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1 Introduction

1.1 Let X be an abelian variety over € and let K be an imaginary quadratic
field with

K CEnd(X)® Q.

The action ¢ of K on TyX, the tangent space at the origin of X, can be
diagonalized thus, w.r.t. a suitable basis of TpX:

(k) = diag(a(k),...,0(k),5(k),...,7(k)), (k€ K)

with ¢ : K — € an embedding of K. We say X is of type (p,q) if there are
p entries o(k) and g entries G(k).

In case X has type (p, p), Weil [W] constructed a two dimensional sub-
space W C BP(X) := H*(X,Q) N HPP(X). For general X, dimX > 2, of
type (p, p) one has in fact:

dmNS(X)g =dimB'(X)=1, B’(X)=D’(X)® W,

here DP(X) := Im(B'(X)? — BP(X)), (01,...,0p) = w1 A~ Awp. In
particular such an X has Hodge classes which are not obtained as intersections
(cup products) of divisors classes. In [vG2] we gave an elementary introduction
to these abelian varieties.

1.2 For certain abelian varieties X of Weil-type with field K = Q(i), Q(w),
@® = —1, C. Schoen [S] gave a construction for algebraic cycles on X whose
classes span W.

In this paper we use theta functions to construct algebraic cycles on certain
abelian 4-folds of Weil type. In fact we show that in the case under consid-
eration the abelian varieties allow a rational map onto a smooth quadric Q in
IPS, the classes of the inverse images of the rulings of Q give classes which
do not lie in D2
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Theorem 3.7 Let X be an abelian 4-fold of Weil-type (2,2), with field Q(i)
and det H = 1.

Then the space W of Weil-Hodge cycles is spanned by classes of algebraic
cycles.

1.3 We refer to 2.1 and [vG2] for the explanation of ‘det /. It turns out, see
5.2, that the abelian varieties we consider are among those studied by Schoen
[S], however, our method is different. We don’t know how the cycles obtained
by us and Schoen are related.

2 The abelian varieties

2.1 The abelian varieties of Weil-type we consider were introduced in [vGl],
10.6,10.7. Let S,, be the Siegel upper half space of (2n) x (2n) complex,
symmetric matrices whose imaginary part defines a positive definite quadratic
form on IR?" and let

T1 T12
H,, = {‘E = ( ) € Sz,, 111 €S, ’T]z = —112}
—Ti2 T1

on()

We will write vectors as row vectors. The abelian varieties are then defined
by: X = X, := C*"/(Z*Q,) with T € Hy,. The equality:

and

0 I
. -1 0 0 I
MQ, = Q.A, with M := , A:= )
0 I
-1 0
shows that X, has an automorphism ¢ of order four with:
¢: X — X, ¢, = M € End(H,(X;,Z)), d¢p = A € End(TpX:) .

Note that the eigenvalues of d¢ are i and —i, both with multiplicity n, thus
the X, are of Weil-type (n,n).

The principal polarization E : A H{(X,Z) — Z on X, is given by an
alternating 4n x 4n matrix of the same shape as 4, but with four 27 x 2n blocks
rather than n x n blocks. A simple computation verifies that ¢. preserves the
polarization:

E(¢ux,$sy) =E(x,y) (Vx,y € Hi(X,Z)).

The space H;(X, Q) has the structure of a Q(i)-vector space via the action
of ¢,. Define:

H:H(XQ) x Hi(X,Q) - Q();  H(xy):=E(¢.y) +iE(y).
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Then H is a Hermitian form (H(x,y) = H(y,x) and H(x,$,y) = iH(x,y))
and its determinant (modulo norms of elements of Q*) is an isogeny invariant.
An easy computation shows that

detH =1.

2.2 We recall the definition of theta functions with characteristics m,m’ € RY
(cf. [1], p. 49):

Omm(t,2) = 3 exp(mil(k + m)t'(k +m) +2(k + m)'(z + m")]),
kezs

here T € Sy, z € €. The zero locus of the function 6y (7,z) (Riemann’s
theta function on X;) in €9 defines a symmetric divisor @, C X,. The pair
(X7, 0(©,)) is a principally polarized abelian variety. Thus the Riemann theta
function is the pull-back of a global section of O(@.) to C7. If X, = X,/ one has
0(20.) = 0(20,/), thus this line bundle is canonically defined (intrinsically:
the unique totally symmetric line bundle algebraically equivalent to twice the
principal polarization).
We define theta functions with half integral characteristics:

0 [::/] (t,2) := Oppo,mp(1,2)  for mym' € {0,1}9 .

