) € Fpg(2) C By max(p,g)(2) -

This inclusion with R” instead of 2 may be found in [33], 2.3.2, p. 47. But
we introduced spaces on Q via restriction procedures, see Definition 3.1/1, and
such a procedure preserves embeddings of this type. Since ¢, and g, in (3) are
independent of each other, (6) proves that B in (3) and (4) can be replaced
by F on one or both sides (with p; < oo and /or p; < o0).

Remark 2 We carried over (4) from smooth domains to arbitrary domains
Q € MR(n) by the restriction argument without knowing whether there exists a
linear and bounded extension operator from B;,(£2) into B, (K>). But we add a
warning. The same argument cannot be applied, for example, to approximation
numbers. This shows again the superiority of the entropy numbers compared
with other geometric quantities measuring compactness.

Application to spectral theory. Let A be a compact linear operator acting in
a complex quasi-Banach space B and let {e;} be the sequence of the entropy
numbers of {4b : b € B,||b|B|| < 1}, the image of the unit ball. Let, on
the other hand, {4} be the sequence of the eigenvalues of A, each repeated
according to algebraic multiplicity and ordered by

(7 | = |pa| = -+ .
Then, by Carl’s inequality,
(8) | £ V2er, keN.

See [7] for details, references to original papers and to related books. In [7]
we used this observation to study spectral properties of operators of type

9) A= az(xiDal(x)

in function spaces, preferably of type H(2) = F,(2) in smooth domains.
Here aj(x) and a(x) are two singular functions, for example belonging to
some spaces L,(Q), 1 < r £ oo, whereas D stands, for example, for an
(elliptic) pseudodifferential operator. The basic idea to handle spectral asser-
tions for the operator 4 is the following. First one proves mapping properties of
the pseudodifferential operators between function spaces of type, say, B, (£2) or
F,,(£2). Then one incorporates the singular functions a;(x) and a;(x) via Holder
inequalities in function spaces as studied in [27], which can be extended
immediately to the non-smooth domains under consideration here. Finally a
combination of (8) and (4) gives sharp (in order) results for the distribution
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of the eigenvalues {1 }. Mapping properties for (exotic) pseudodifferential op-
erators in function spaces on IR” can be obtained by using atoms, see [13], [34],
Ch. 6., and [30], [31]. But now, using Theorems 3.5 and 3.6, one can study in-
tegral operators and pseudodifferential operators in non-smooth domains in the
same way. On the basis of the so-obtained mapping properties between func-
tion spaces and the indicated technique one has a good chance to derive sharp
assertions for the distribution of eigenvalues of operators of type (9). We hope
to return to this subject in a later paper.

4.3 Complements

We comment briefly on a few key words connected with our approach. But
instead of descriptions we restrict ourselves to references.

Domains. The necessary discussions and references about non-smooth domains
have been given in 3.2 and Remark 3.5/2. In 3.3 we also commented on the
related “jet- definition” of €7(Q).

Intrinsic definitions. Spaces of Sobolev and Besov type have been defined
intrinsically, generalizing the “jet-definition” of %°(2) on more general sets
than we did. The necessary references, especially to the extensive work of
Jonsson and Wallin, have been given in the Introduction.

Extensions. Closely connected with the intrinsically defined spaces is the prob-
lem whether there exists a linear and bounded extension operator from these
spaces on IR". As far as spaces B,, and F; on R’ or on smooth domains
are concerned we refer to [32],[33] and [34] and the references given there.
There are several papers discussing sufficient (and necessary) conditions for
the existence of linear and bounded extension operators. As for Sobolev spaces
in Lipschitz domains (minimally smooth) we refer to [28], p. 180-192. The
extension problem for Sobolev spaces in the more general (e, §)-domains has
been studied in [16]. But in this context consult [23], p. 29, for further refer-
ences to earlier papers. The spaces C;, introduced in [2] coincide with s
if s > a,, see [34], p. 248. The corresponding extension problem for mini-
mally smooth domains has been treated in [2], and for (e, d)-domains in [26].
In [21] Kaljabin proved that Stein’s extension method works also for spaces
Fpe with s > 0,1 < p < 00,1 < g < o0, in minimally smooth domains.
Extension operators for Besov spaces in (g, d)-domains have been constructed
in [3]. Finally we refer to [9] which deals with anisotropic Sobolev spaces in
(g,6)-domains. Further discussions may be found in [23], pp. 70/71.

Atoms. There are very few papers dealing with atoms on domains. As far as
Hardy spaces are concerned we refer to [19], p.86, [25] and [1]. As for Besov
spaces we mention the recent work by Jonsson and Wallin, [20],[17],[18].
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