

Werk

Titel: Theta functions and cycles on some abelian fourfolds.

Autor: Geemen, Bert van

Jahr: 1996

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0221 | log53

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Theta functions and cycles on some abelian fourfolds

Bert van Geemen

Department of Mathematics, Ruu, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands

Received 10 March 1994; in final form 15 August 1994

1 Introduction

1.1 Let X be an abelian variety over $\mathbb C$ and let K be an imaginary quadratic field with

$$K \subset \operatorname{End}(X) \otimes \mathbb{Q}$$
.

The action t of K on T_0X , the tangent space at the origin of X, can be diagonalized thus, w.r.t. a suitable basis of T_0X :

$$t(k) = \operatorname{diag}(\sigma(k), \dots, \sigma(k), \overline{\sigma}(k), \dots, \overline{\sigma}(k)), \quad (k \in K)$$

with $\sigma: K \hookrightarrow \mathbb{C}$ an embedding of K. We say X is of type (p,q) if there are p entries $\sigma(k)$ and q entries $\overline{\sigma}(k)$.

In case X has type (p, p), Weil [W] constructed a two dimensional subspace $W \subset B^p(X) := H^{2p}(X, \mathbb{Q}) \cap H^{p,p}(X)$. For general X, dim X > 2, of type (p, p) one has in fact:

$$\dim NS(X)_{\mathbb{Q}} = \dim B^{1}(X) = 1, \qquad B^{p}(X) = D^{p}(X) \oplus W,$$

here $D^p(X) := \operatorname{Im}(B^1(X)^p \to B^p(X))$, $(\omega_1, \dots, \omega_p) \mapsto \omega_1 \wedge \dots \wedge \omega_p$. In particular such an X has Hodge classes which are not obtained as intersections (cup products) of divisors classes. In [vG2] we gave an elementary introduction to these abelian varieties.

1.2 For certain abelian varieties X of Weil-type with field $K = \mathbb{Q}(i)$, $\mathbb{Q}(\omega)$, $\omega^3 = -1$, \mathbb{C} . Schoen [S] gave a construction for algebraic cycles on X whose classes span W.

In this paper we use theta functions to construct algebraic cycles on certain abelian 4-folds of Weil type. In fact we show that in the case under consideration the abelian varieties allow a rational map onto a smooth quadric \overline{Q} in \mathbb{P}^5 , the classes of the inverse images of the rulings of \overline{Q} give classes which do not lie in D^2 .

Theorem 3.7 Let X be an abelian 4-fold of Weil-type (2,2), with field $\mathbb{Q}(i)$ and det H=1.

Then the space W of Weil-Hodge cycles is spanned by classes of algebraic cycles.

1.3 We refer to 2.1 and [vG2] for the explanation of 'det H'. It turns out, see 5.2, that the abelian varieties we consider are among those studied by Schoen [S], however, our method is different. We don't know how the cycles obtained by us and Schoen are related.

2 The abelian varieties

2.1 The abelian varieties of Weil-type we consider were introduced in [vG1], 10.6, 10.7. Let S_{2n} be the Siegel upper half space of $(2n) \times (2n)$ complex, symmetric matrices whose imaginary part defines a positive definite quadratic form on \mathbb{R}^{2n} and let

$$\mathbb{H}_{2n} := \left\{ \tau = \begin{pmatrix} \tau_1 & \tau_{12} \\ -\tau_{12} & \tau_1 \end{pmatrix} \in \mathbb{S}_{2n} : \tau_1 \in \mathbb{S}_n, \ ^t\tau_{12} = -\tau_{12} \right\}$$

and

$$arOmega_{ au} := \left(egin{array}{c} I \ au \end{array}
ight) \; .$$

We will write vectors as row vectors. The abelian varieties are then defined by: $X = X_{\tau} := \mathbb{C}^{2n}/(\mathbb{Z}^{4n}\Omega_{\tau})$ with $\tau \in \mathbb{H}_{2n}$. The equality:

$$M\Omega_{ au}=\Omega_{ au}A,\quad ext{with }M:=egin{pmatrix} 0&I&&&&\ -I&0&&&\ &&0&I\ &&&-I&0 \end{pmatrix}\,,\quad A:=egin{pmatrix} 0&I\ -I&0 \end{pmatrix}\,,$$

shows that X_{τ} has an automorphism ϕ of order four with:

$$\phi: X_{\tau} \to X_{\tau}, \qquad \phi_* = M \in \operatorname{End}(H_1(X_{\tau}, \mathbb{Z})), \qquad d\phi = A \in \operatorname{End}(T_0X_{\tau}).$$

Note that the eigenvalues of $d\phi$ are i and -i, both with multiplicity n, thus the X_t are of Weil-type (n,n).

The principal polarization $E: \wedge^2 H_1(X, \mathbb{Z}) \to \mathbb{Z}$ on X_{τ} is given by an alternating $4n \times 4n$ matrix of the same shape as A, but with four $2n \times 2n$ blocks rather than $n \times n$ blocks. A simple computation verifies that ϕ_* preserves the polarization:

$$E(\phi_*x, \phi_*y) = E(x, y) \quad (\forall x, y \in H_1(X, \mathbb{Z})).$$

The space $H_1(X, \mathbb{Q})$ has the structure of a $\mathbb{Q}(i)$ -vector space via the action of ϕ_* . Define:

$$H: H_1(X, \mathbb{Q}) \times H_1(X, \mathbb{Q}) \to \mathbb{Q}(i); \qquad H(x, y) := E(x, \phi_* y) + iE(x, y).$$

Then H is a Hermitian form $(H(x, y) = \overline{H(y, x)})$ and $H(x, \phi_* y) = iH(x, y)$ and its determinant (modulo norms of elements of \mathbb{Q}^*) is an isogeny invariant. An easy computation shows that

$$\det H = 1$$
.

2.2 We recall the definition of theta functions with characteristics $m, m' \in \mathbb{R}^g$ (cf. [I], p. 49):

$$\theta_{m,m'}(\tau,z) = \sum_{k \in \mathbb{Z}^g} \exp(\pi i [(k+m)\tau^l(k+m) + 2(k+m)^l(z+m')]),$$

here $\tau \in \mathbb{S}_g$, $z \in \mathbb{C}^g$. The zero locus of the function $\theta_{0,0}(\tau,z)$ (Riemann's theta function on X_{τ}) in \mathbb{C}^g defines a symmetric divisor $\Theta_{\tau} \subset X_{\tau}$. The pair $(X_{\tau}, \mathcal{O}(\Theta_{\tau}))$ is a principally polarized abelian variety. Thus the Riemann theta function is the pull-back of a global section of $\mathcal{O}(\Theta_{\tau})$ to \mathbb{C}^g . If $X_{\tau} \cong X_{\tau'}$ one has $\mathcal{O}(2\Theta_{\tau}) \cong \mathcal{O}(2\Theta_{\tau'})$, thus this line bundle is canonically defined (intrinsically: the unique totally symmetric line bundle algebraically equivalent to twice the principal polarization).