Let a the point of order two in X, defined by (m + tm’)/2 € €7 and let
(©:), be the translate of ©, by a. Then the function O[] is a basis of
H°(X,,0((©,),)). The 29 functions:

0 [’(’)’] (21,2z), me {0,1}9

are a basis of H(X;, 0(20,)).

From the definition of the theta function one easily proves the following
lemma, which gives the action of ¢* on global sections of certain line bundles
on X; and which gives a formula for the maps

(1-¢)" : H'(X,0(0,)) —» H(X,0(20)) ,
for the translates @, of @ with « € ker(1 — ¢).
2.3 Lemma. For ¢, ¢; € {0,1}", z € €, 1 € Hy, and N € Zx( we have:
1.
9[2 ﬁz}(Nr,zA):(—l)eieie[zz 2](1\/“).
2.

0, |@mzi-an= 5 e’ P oN o).
¢ e pefonyr 0 0

Proof. First we prove the second statement. For 7 € Hy, (and ‘4 the transposed
of 4):

A* = -1, 'd=—-4, AT'A =1, At+174=0.
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Note that these relations remain valid upon replacing 7 by Nt, we will suppress
N in the rest of the proof.
We compute 9(,,,,,,,,2)’(,,,:1,,,,/2 )(1,2(1 — 4)). Using the relations, we can write:

1= +A)1/2)FU+4), I=1/2)I+A)UT—-A4).
and we get:
(k + m)t'(k + m) = (k + m)(I + A)(1/2)t'(I + A)'(k +m),
(k+m)(z(I —A)+m'I) = (k+m)I +A4)(z+(m/2)I+A4)).
Writing k = (ki, k), m = (my,my), m' = (m|,my) € Z" x Z" we get:
(k+m)I +A) = (ki — ky + my — my, ky + ky + my +my)
=QRL+p+m —m,2l+p+m +m),

with p € {0,1}" defined by k) +k; € p+2Z" and [, := (ks —k2 — )2, I :=
(ki + k, — p)/2 € Z". Then:

(k +m)c(k+m) = (I + (p+m —m3)/2, 1+ (p +mi +m2)/2)(2T) (i +---)
and in the second term we get:
(z 4+ (m')2)I + A)) = 2z + (m| — my,m) + m})/2),
thus by summation of the terms over p € {0,1}",y,/» € Z" we have:
Oy, ! (21 = 4))

- Z 0(m| —my+p, my+my+p)/2,(m] —mé,m{ +my )/2(21:, 2z) .
pe{0,1}"

The isogeny formula follows from this, but since we want (00) rather than
(0¢') in the second row of the characteristic, we get the sign (cf.[1], 6.2, p.49).
For the first formula, we observe that

(k+m) (@A +m')=(k+m)yd'@z+md™"),
(k + m)t' (k +m) = (k + m)At4'(k + m),
and that
(k+m)d=(ky+my—ki —my), mA™" =(ky+my—k—m).
Thus we have:
O(MI’MZ),(mfl’m;)(t,zA) = 0(,,,2’_,,,])‘(,,,5,_,,,?)(1,2) :

Since we want characteristics in {0, 1}2", we get the sign in the formula. O
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2.4 Corollary. The automorphism ¢ of order two induces an automorphism
¢* on H(X,,0(20,)) of order two (in fact, the corresponding theta functions
are even). Let H'(X,,0(20,))+ be the + eigenspace of ¢*, then

dim H%(X,, 020.)); =2""'(2" + 1),
dim H(X,, 0(20.))_ =2""'(2" - 1).
Bases of dim H(X,,0(20.))+ are given by the non-zero

0[%‘ ‘;2](21,22)ﬁ:9[35 %1](21,22)
with €;,& € {0,1}".

2.5 Remark. The isogeny formula 2.3.2 implies that each of the functions
0[1(27,2z), (6 € {0,1}?") can be expressed as a linear combination of the
22" functions 0[5 71(t,z(I — A)), (&,¢' € {0,1}"). Thus these functions also
provide a basis of H(X;, 0(20,)).

3 The cycles

3.1 In this section, X = X; with 7 € Hy,. Let N = 22 — 1. We study the
geometry of the Kummer map:

K : X, —» PY = PH(X,0(20)) ,
2 (-2 0[51Q2n,22) :-+1) (0 €{0,1}™).

In case X is indecomposable, the map K embeds X/ + 1 in IPV, if the ppav is
a product of ppav’s X = X x --- x X; then K(X) 2 K(X;) x --- x K(Xi).

3.2 The morphism K is equivariant for the action of the automorphism of order
4, which acts on PV by (see 2.3.1):

(i Xoygy i) (oot Xaygy 20+0) (01,02 € {0,1}7).
The two eigenspaces of this involution we denote by (cf. 2.4)
P, := PH(X,,0(20,))+
Let IT_ : PY — IP_ be the projection on to P_ from IP,, and let:
K_=I_oK:X—>P_,
be the composition of K with the projection I7_.

3.3 Lemma. For an indecomposable ppav the base locus B of the rational
map K_ : X — P_ consists of a set of 2*" two-torsion points, in fact:

B=ker(p—1)={x € X : p(x) =x} = (Z2Z)*" .
Moreover, B is a maximal isotropic subgroup of X[2] and X/B = X.
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Proof. Since K is a morphism, K(B) is base locus of IT_, so K(B) = K(X)N
P,. As K is equivariant for ¢ and IP, is an eigenspace, B is contained in the
set of points x € X with ¢(x) = +x, that is (¢ £1)x=0. Note po(p+1)=
¢ — 1, so ker(¢ + 1) = ker(¢ — 1); since (¢ — 12 = —2¢ we get B C
ker(¢p — 1) = (Z/2Z)™".

To see that all points in ker(¢ — 1) are mapped to P, (and not to IP_),
note first of all that 0 € X is mapped to P, since 2.3.1 (with N =2 there)
implies that 0[7' (21(27,0) = 0[5% o' 1(27,0).

The map K is equivariant for translations by points of order two (they
act on IPV as the Heisenberg group), thus each a € X[2] gives a projective
transformation U(a) satisfying

K(x +a) = U(@K(x) (a€X[2]).

Let a € ker(¢ — 1). Then translation by a and ¢ commute (¢(x + a) =
d(x) + ¢(a) = ¢(x) +a for all x € X). Therefore U(a) maps the eigenspaces
of ¢ into themselves (it cannot interchange them since the dimensions are
different). Thus K(a) = U(a)K(0) also lies in P, and B = ker(¢ — 1).

That X/B = X is trivial since ¢ — 1 € End(X). Note that B =ker(¢p —1) =
im(¢ — 1), ¢2 = —1 and E(¢.x, p.y) = E(x, y) give:

E((¢* - 1)X,(¢* - 1)}’) = 2E(x9y) +E(¢3x’ ¢*Y) - E(¢*x’ y) = 2E(x’y) =

The polarization E defines the Weil-pairing and this formula shows that the
Weil-pairing is trivial on B. [

3.4 Note that the proof shows that K(X)NIP_ is empty, so the projection of
K(X) to IP; is a morphism.

3.5 We recall the basic facts on the quadrics on PV. A basis for the vector
space of these quadrics is provided by the

Q [2] = Y () XeXore, (0,68 € (Z2LY", &' =0),
a

which are indexed by the 227~!(2%" + 1) even theta characteristics (each Qs
is an eigenvector for the action of the Heisenberg group). '

The pull-back of a quadric Q along K gives a section of ((4@) and, since
the 6[%](27,2z) are even functions in z, this section will also be given by an
even theta function. A basis of H(X;, 0(40)),., the space of these even theta
functions, is given by the 0[ 51(,2z) with ¢'e’ = 0. The following theta relation
([1], IV.1) expresses the pull-back of the Q[:,]’s in this basis:

K*Qps) =3 (=1)"70 ['(’)] (21,22)0 ["0+ 8] (21,22)
=[] oy (5] @2,
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In particular, K(X) lies in Q[f' 1 (we denote the quadric in PY and its defining
equation by the same symbol) iff the corresponding theta constant vanishes,
ie. 0[5](z,0) =0.

From Lemma 2.3.1 we have that on X; the 2"~!(2"—1) even theta constants
[5 5] with &'¢’ =1 mod2 vanish.

In the case n = 2 the 6 even theta constants with the following character-
istics vanish:

1010 1010 1111 1111 0101 0101

1010’ 111’ 1010 [0101]* [0101]° 1111 -
Therefore K(X) lies in 6 independent quadrics. We will show, by explicit
computation, that there exists a (unique) quadric Q which is linear combination

of these 6 quadrics and which is the cone over a smooth quadric in IP°. This
implies that the image of K(X) in IP° is in this quadric.