We define theta functions with half integral characteristics:

$$\theta \begin{bmatrix} m \\ m' \end{bmatrix} (\tau, z) := \theta_{m/2, m'/2}(\tau, z) \quad \text{for } m, m' \in \{0, 1\}^g .$$

Let α the point of order two in X_{τ} defined by $(m + \tau m')/2 \in \mathbb{C}^g$ and let $(\Theta_{\tau})_{\alpha}$ be the translate of Θ_{τ} by α . Then the function $\theta[{m \choose m'}]$ is a basis of $H^0(X_{\tau}, \mathcal{O}((\Theta_{\tau})_{\alpha}))$. The 2^g functions:

$$\theta \begin{bmatrix} m \\ 0 \end{bmatrix} (2\tau, 2z), \quad m \in \{0, 1\}^g$$

are a basis of $H^0(X_\tau, \mathcal{O}(2\Theta_\tau))$.

From the definition of the theta function one easily proves the following lemma, which gives the action of ϕ^* on global sections of certain line bundles on X_{τ} and which gives a formula for the maps

$$(1-\phi)^*: H^0(X, \mathcal{O}(\Theta_\alpha)) \to H^0(X, \mathcal{O}(2\Theta))$$
,

for the translates Θ_{α} of Θ with $\alpha \in \ker(1 - \phi)$.

2.3 Lemma. For ε_i , $\varepsilon_i' \in \{0,1\}^n$, $z \in \mathbb{C}^{2n}$, $\tau \in \mathbb{H}_{2n}$ and $N \in \mathbb{Z}_{\geq 0}$ we have:

$$\theta\begin{bmatrix} \varepsilon_1 & \varepsilon_2 \\ \varepsilon_1' & \varepsilon_2' \end{bmatrix}(N\tau, zA) = (-1)^{\varepsilon_1'\varepsilon_1'} \theta\begin{bmatrix} \varepsilon_2 & \varepsilon_1 \\ \varepsilon_2' & \varepsilon_1' \end{bmatrix}(N\tau, z) .$$

2.

1.

$$\theta \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix} (N\tau, z(I-A)) = \sum_{\rho \in \{0,1\}^n} (-1)^{(\rho+\varepsilon)^t \varepsilon'} \theta \begin{bmatrix} \rho & \rho+\varepsilon \\ 0 & 0 \end{bmatrix} (2N\tau, 2z).$$

Proof. First we prove the second statement. For $\tau \in \mathbb{H}_{2n}$ (and tA the transposed of A):

$$A^2 = -I$$
, ${}^tA = -A$, $A\tau^tA = \tau$, $A\tau + \tau^tA = 0$.

Note that these relations remain valid upon replacing τ by $N\tau$, we will suppress N in the rest of the proof.

We compute $\theta_{(m_1,m_2),(m'_1,m'_2)}(\tau,z(I-A))$. Using the relations, we can write:

$$\tau = (I+A)(1/2)\tau^{t}(I+A), \qquad I = (1/2)(I+A)(I-A).$$

and we get:

$$(k+m)\tau^{t}(k+m) = (k+m)(I+A)(1/2)\tau^{t}(I+A)^{t}(k+m),$$

$$(k+m)^t(z(I-A)+m'I)=(k+m)(I+A)^t(z+(m'/2)(I+A)).$$

Writing $k = (k_1, k_2), m = (m_1, m_2), m' = (m'_1, m'_2) \in \mathbb{Z}^n \times \mathbb{Z}^n$ we get:

$$(k+m)(I+A) = (k_1 - k_2 + m_1 - m_2, k_1 + k_2 + m_1 + m_2)$$
$$= (2l_1 + \rho + m_1 - m_2, 2l_2 + \rho + m_1 + m_2),$$

with $\rho \in \{0,1\}^n$ defined by $k_1 \pm k_2 \in \rho + 2\mathbb{Z}^n$ and $l_1 := (k_1 - k_2 - \rho)/2, \ l_2 := (k_1 + k_2 - \rho)/2 \in \mathbb{Z}^n$. Then:

$$(k+m)\tau^{t}(k+m)=(l_{1}+(\rho+m_{1}-m_{2})/2,l_{2}+(\rho+m_{1}+m_{2})/2)(2\tau)^{t}(l_{1}+\cdots)$$

and in the second term we get:

$$(z+(m'/2)(I+A))=(2z+(m'_1-m'_2,m'_1+m'_2)/2),$$

thus by summation of the terms over $\rho \in \{0,1\}^n, l_1, l_2 \in \mathbb{Z}^n$ we have:

$$\theta_{(m_1,m_2),(m'_1,m'_2)}(\tau,z(I-A))$$

$$= \sum_{\rho \in \{0,1\}^n} \theta_{(m_1-m_2+\rho,m_1+m_2+\rho)/2,(m'_1-m'_2,m'_1+m'_2)/2}(2\tau,2z).$$

The isogeny formula follows from this, but since we want $(0\,0)$ rather than $(0\,\varepsilon')$ in the second row of the characteristic, we get the sign (cf. [I], $\theta.2$, p.49). For the first formula, we observe that

$$(k+m)^{t}(zA+m') = (k+m)^{t}A^{t}(z+m'A^{-1}),$$

$$(k+m)\tau^{t}(k+m) = (k+m)^{t}A\tau A^{t}(k+m),$$

and that

$$(k+m)^t A = (k_2+m_2,-k_1-m_1), \qquad m'A^{-1} = (k_2+m_2,-k_1-m_1).$$

Thus we have:

$$\theta_{(m_1, m_2), (m'_1, m'_2)}(\tau, zA) = \theta_{(m_2, -m_1), (m'_2, -m'_1)}(\tau, z).$$

Since we want characteristics in $\{0,1\}^{2n}$, we get the sign in the formula.

2.4 Corollary. The automorphism ϕ of order two induces an automorphism ϕ^* on $H^0(X_\tau, \mathcal{O}(2\Theta_\tau))$ of order two (in fact, the corresponding theta functions are even). Let $H^0(X_\tau, \mathcal{O}(2\Theta_\tau))_{\pm}$ be the \pm eigenspace of ϕ^* , then

$$\dim H^0(X_{\tau}, \mathcal{O}(2\Theta_{\tau}))_+ = 2^{n-1}(2^n + 1),$$

$$\dim H^0(X_{\tau}, \mathcal{O}(2\Theta_{\tau}))_- = 2^{n-1}(2^n - 1).$$

Bases of dim $H^0(X_{\tau}, \mathcal{O}(2\Theta_{\tau}))_{\pm}$ are given by the non-zero

$$\theta \begin{bmatrix} \varepsilon_1 & \varepsilon_2 \\ 0 & 0 \end{bmatrix} (2\tau, 2z) \pm \theta \begin{bmatrix} \varepsilon_2 & \varepsilon_1 \\ 0 & 0 \end{bmatrix} (2\tau, 2z)$$

with $\varepsilon_1, \varepsilon_2 \in \{0,1\}^n$.

2.5 Remark. The isogeny formula 2.3.2 implies that each of the functions $\theta\begin{bmatrix} \sigma \\ 0 \end{bmatrix}(2\tau,2z)$, $(\sigma \in \{0,1\}^{2n})$ can be expressed as a linear combination of the 2^{2n} functions $\theta\begin{bmatrix} \varepsilon \\ \varepsilon' \end{cases} \varepsilon' J(\tau,z(I-A))$, $(\varepsilon,\varepsilon' \in \{0,1\}^n)$. Thus these functions also provide a basis of $H^0(X_\tau,\theta(2\Theta_\tau))$.

3 The cycles

3.1 In this section, $X = X_{\tau}$ with $\tau \in \mathbb{H}_{2n}$. Let $N = 2^{2n} - 1$. We study the geometry of the Kummer map:

$$K: X_{\tau} \to \mathbb{P}^{N} = \mathbb{P}H^{0}(X, \mathcal{O}(2\Theta)),$$

$$z \mapsto (\cdots : \theta \begin{bmatrix} \sigma \\ \sigma \end{bmatrix}(2\tau, 2z) : \cdots) \quad (\sigma \in \{0, 1\}^{2n}).$$

In case X is indecomposable, the map K embeds $X/\pm 1$ in \mathbb{P}^N , if the ppav is a product of ppav's $X=X_1\times\cdots\times X_k$ then $K(X)\cong K(X_1)\times\cdots\times K(X_k)$.

3.2 The morphism K is equivariant for the action of the automorphism of order 4, which acts on \mathbb{P}^N by (see 2.3.1):

$$(\cdots:X_{\sigma_1\sigma_2}:\cdots)\mapsto (\cdots:X_{\sigma_2\sigma_1}:\cdots)\quad (\sigma_1,\sigma_2\in\{0,1\}^n)$$
.

The two eigenspaces of this involution we denote by (cf. 2.4)

$$\mathbb{P}_{\pm} := \mathbb{P}H^0(X_{\tau}, \mathcal{O}(2\Theta_{\tau}))_{\pm}$$

Let $\Pi_-: \mathbb{P}^N \to \mathbb{P}_-$ be the projection on to \mathbb{P}_- from \mathbb{P}_+ , and let:

$$K_{-} := \Pi_{-} \circ K : X \to \mathbb{P}_{-},$$

be the composition of K with the projection Π_{-} .

3.3 Lemma. For an indecomposable ppav the base locus B of the rational map $K_-: X \to \mathbb{P}_-$ consists of a set of 2^{2n} two-torsion points, in fact:

$$B = \ker(\phi - 1) = \{x \in X : \phi(x) = x\} \cong (\mathbb{Z}/2\mathbb{Z})^{2n}.$$

Moreover, B is a maximal isotropic subgroup of X[2] and $X/B \cong X$.

Proof. Since K is a morphism, K(B) is base locus of Π_- , so $K(B) = K(X) \cap \mathbb{P}_+$. As K is equivariant for ϕ and \mathbb{P}_+ is an eigenspace, B is contained in the set of points $x \in X$ with $\phi(x) = \pm x$, that is $(\phi \pm 1)x = 0$. Note $\phi \circ (\phi + 1) = \phi - 1$, so $\ker(\phi + 1) = \ker(\phi - 1)$; since $(\phi - 1)^2 = -2\phi$ we get $B \subset \ker(\phi - 1) \cong (\mathbb{Z}/2\mathbb{Z})^{2n}$.

To see that all points in $\ker(\phi-1)$ are mapped to \mathbb{P}_+ (and not to \mathbb{P}_-), note first of all that $0 \in X$ is mapped to \mathbb{P}_+ since 2.3.1 (with N=2 there) implies that $\theta \begin{bmatrix} \sigma_1 & \sigma_2 \\ 0 & 0 \end{bmatrix} (2\tau,0) = \theta \begin{bmatrix} \sigma_2 & \sigma_1 \\ 0 & 0 \end{bmatrix} (2\tau,0)$.

The map K is equivariant for translations by points of order two (they

The map K is equivariant for translations by points of order two (they act on \mathbb{P}^N as the Heisenberg group), thus each $a \in X[2]$ gives a projective transformation U(a) satisfying

$$K(x+a) = U(a)K(x) \quad (a \in X[2]).$$

Let $a \in \ker(\phi - 1)$. Then translation by a and ϕ commute $(\phi(x + a) = \phi(x) + \phi(a) = \phi(x) + a$ for all $x \in X$). Therefore U(a) maps the eigenspaces of ϕ into themselves (it cannot interchange them since the dimensions are different). Thus K(a) = U(a)K(0) also lies in \mathbb{P}_+ and $B = \ker(\phi - 1)$.

That $X/B \cong X$ is trivial since $\phi - 1 \in \text{End}(X)$. Note that $B = \ker(\phi - 1) = \operatorname{im}(\phi - 1)$, $\phi_*^2 = -1$ and $E(\phi_* x, \phi_* y) = E(x, y)$ give:

$$E((\phi_*-1)x,(\phi_*-1)y)=2E(x,y)+E(\phi_*^2x,\phi_*y)-E(\phi_*x,y)=2E(x,y).$$

The polarization E defines the Weil-pairing and this formula shows that the Weil-pairing is trivial on B. \square

- **3.4** Note that the proof shows that $K(X) \cap \mathbb{P}_{-}$ is empty, so the projection of K(X) to \mathbb{P}_{+} is a morphism.
- 3.5 We recall the basic facts on the quadrics on \mathbb{P}^N . A basis for the vector space of these quadrics is provided by the

$$Q\begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} := \sum_{\sigma} (-1)^{\sigma' \varepsilon'} X_{\sigma} X_{\sigma + \varepsilon}, \quad (\sigma, \varepsilon, \varepsilon' \in (\mathbb{Z}/2\mathbb{Z})^{2n}, \ \varepsilon' \varepsilon' = 0),$$

which are indexed by the $2^{2n-1}(2^{2n}+1)$ even theta characteristics (each $Q_{[\epsilon']}$ is an eigenvector for the action of the Heisenberg group).

The pull-back of a quadric Q along K gives a section of $\mathcal{O}(4\Theta)$ and, since the $\theta\begin{bmatrix} \sigma \\ 0 \end{bmatrix}(2\tau,2z)$ are even functions in z, this section will also be given by an even theta function. A basis of $H^0(X_\tau,\mathcal{O}(4\Theta))_+$, the space of these even theta functions, is given by the $\theta\begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix}(\tau,2z)$ with $\varepsilon^t\varepsilon'=0$. The following theta relation ([I], IV.1) expresses the pull-back of the $Q_{\lfloor \frac{\sigma}{\varepsilon} \rfloor}$'s in this basis:

$$K^* Q_{\left[\begin{smallmatrix} \varepsilon \\ \varepsilon' \end{smallmatrix}\right]} := \sum_{\sigma} (-1)^{\sigma' \varepsilon'} \theta \begin{bmatrix} \sigma \\ 0 \end{bmatrix} (2\tau, 2z) \theta \begin{bmatrix} \sigma + \varepsilon \\ 0 \end{bmatrix} (2\tau, 2z)$$
$$= \theta \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (\tau, 0) \theta \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (\tau, 2z).$$

In particular, K(X) lies in $Q_{\left[\begin{smallmatrix}\epsilon\\\epsilon'\end{smallmatrix}\right]}$ (we denote the quadric in \mathbb{P}^N and its defining equation by the same symbol) iff the corresponding theta constant vanishes, i.e. $\theta\left[\begin{smallmatrix}\epsilon\\\epsilon'\end{smallmatrix}\right](\tau,0)=0$.