3.6 Proposition. Define a quadric Q in IP'° by:

1010 1010 1111 1111 0101 0101
Q"‘Q[mw]_Q[nn]_Q[wm]+Q[mm]_Q[mm]+Q[nn]'
Then for any t € Ha, we have K(X;) C Q and Q is the cone over a smooth
quadric Q in P5 = IP_, thus:

K_:X-B—>Q0cCP.

Proof. Using the definition of Q[ 71, it is clear that Q[ ]3] and Q[1919] involve

the same 8 monomials (X;X5+(1010) = X0000X1010s--.) With coefficients +2. The
signs differ iff &' = (1010) - ‘6 = —1, and thus:

1010 1010
(¢ {1010] -0 [11”] = 4(Xoo01X1011 + Xo100X1110 — X0011X1001 — X1100X0110) -

Similarly, one finds:

1111 1111
o [ ] -0 [ } = 4(Xo001X1110 + Xo100X1011 — Xoo10X1101

1010 0101
— X1000Xo111) »
0101 0101
o [0101] -2 [1111] = 4(Xoo10Xo111 + X1000X1101 — X001 X0110
— X1100X1001) -

As coordinates on IP° = IP, we take:

Zala = Xoa + Xoy0,
2 192
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with the convention that in Z,,,, With 61 = (a1,b), 62 = (a2,b2) € {0,1}*
we have that 2a; + b; < 2a; + by, and on IP° we take:

Yo1 := Xooo1 — Xo100 Yo2 := Xooto — X1000 Yo3 := Xoonn — X1100 »
Y12 := Xot10 — X001, Y13 := Xoin1 — Xuo1, Y23 1= Xionn — X110 »
it is convenient to agree that Y,, = —Ys, if @ > b. Using the identity
2ZyZuw + ZisZw) = (Zgy — Zis ) Zuww — Zoi) + (Zst + Zis ) Zuw + Zo)

with s,t,u,v € (Z/2Z)*, we get:

1010] (10107
Q[IOIO_ -9 111 =2(Yo1 Y23 + Yos Y12 + Zo1Z23 — Zo3Z12)
1111] -111”
- =2(—Yn Y Yo Y Zon 2y — ZopZ
Q[IOIO_ 0 0101 | 2(—Yo1 Yoz + Yoo Y13 + Zo1Z23 — Z02Za3)
0101] (010117
— — Y _ Y _ .
Q[OIOI_ QUIU_ 2(Yoo Y13 — Yos Y12 + Zo2Z13 — Zo3Z12)

the equation for Q is then:
0 =4(Yo1 Y23 — Yo Y13 + Yo3Y12)

so Q is the cone over a quadric Q in IP°. Since K(X) C Q we get K_(X) C Q.
O

3.7 Theorem. Let X be an abelian 4-fold of Weil type (2,2), field Q(i) and
detH = 1.

Then the space W of Weil-Hodge cycles is spanned by classes of algebraic
subvarieties.

Proof. Since X is isogeneous to an X; (cf. [vG2]), it suffices to prove the result
for these varieties. We show that for a general X, the rational map K_ : X; — O
is dominant and that the (strict) pull-back of a general linear subspace P> C 0
has a cohomology class which is not in D?(X). Using the action of Q(i)*
by pull-back on BX(X) = D*(X) @ W, so0 x - (v,w) = ((xX)*v,x*w), with
W = NowH'(X,Q) = K, it then follows that W is spanned by classes of
cycles. Since any two points in IH4 can be connected by a holomorphic curve,
the closure of such a cycle in the generic fiber specializes to a cycle with a
class not in D*(X) for any X; for T € Ha.

To show that K_ is dominant and to compute the cycle class, we specialize
to the case that X = Y x Y with ¥ a general abelian surface. In terms of the
period matrix for X that means we take v € Hy with 7 = 0. One has:

HO(X,0(20x)) = H°(Y,0(20y)) ® H(Y,0(20y))

(in fact, from the definition one has: 0[{!21(27,2z) = 0[7'1(271,221)0[;?]
(211,22;) with z = (21,22) € €2 x €?). The coordinate functions Y;; on IP°
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(cf. proof of 3.6) pull back along K_ to a basis for A2 H(Y,0(20y)) C
H(X,0(20y)).