From Lemma 2.3.1 we have that on X_{τ} the $2^{n-1}(2^n-1)$ even theta constants $\begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix}$ with $\varepsilon^t \varepsilon' \equiv 1 \mod 2$ vanish.

In the case n = 2 the 6 even theta constants with the following characteristics vanish:

$$\begin{bmatrix} 1010 \\ 1010 \end{bmatrix}, \quad \begin{bmatrix} 1010 \\ 1111 \end{bmatrix}, \quad \begin{bmatrix} 1111 \\ 1010 \end{bmatrix}, \quad \begin{bmatrix} 1111 \\ 0101 \end{bmatrix}, \quad \begin{bmatrix} 0101 \\ 0101 \end{bmatrix}, \quad \begin{bmatrix} 0101 \\ 1111 \end{bmatrix}.$$

Therefore K(X) lies in 6 independent quadrics. We will show, by explicit computation, that there exists a (unique) quadric Q which is linear combination of these 6 quadrics and which is the cone over a smooth quadric in \mathbb{P}^5 . This implies that the image of K(X) in \mathbb{P}^5 is in this quadric.

3.6 Proposition. Define a quadric Q in \mathbb{P}^{15} by:

$$\mathcal{Q} := \mathcal{Q} \begin{bmatrix} 1010 \\ 1010 \end{bmatrix} - \mathcal{Q} \begin{bmatrix} 1010 \\ 1111 \end{bmatrix} - \mathcal{Q} \begin{bmatrix} 1111 \\ 1010 \end{bmatrix} + \mathcal{Q} \begin{bmatrix} 1111 \\ 0101 \end{bmatrix} - \mathcal{Q} \begin{bmatrix} 0101 \\ 0101 \end{bmatrix} + \mathcal{Q} \begin{bmatrix} 0101 \\ 1111 \end{bmatrix} \; .$$

Then for any $\tau \in \mathbb{H}_4$, we have $K(X_{\tau}) \subset Q$ and Q is the cone over a smooth quadric \overline{Q} in $\mathbb{P}^5 = \mathbb{P}_-$, thus:

$$K_{-}:X-B\to \overline{Q}\subset \mathbb{P}^5$$
.

Proof. Using the definition of $Q[\frac{\epsilon}{\epsilon'}]$, it is clear that $Q[\frac{1010}{1010}]$ and $Q[\frac{1010}{1111}]$ involve the same 8 monomials $(X_{\sigma}X_{\sigma+(1010)}=X_{0000}X_{1010},\ldots)$ with coefficients ± 2 . The signs differ iff $\epsilon'\sigma=(1010)\cdot{}^t\sigma=-1$, and thus:

$$Q\begin{bmatrix}1010\\1010\end{bmatrix} - Q\begin{bmatrix}1010\\1111\end{bmatrix} = 4(X_{0001}X_{1011} + X_{0100}X_{1110} - X_{0011}X_{1001} - X_{1100}X_{0110}).$$

Similarly, one finds:

$$Q\begin{bmatrix} 1111 \\ 1010 \end{bmatrix} - Q\begin{bmatrix} 1111 \\ 0101 \end{bmatrix} = 4(X_{0001}X_{1110} + X_{0100}X_{1011} - X_{0010}X_{1101} - X_{1000}X_{1011}),$$

$$-X_{1000}X_{0111}),$$

$$Q\begin{bmatrix} 0101 \\ 0101 \end{bmatrix} - Q\begin{bmatrix} 0101 \\ 1111 \end{bmatrix} = 4(X_{0010}X_{0111} + X_{1000}X_{1101} - X_{0011}X_{0110} - X_{1100}X_{1001}).$$

As coordinates on $\mathbb{P}^9 = \mathbb{P}_+$ we take:

$$Z_{\sigma_1\sigma_2} := X_{\sigma_1\sigma_2} + X_{\sigma_2\sigma_1}$$

with the convention that in $Z_{\sigma_1\sigma_2}$ with $\sigma_1=(a_1,b_1), \ \sigma_2=(a_2,b_2)\in\{0,1\}^2$ we have that $2a_1+b_1\leq 2a_2+b_2$, and on \mathbb{P}^5 we take:

$$Y_{01} := X_{0001} - X_{0100}, \qquad Y_{02} := X_{0010} - X_{1000}, \qquad Y_{03} := X_{0011} - X_{1100},$$

$$Y_{12} := X_{0110} - X_{1001}, \qquad Y_{13} := X_{0111} - X_{1101}, \qquad Y_{23} := X_{1011} - X_{1110},$$

it is convenient to agree that $Y_{ab} = -Y_{ba}$ if a > b. Using the identity

$$2(Z_{st}Z_{uv}+Z_{ts}Z_{vu})=(Z_{st}-Z_{ts})(Z_{uv}-Z_{vu})+(Z_{st}+Z_{ts})(Z_{uv}+Z_{vu}),$$

with $s, t, u, v \in (\mathbb{Z}/2\mathbb{Z})^2$, we get:

$$Q\begin{bmatrix}1010\\1010\end{bmatrix} - Q\begin{bmatrix}1010\\1111\end{bmatrix} = 2(Y_{01}Y_{23} + Y_{03}Y_{12} + Z_{01}Z_{23} - Z_{03}Z_{12}),$$

$$Q\begin{bmatrix} 1111\\ 1010 \end{bmatrix} - Q\begin{bmatrix} 1111\\ 0101 \end{bmatrix} = 2(-Y_{01}Y_{23} + Y_{02}Y_{13} + Z_{01}Z_{23} - Z_{02}Z_{13}),$$

$$Q\begin{bmatrix}0101\\0101\end{bmatrix}-Q\begin{bmatrix}0101\\1111\end{bmatrix}=2(Y_{02}Y_{13}-Y_{03}Y_{12}+Z_{02}Z_{13}-Z_{03}Z_{12}).$$

the equation for Q is then:

$$Q = 4(Y_{01}Y_{23} - Y_{02}Y_{13} + Y_{03}Y_{12}),$$

so Q is the cone over a quadric \overline{Q} in \mathbb{P}^5 . Since $K(X) \subset Q$ we get $K_-(X) \subset \overline{Q}$.

3.7 Theorem. Let X be an abelian 4-fold of Weil type (2,2), field $\mathbb{Q}(i)$ and $\det H = 1$.

Then the space W of Weil-Hodge cycles is spanned by classes of algebraic subvarieties.

Proof. Since X is isogeneous to an X_{τ} (cf. [vG2]), it suffices to prove the result for these varieties. We show that for a general X_{τ} the rational map $K_{-}: X_{\tau} \to \overline{Q}$ is dominant and that the (strict) pull-back of a general linear subspace $\mathbb{P}^2 \subset \overline{Q}$ has a cohomology class which is not in $D^2(X)$. Using the action of $\mathbb{Q}(i)^*$ by pull-back on $B^2(X) = D^2(X) \oplus W$, so $x \cdot (v, w) = ((x\overline{x})^2 v, x^4 w)$, with $W = \wedge_{\mathbb{Q}(i)}^4 H^1(X, \mathbb{Q}) \cong K$, it then follows that W is spanned by classes of cycles. Since any two points in \mathbb{H}_4 can be connected by a holomorphic curve, the closure of such a cycle in the generic fiber specializes to a cycle with a class not in $D^2(X)$ for any X_{τ} for $\tau \in \mathbb{H}_4$.

To show that K_{-} is dominant and to compute the cycle class, we specialize to the case that $X \cong Y \times Y$ with Y a general abelian surface. In terms of the period matrix for X that means we take $\tau \in \mathbb{H}_4$ with $\tau_{12} = 0$. One has:

$$H^0(X, \mathcal{O}(2\Theta_X)) \cong H^0(Y, \mathcal{O}(2\Theta_Y)) \otimes H^0(Y, \mathcal{O}(2\Theta_Y))$$

(in fact, from the definition one has: $\theta\begin{bmatrix} \sigma_1 & \sigma_2 \\ 0 & 0 \end{bmatrix}(2\tau, 2z) = \theta\begin{bmatrix} \sigma_1 \\ 0 & 1 \end{bmatrix}(2\tau_1, 2z_1)\theta\begin{bmatrix} \sigma_2 \\ 0 & 1 \end{bmatrix}$ $(2\tau_1, 2z_2)$ with $z = (z_1, z_2) \in \mathbb{C}^2 \times \mathbb{C}^2$). The coordinate functions Y_{ij} on \mathbb{P}^5 (cf. proof of 3.6) pull back along K_- to a basis for $\wedge^2 H^0(Y, \mathcal{O}(2\Theta_Y)) \subset H^0(X, \mathcal{O}(2\Theta_X))$.

Therefore we get the following diagram:

$$\begin{array}{cccc} Y\times Y & \xrightarrow{\mathcal{K}_{-}} & \overline{Q}\subset \mathbb{P}^{5} \\ \downarrow^{\kappa\times\kappa} & & & & \cong & \cong \\ \mathbb{P}(\mathbb{C}^{4})\times \mathbb{P}(\mathbb{C}^{4}) & \xrightarrow{P} & G(1,3)\subset \mathbb{P}(\wedge^{2}\mathbb{C}^{4}) \end{array}$$

(note that the horizontal maps are not everywhere defined), here G(1,3) is the Grassmanian of lines in \mathbb{P}^3 and P is the Plücker map which sends a pair of points to the line connecting them. Note that the base locus of P is exactly the diagonal of $\mathbb{P}^3 \times \mathbb{P}^3$. Since $K(Y) \cong Y/\langle \pm 1 \rangle$, the base locus of K_- is the union of the diagonal Δ of $Y \times Y$ and $\Delta^- := \{(y, -y) : y \in Y\}$. (The base locus of K_- is now larger (cf. 3.3) since $K: X \to \mathbb{P}^{15}$ factors over the group generated by $id_Y \times (-id_Y)$ and $(-id_Y) \times id_Y$.)

The equation for \overline{Q} is just the quadratic Plücker relation, it is identically zero in $\mathbb{P}^3 \times \mathbb{P}^3$. We will from now on identify $\overline{Q} = G(1,3)$.

It is clear that K_{-} is dominant: to a general $l \in G(1,3)$ corresponds a line in \mathbb{P}^{3} which intersects the Kummer variety K(Y) in 4 points, over each pair of these points there lie 4 elements in $Y \times Y$ mapping to l under K_{-} . Therefore K_{-} is dominant for the general X_{τ} with $\tau \in \mathbb{H}_{4}$.

A basis for $H^4(\overline{Q}, \mathbb{Q})$ is given by the classes of a $\mathbb{P}^2_P \subset \overline{Q}$, parametrizing lines through a point $P \in \mathbb{P}(\mathbb{C}^4)$, and a $\mathbb{P}^2_V \in \overline{Q}$, parametrizing the lines in a plane $V \cong \mathbb{P}^2 \subset \mathbb{P}(\mathbb{C}^4)$. Another basis is given by \mathbb{P}^2_V and H^2 , with H the hyperplane section.

The (strict) pull back of \mathbb{P}^2_V along P is $V \times V \subset \mathbb{P}^3 \times \mathbb{P}^3$ and this pulls back to $Z := (2\Theta_Y) \times (2\Theta_Y)$ in $Y \times Y$. The pull-back of H is $2\Theta_X = Y \times (2\Theta_Y) + (2\Theta_Y) \times Y$, twice the product polarization on $Y \times Y$. For general $\tau \in \mathbb{H}_4$, one has $D^2(X_\tau) = \langle \Theta_\tau^2 \rangle$, which specializes to $\langle \Theta_X^2 \rangle$. Therefore we must show that

$$[Z] \notin \langle \Theta_X^2, [\Delta], [\Delta^-] \rangle \subset H^4(Y \times Y, \mathbb{Q}) = \bigoplus_a H^a(Y, \mathbb{Q}) \otimes H^{4-a}(Y, \mathbb{Q}).$$

Note that $[Z] \in H^2 \otimes H^2$ (with $H^k := H^k(Y, \mathbb{Q})$). On the other hand,

$$\langle \Theta_X^2, [\varDelta], [\varDelta^-] \rangle \cap H^2 \otimes H^2 = \langle \Theta_X^2 - ([\varDelta] + [\varDelta^-]) \rangle ,$$

in fact, $\Theta_X^2 = 2(\{P\} \times Y + \Theta_Y \times \Theta_Y + Y \times \{P\})$ has no (3,1), (1,3) Künneth components, and $[\Delta] + [\Delta^-] = 2(\{P\} \times Y + \delta_{2,2} + Y \times \{P\})$, with $[\Delta] = \sum \delta_{a,b}$ the Künneth decomposition of $[\Delta]$. Since $\delta_{2,2}$ has a non-trivial component in $H^{2,0}(Y) \otimes H^{0,2}(Y)$, whereas $[Z] = [\Theta_Y \times \Theta_Y] \in H^{1,1} \otimes H^{1,1}$ has a trivial component there, we conclude that $[Z] \notin \langle \Theta_X^2, [\Delta], [\Delta^-] \rangle$.