Therefore we get the following diagram:

K_

YxY - QcCP

P(CY) x P(C*) 5 G(1,3) c P(A2TY)

(note that the horizontal maps are not everywhere defined), here G(1,3) is the
Grassmanian of lines in IP* and P is the Pliicker map which sends a pair of
points to the line connecting them. Note that the base locus of P is exactly
the diagonal of P? x IP%. Since K(Y) = ¥/(+1), the base locus of K_ is the
union of the diagonal 4 of ¥ x ¥ and A4~ := {(»,—y) : y € Y}. (The base
locus of K_ is now larger (cf. 3.3) since K : X — P!5 factors over the group
generated by idy x (—idy) and (—idy) x idy.)

The equation for Q is just the quadratic Pliicker relation, it is identically
zero in P> x IP’. We will from now on identify 0 = G(1,3).

It is clear that K_ is dominant: to a general / € G(1,3) corresponds a line
in P> which intersects the Kummer variety K(Y) in 4 points, over each pair of
these points there lie 4 elements in ¥ x ¥ mapping to / under K_. Therefore
K_ is dominant for the general X, with t € H,.

A basis for H*(Q, Q) is given by the classes of a P} C O, parametrizing
lines through a point P € P(C*), and a P} € O, parametrizing the lines in a
plane ¥ = P> C IP(C*). Another basis is given by P2 and H2, with H the
hyperplane section.

The (strict) pull back of IP? along P is ¥ x ¥ C IP3 x IP? and this pulls back
to Z:=(20y) x (2@0y) in Y x Y. The pull-back of H is 20y =Y x (20y) +
(20y) x Y, twice the product polarization on ¥ x Y. For general t € IHy, one
has D*(X,) = (6?), which specializes to (©%). Therefore we must show that

[2] ¢ (6%, [41,[47]) CHY(Y x ¥, Q) = @ H(Y,Q)® H*(Y,Q).

Note that [Z] € H*> ® H? (with H* := H¥(Y,@)). On the other hand,
(6%.141,[471) N H*QH? = (0% — ([4] +[47))) ,

in fact, ©% = 2({P} x Y + @y x Oy + ¥ x {P}) has no (3,1), (1,3) Kiinneth
components, and [4] + [47] = 2({P} X Y + &,, + ¥ x {P}), with [4] =
04, the Kiinneth decomposition of [4]. Since 02,2 has a non-trivial com-
ponent in H>%(Y)® H%%(Y), whereas [Z] = [@y x @y] € H"'®H"! has a
trivial component there, we conclude that [Z] ¢ (6%,[4],[47]).

By specialization, this proves that [Z] ¢ (0% ) for any X,. O
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4 An isogeny
4.1 In this section we give another description of the map K_ from theorem

3.7, using an isogeny on X;. This new description relates the quadratic relation
between certain theta functions to geometrical properties of X, see 4.4.

4.2 A basis of H(X,0(40)) is given by the 49 = 2% functions
€ ’ .
9[3'](”22) ee €{0,1)9.

Let ¥ C H(X, 0(40)) be the subspace spanned by the six even theta functions
with vanishing Nullwert:

g0
V = (,0[ o a,](r,ZZ),. . ')(a,a’G{O,l}z,’aa'=1) C HO(/Y, (9(4@)) 2
4.3 Proposition. The image of X = X, under the rational map:
Oy X 5PV, zw(..: 0[:, Z,](r,zz) )

is a smooth quadric Q C P°. The quadratic relation on the six theta functions

AN
1010 1010 1111 1111 0101
2 2 ) 2 2
(9 [1010} ¢ [1111] J [1010]+0 [0101] o [0101]

101
+ 6 [?111]>(T,22)=0.

There is a commutative diagram:
K_ —
X —= Qcp

1-¢ { P

X

Proof. We consider the subspace I'(0(20))_ where ¢* = —I. Remark 2.5
shows that the functions 6[ & %](7,z(I — 4)) give a basis of I'(0(2@)). From
formula 2.3.1 we have:

0[5 5] @y =100 [} 5] o),

and thus a basis for I'(0(20))_ is given by the 2"~!(2" — 1) functions
[ & &](z,2(I — 4)) with &'¢’ = 1 mod 2. Since (1 —AP =1-24+4%>=-24
we get:

V=(1-¢)T2oe)-.
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In the case n = 2 we used the basis with the six Yap’s. One easily finds,
with @[a] := 6[3](27,22):

0 [1010

10]0} (t.2(I — 4)) = —O[0010] — O[0111] + @[1000] + O[1101]

=—-Yp -3,

1010
9[1111

] (z.2(I — 4)) = —O[0010] + O[0111] + O[1000] — O[1101]

=—Yn+ Y3,
similarly one has:

1111
1010

](r,z(I—A))= ¥ +Yn 6 [“”

0101
0 [0101] (20 —4))=—Yo — Y3 0 [

[0101

] (1,21 — 4)) = —Yp3 + T,

1111 0101

From these equations one can express the Y,’s in the 0[5 51z, z(I — A)).

e ¢
The quadratic relation between the Y,,’s then gives the relation in the
proposition. [J

] (.z(I —A))=-Y;3— Y2

4.4 Remark. The existence of a quadratic relation between the six even theta
functions with a vanishing Nullwert can also be obtained from the following
observations.