By specialization, this proves that $[Z] \notin \langle \Theta_{X_{\tau}}^2 \rangle$ for any X_{τ} . \square

4 An isogeny

- **4.1** In this section we give another description of the map K_{-} from theorem 3.7, using an isogeny on X_{τ} . This new description relates the quadratic relation between certain theta functions to geometrical properties of X_{τ} , see 4.4.
- **4.2** A basis of $H^0(X, \mathcal{O}(4\Theta))$ is given by the $4^g = 2^{2g}$ functions

$$\theta \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (\tau, 2z) \quad \varepsilon, \varepsilon' \in \{0, 1\}^g$$
.

Let $V \subset H^0(X, \mathcal{O}(4\Theta))$ be the subspace spanned by the six even theta functions with vanishing Nullwert:

$$V:=\langle \ldots, \theta \left[\begin{array}{cc} \sigma & \sigma \\ \sigma' & \sigma' \end{array} \right] (\tau, 2z), \ldots \rangle_{(\sigma, \sigma' \in \{0,1\}^2, {}^t\sigma\sigma'=1)} \subset H^0(X, \mathcal{O}(4\Theta)) \ .$$

4.3 Proposition. The image of $X = X_{\tau}$ under the rational map:

$$\Phi_V: X \to \mathbb{P}V, \qquad z \mapsto (\ldots : \theta \begin{bmatrix} \sigma & \sigma \\ \sigma' & \sigma' \end{bmatrix} (\tau, 2z) : \ldots)$$

is a smooth quadric $\overline{Q} \subset \mathbb{P}^5$. The quadratic relation on the six theta functions is:

$$\left(\theta^2 \begin{bmatrix} 1010 \\ 1010 \end{bmatrix} - \theta^2 \begin{bmatrix} 1010 \\ 1111 \end{bmatrix} - \theta^2 \begin{bmatrix} 1111 \\ 1010 \end{bmatrix} + \theta^2 \begin{bmatrix} 1111 \\ 0101 \end{bmatrix} - \theta^2 \begin{bmatrix} 0101 \\ 0101 \end{bmatrix} + \theta^2 \begin{bmatrix} 0101 \\ 1111 \end{bmatrix} \right) (\tau, 2z) = 0.$$

There is a commutative diagram:

$$X \xrightarrow{K_{-}} \overline{Q} \subset \mathbb{P}^{5}$$
 $\downarrow^{1-\phi} \qquad \downarrow^{\Phi_{V}}$

Proof. We consider the subspace $\Gamma(\mathcal{O}(2\Theta))_-$ where $\phi^* = -I$. Remark 2.5 shows that the functions $\theta[\frac{\varepsilon}{\varepsilon'},\frac{\varepsilon}{\varepsilon'}](\tau,z(I-A))$ give a basis of $\Gamma(\mathcal{O}(2\Theta))$. From formula 2.3.1 we have:

$$\theta \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix} (\tau, zA) = (-1)^{\varepsilon' \varepsilon'} \theta \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix} (\tau, z) ,$$

and thus a basis for $\Gamma(\mathcal{O}(2\Theta))_-$ is given by the $2^{n-1}(2^n-1)$ functions $\theta[\frac{\varepsilon}{\varepsilon'},\frac{\varepsilon}{\varepsilon'}](\tau,z(I-A))$ with $\varepsilon^t\varepsilon'\equiv 1 \mod 2$. Since $(I-A)^2=I-2A+A^2=-2A$ we get:

$$V = (1 - \phi)^* \Gamma(2\Theta)_-.$$

In the case n=2 we used the basis with the six Y_{ab} 's. One easily finds, with $\Theta[\sigma] := \theta[\frac{\sigma}{0}](2\tau, 2z)$:

$$\theta \begin{bmatrix} 1010 \\ 1010 \end{bmatrix} (\tau, z(I - A)) = -\Theta[0010] - \Theta[0111] + \Theta[1000] + \Theta[1101]$$

$$= -Y_{02} - Y_{13},$$

$$\theta \begin{bmatrix} 1010 \\ 1111 \end{bmatrix} (\tau, z(I - A)) = -\Theta[0010] + \Theta[0111] + \Theta[1000] - \Theta[1101]$$

$$= -Y_{02} + Y_{13},$$

similarly one has:

$$\theta \begin{bmatrix} 0101 \\ 0101 \end{bmatrix} (\tau, z(I-A)) = -Y_{01} - Y_{23} \quad \theta \begin{bmatrix} 1111 \\ 1010 \end{bmatrix} (\tau, z(I-A)) = -Y_{03} + Y_{12}$$

$$\theta \begin{bmatrix} 0101 \\ 1111 \end{bmatrix} (\tau, z(I-A)) = -Y_{01} + Y_{23} \quad \theta \begin{bmatrix} 1111 \\ 0101 \end{bmatrix} (\tau, z(I-A)) = -Y_{03} - Y_{12}.$$

From these equations one can express the Y_{ab} 's in the $\theta \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix} (\tau, z(I-A))$. The quadratic relation between the Y_{ab} 's then gives the relation in the proposition. \square

4.4 Remark. The existence of a quadratic relation between the six even theta functions with a vanishing Nullwert can also be obtained from the following observations.

First of all, each vanishing Nullwert corresponds to a singular point on the theta divisor Θ of X, the singular point is a point of order two in X. Thus Θ has at least six singular points. Furthermore, for $x \in \text{Sing}(\Theta)$ we have that

$$f_x := \theta_{0,0}(\tau, z - x)\theta_{0,0}(\tau, z + x) \in \Gamma_{00} := \{ s \in H^0(X, \mathcal{O}(2\Theta)) : \mu_0(s) \ge 4 \},$$

where $\mu_0(s)$ is the multiplicity at $0 \in X$ of the section s. The six functions $f_x \in \Gamma_{00}$ we obtain are the six theta functions $\theta \begin{bmatrix} \sigma' & \sigma' \\ \sigma' & \sigma' \end{bmatrix}^2 (\tau, z)$ with $\sigma' \sigma' = 1$.

Since the general X we consider is not a product of lower dimensional ppav's, one has (see [vGvdG]):

$$\dim \Gamma_{00} = 2^4 - 1 - 10 = 5$$
.

Thus the six functions $\theta\begin{bmatrix} \sigma_{\sigma'} & \sigma_{\sigma'} \end{bmatrix}^2(\tau, z) \in \Gamma_{00}$ are linearly dependent and therefore one has also a linear relation between the six $\theta\begin{bmatrix} \sigma_{\sigma'} & \sigma_{\sigma'} \end{bmatrix}^2(\tau, 2z)$.

The results of Debarre [D] imply that $Sing(\Theta_{\tau})$, for general $\tau \in \mathbb{H}_4$ consists of exactly 6 points (that the general X_{τ} is not the jacobian of a hyperelliptic curve follows from the fact that the sum of any three vanishing theta characteristics of X_{τ} is even, rather than odd).

Geometrically, the argument above shows that $K(\text{Sing}(\Theta))$, which in general consists of 6 points, spans at most a $\mathbb{P}^4 \subset \mathbb{P}^{15}$, in fact the map K may also be given by (cf. [vGvdG]):

$$K: X_{\tau} \to \mathbb{P}H^0(X_{\tau}, \mathcal{O}(2\Theta_{\tau}))^*, \qquad x \mapsto \theta_{0,0}(\tau, z-x)\theta_{0,0}(\tau, z+x)$$
.

4.5 Remark. We indicate an alternative derivation of the quadratic relation in the previous proposition, using the identities (with $\sigma_1, \sigma_2 \in \{0, 1\}^2$):

$$\theta \begin{bmatrix} \sigma_1 & \sigma_2 \\ 0 & 0 \end{bmatrix} (2\tau, 0) = \theta \begin{bmatrix} \sigma_2 & \sigma_1 \\ 0 & 0 \end{bmatrix} (2\tau, 0) \quad \tau \in \mathbb{H}_{2n} .$$

The multiplication formula for theta functions ([I], Chapter IV, Thm. 2, p. 139) shows that the expression for $\theta^2\left[\frac{\varepsilon}{\varepsilon'}\frac{\varepsilon}{\varepsilon'}\right](\tau,z)$ in terms of the standard basis of $\Gamma(\mathcal{O}(2\Theta_{\tau}))$ is given by:

$$\theta \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix}^{2} (\tau, z)$$

$$= \sum_{\sigma_{1}, \sigma_{2} \in \{0,1\}^{2}} (-1)^{(\sigma_{1}, \sigma_{2})^{t} \varepsilon'} \theta \begin{bmatrix} \sigma_{1} + \varepsilon & \sigma_{2} + \varepsilon \\ 0 & 0 \end{bmatrix} (2\tau, 0) \theta \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ 0 & 0 \end{bmatrix} (2\tau, 2z).$$

It is now a straight-forward computation to verify the relation. One can also use the proof of 3.6 as follows. Define:

$$B_{Q_m}(X,Y) := \sum_{\sigma} (-1)^{t_{\sigma \varepsilon'}} X_{\sigma} Y_{\sigma + \varepsilon}, \quad \text{with } m = \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix}$$

an even theta characteristic. Note that B_{Q_m} is just the bilinear form associated to the quadratic form Q_m in the proof of Proposition 3.6. Upon substituting $Y_{\sigma} := \theta \begin{bmatrix} \sigma \\ 0 \end{bmatrix} (2\tau, 0)$ one obtains linear forms in the X_{σ} , these 6 forms are linearly dependent exactly when there is a linear relation between the $\theta^2 \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon' & \varepsilon' \end{bmatrix} (\tau, z)$.

In the proof of 3.6, we showed that a certain linear combination Q of the six Q_m 's is a quadric in the coordinates Y_{st} of \mathbb{P}^5 . Thus Q is a linear combination of terms $(X_{st} - X_{ts})(X_{uv} - X_{vu})$, and therefore its associated bilinear form B_Q is a linear combination of terms $(Y_{uv} - Y_{vu})X_{st}$. Since we have $\theta\begin{bmatrix} \sigma_1 & \sigma_2 \\ 0 & 0 \end{bmatrix} = \theta\begin{bmatrix} \sigma_2 & \sigma_1 \\ 0 & 0 \end{bmatrix}$, upon substituting $Y_{\sigma} := \theta\begin{bmatrix} \sigma_1 \\ 0 & 0 \end{bmatrix}(2\tau, 0)$ in B_Q we get zero.

5 Prym varieties

5.1 Let C_{n+1} be a smooth curve of genus n+1. A subgroup $G \cong \mathbb{Z}/4\mathbb{Z} \subset \operatorname{Pic}^0(C_{n+1})$ defines a cyclic etale 4:1 covering of C_{n+1} and an intermediate etale 2:1 cover:

$$C_{n+1} \leftarrow C_{2n+1} \leftarrow C_{4n+1}$$
.

The Prym variety P of the C_{4n+1}/C_{2n+1} is a principally polarized abelian variety of dimension 2n. The covering automorphism of C_{4n+1} over C_{n+1} induces an action of $\mathbb{Z}[i]$ on P.

5.2 Schoen constructs cycles on P by taking the inverse image of $\mathbb{P}^n = |K| \subset C_{n+1}^{(2n)}$ in $C_{4n+1}^{(2n)}$ (with $C^{(i)} = \operatorname{Sym}^i C$), which is reducible, and mapping the components to P. He shows that suitable linear combinations of these cycles span the space of Weil-Hodge cycles $W \subset H^{2n}(P, \mathbb{Q})$.

In the case n = 2 we show below that the general $X_{\tau}, \tau \in \mathbb{H}_4$, is such a Prym variety.

5.3 Theorem. Let P be as in 5.1. Then:

- 1. The abelian variety P is of Weil type (n,n), with field $\mathbb{Q}(i)$ and $\det H = 1$.
- 2. There exist bases of $H_1(P, \mathbb{Z})$ and $H_1(P, \mathbb{R})$ (which has the structure of a complex vector space via its identification with T_0P) such that the period matrix Ω satisfies:

$$\Omega = \begin{pmatrix} I \\ \tau \end{pmatrix} : H_1(P, \mathbb{Z}) \cong \mathbb{Z}^{4n} \to H_1(X, \mathbb{R}) = T_0P \cong \mathbb{C}^{2n} \quad with \ \tau \in \mathbb{H}_{2n}.$$

In particular, P is isomorphic to an X_{τ} with $\tau \in \mathbb{H}_{2n}$.

3. In case n = 2, the general abelian variety of Weil type (2,2) and field $\mathbb{Q}(i)$ with $\det H = 1$ is isogeneous to a Prym variety as in 5.1.

Proof. We consider the action of the automorphism ϕ of order 4 on $H_1(P, \mathbb{Z})$. According to [F], p. 62, there is a symplectic basis $\hat{A_i}$, \hat{B}_i $(0 \le i \le 4n)$ of $H_1(C_{4n+1}, \mathbb{Z})$ with:

$$\phi^k(\hat{A}_i) = \hat{A}_{i+kn}, \qquad \phi^k(\hat{B}_i) = \hat{B}_{i+kn} \quad (1 \le i \le n).$$

Since $H_1(P, \mathbb{Z}) = H_1(C_{4n+1}, \mathbb{Z})^{\phi_* = -I}$ (the classes anti-invariant under ϕ_*), a basis of $H_1(P, \mathbb{Z})$ is given by

$$\alpha_i := \hat{A}_i - \hat{A}_{i+2n}, \qquad \beta_i := \hat{B}_i - \hat{B}_{i+2n} \quad (1 \le i \le 2n).$$

An easy computation shows that the action of ϕ on $H_1(P, \mathbb{Z})$ is given by the matrix M, i.e. $\phi(\alpha_i) = \alpha_{i+n}$, $\phi(\beta_i) = \beta_{i+n}$ with $1 \le i \le n$. Taking the α_i as a \mathbb{C} -basis of $H_1(P, \mathbb{R})$, the period matrix must satisfy $M\Omega = \Omega A$, which implies that $\tau \in \mathbb{H}_{2n}$. This proves the second point.

Using this result, the first point is easy to verify (cf. 2.1).

For the last point, we consider the Prym map:

$$\mathcal{P}: \mathcal{M}_{3,\mathbb{Z}/4\mathbb{Z}} \to \mathcal{A}_4, \qquad (C,G) \mapsto P$$

where $\mathcal{M}_{3,\mathbb{Z}/4\mathbb{Z}}$ is the moduli space of genus 3 curves with a cyclic subgroup of order 4 in Pic⁰ and \mathcal{A}_4 is the moduli space of principally polarized abelian varieties. We already proved that $\text{Im}(\mathcal{P})$ lies in the 4-fold $\mathcal{H}:=\text{Im}(\mathbb{H}_4\to\mathbb{S}_4\to\mathcal{A}_4)$. To show that $\text{Im}(\mathcal{P})$ is Zariski dense in \mathcal{P} it suffices to show that the differential of \mathcal{P} has rank 4 at some point of $\mathcal{M}_{3,\mathbb{Z}/4\mathbb{Z}}$, or, equivalently, that the codifferential of \mathcal{P} is injective at some point of \mathcal{H} .

The remainder follows the arguments of Schoen, [S], p. 26-p. 30, we just show the (obvious) modifications. The cotangent space of $\mathcal{M}_{3,\mathbb{Z}/4\mathbb{Z}}$ at a smooth point [(C,G)] is $H^0(C,\Omega_C^{1\otimes 2})$. Let $\pi:C_9\to C$ be the 4:1 etale map, then, using the action of ϕ , we have:

$$\pi_*\Omega^1_{C_9}=\Omega^1_C\oplus (\Omega^1_C\otimes \alpha^{\otimes 2})\oplus (\Omega^1_C\otimes \alpha)\oplus (\Omega^1_C\otimes \alpha^{\otimes 3})\quad \text{with } G=\langle \alpha\rangle\;.$$

Then $T_P^* \mathscr{A}_4$ and $T_P^* \mathscr{H}$, the cotangent spaces of \mathscr{A}_4 and \mathscr{H} at P are given by:

$$T_P^* \mathscr{A}_4 = \operatorname{Sym}^2(H^0(C, \Omega_C^1 \otimes \alpha) \oplus H^0(C, \Omega_C^1 \otimes \alpha^3)),$$

$$T_P^* \mathscr{H} = H^0(C, \Omega_C^1 \otimes \alpha) \otimes H^0(C, \Omega_C^1 \otimes \alpha^3)).$$

The codifferential of $\mathscr{P}: \mathcal{M}_{3,\mathbb{Z}/4\mathbb{Z}} \to \mathcal{H}$ is now just the multiplication map:

$$H^0(C,\Omega_C^1\otimes\alpha)\otimes H^0(C,\Omega_C^1\otimes\alpha^3))\to H^0(C,\Omega_C^{1\otimes2})$$
.

The proof that this map injective for general $[C] \in \mathcal{M}_3$ follows from the Base Point Free Pencil trick, as in [S], p. 30. \square

- 5.4 Remark. Since dim $\mathcal{M}_4 = 9 = 3^2$, one might hope that the Prym map: $\mathcal{P}: \mathcal{M}_{4,\mathbb{Z}/4\mathbb{Z}} \to \mathcal{A}_6$ would be generically finite on its image. If that is the case, then $\mathrm{Im}(\mathcal{P})$ is Zariski dense in \mathcal{H}_6 and Schoen's cycles would solve the Hodge conjecture for the general abelian sixfold of Weil-type with field $\mathbb{Q}(i)$ and $\det H = 1$.
- 5.5 Remark. The previous Proposition also 'explains' the 6 singular points of order two on the theta divisor of the abelian fourfolds we considered. Recall that a theta characteristic on a curve C is a line bundle L with $L^{\otimes 2} = \Omega_C^1$.

For a curve of genus n+1 and a point $\beta \in \operatorname{Pic}^0(C)$ of order two, there are $2^{n-1}(2^n-1)$ pairs of odd theta characteristics L, L' with $L' = L \otimes \beta$ (this is most easily checked using the classical notation for characteristics). Let $\pi' : C' \to C$ be the etale 2:1 cover defined by β , then

$$\pi'^*L \cong \pi'^*L', \qquad H^0(C', \pi'^*L) = H^0(C, L) \oplus H^0(C, L'), \qquad (\pi'^*L)^{\otimes 2} = \Omega_C^1,$$

thus π'^*L is an even theta characteristic with at least two independent sections. Let now $\alpha \in \operatorname{Pic}^0(C)$ with $\alpha^{\otimes 2} = \beta$. Then $\gamma := \pi'^*\alpha$ has order two in $\operatorname{Pic}(C')$ and moreover, by Serre duality, $H^0(C, L \otimes \alpha) \cong H^0(C, L \otimes \alpha^{-1})^* = H^0(C, L' \otimes \alpha)^*$. Therefore, also $(\pi'^*L) \otimes \gamma = \pi'^*(L \otimes \alpha)$ is an even theta characteristic on C'.

Now it is well known (for example from the classical Schottky-Jung identities) that pairs $M, M \otimes \gamma$ of even theta characteristics on C' with $H^0(C', M) > 0$ correspond to singular points, of order two and even multiplicity, on the theta divisor of the Prym variety of the covering $C'' \to C'$ defined by γ . These singular points correspond precisely to the vanishing (even) theta nulls.

Starting from a genus n+1 curve, the 2n-dimensional Prym varieties introduced in 5.1, thus have at least $2^{n-1}(2^n-1)$ vanishing (even) theta nulls, in agreement with the fact that X_{τ} , for $\tau \in \mathbb{H}_{2n}$ has that number of vanishing theta nulls (simply put z=0 in 2.3.1).

References

- [D] Debarre, O.: Annulation de thétaconstantes sur les variétés abéliennes de dimension quatre. C. R. Acad. Sci. Paris, t. 305, Série I, 885-888 (1987)
- [F] Fay, J.D.: Theta Functions on Riemann Surfaces LNM. 352, Springer-Verlag (1973)

- [vG1] van Geemen, B.: Projective models of Picard modular varieties. In: Ballico, E. et al., (Eds) Classification of Irregular Varieties, proceedings Trento 1990. Springer LNM 1515, (1992)
- [vG2] van Geemen, B.: An introduction to the Hodge conjecture for abelian varieties.
- preprint Utrecht University (1993)
 [vGvdG] van Geemen, B., van der Geer, G.: Kummer varieties and the moduli spaces of abelian varieties. Am. J. of Math. 108, 615-642 (1986)
 - [I] Igusa, J.I.: Theta Functions. Springer-Verlag, Die Grundlehren der mathematischen Wissenschaften. Band 194, (1972)
 - [S] Schoen, C.: Hodge classes on self-products of a variety with an automorphism.
 - Comp. Math. 65, 3-32 (1988)
 [W] Weil, A.: Abelian varieties and the Hodge ring. In: Collected Papers, Vol. III, 421-429. Springer-Verlag (1980)