First of all, each vanishing Nullwert corresponds to a singular point on the
theta divisor @ of X, the singular point is a point of order two in X. Thus @
has at least six singular points. Furthermore, for x € Sing(©®) we have that

Jx = 00,0(t,2 = x)bo,0(1,2 +x) € Too := {s € H'(X, 0(20)) : po(s) = 4},

where po(s) is the multiplicity at 0 € X of the section s. The six functions
fx € ['yo we obtain are the six theta functions [ ?,%1(z,z) with ¢'¢’ = 1.

Since the general X we consider is not a product of lower dimensional
ppav’s, one has (see [vGvdG]):

dimlgp=2*-1-10=5.

Thus the six functions 0 % ?,1%(t,z) € Iy are linearly dependent and therefore
one has also a linear relation between the six 6 7,2 1(1, 22).

The results of Debarre [D] imply that Sing(®;), for general T € IH, consists
of exactly 6 points (that the general X; is not the jacobian of a hyperelliptic
curve follows from the fact that the sum of any three vanishing theta charac-
teristics of X; is even, rather than odd).

Geometrically, the argument above shows that K(Sing(®)), which in gen-
eral consists of 6 points, spans at most a IP* C P'5, in fact the map K may
also be given by (cf. [vGvdG]):

K : X, —» PH'(X,,0(260,))*, x> 60,0(t,z — x)00,0(1,z +x) .



628 B. van Geemen

4.5 Remark. We indicate an alternative derivation of the quadratic relation in
the previous proposition, using the identities (with oy, € {0, 1}?):

0] 02 _ 201
0[0 . @noy=0 [0 . |@50) teH.
The multiplication formula for theta functions ([I], Chapter IV, Thm. 2, p.139)
shows that the expression for 6°[ % % 51(t,z) in terms of the standard basis of
r(020,)) is given by:

e &2
0[8, 8,] (1,2)
o1+¢e0y+ ¢

_ 1010 te! ag) 02
= (=1 0[ 0 7 ](21,0)0[00](21,22).

01,0,€{0,1}2

It is now a straight-forward computation to verify the relation. One can
also use the proof of 3.6 as follows. Define:

By, (X, Y) =3 (=1)' X, Y51, withm=1[}]
[

an even theta characteristic. Note that By, is just the bilinear form associated

to the quadratic form Q,, in the proof of Proposition 3.6. Upon substituting
= 0[3](27,0) one obtains linear forms in the X;, these 6 forms are linearly

dependent exactly when there is a linear relation between the [ & 51(,2).

In the proof of 3.6, we showed that a certain linear combination Q of the six
On’s is a quadric in the coordinates Y, of IP5. Thus Q is a linear combination
of terms (X — Xi5)(Xuo — Xuu), and therefore its associated bilinear form By is
a linear combination of terms (Y,, — Y,u)Xy. Since we have 0[§! 2] = 60[32 1],
upon substituting Y, := 0[3](27,0) in By we get zero.

5 Prym varieties

5.1 Let C,;, be a smooth curve of genus n+ 1. A subgroup G = Z/4Z C
Pic®(C,41) defines a cyclic etale 4:1 covermg of C,,1 and an intermediate etale
2:1 cover:

Cus1 — Cony1 « Capy -

The Prym variety P of the Cay41/Can+1 is @ principally polarized abelian variety
of dimension 2n. The covering automorphism of Ca,y; over C,yy induces an
action of Z[i] on P.

5.2 Schoen constructs cycles on P by taking the inverse image of IP" = |K| C
¢ in CW, (with C = Sym'C), which is reducible, and mapping the
components to P. He shows that suitable linear combinations of these cycles
span the space of Weil-Hodge cycles W C H (P, Q).

In the case n = 2 we show below that the general X;,7 € Hy, is such a
Prym variety.
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5.3 Theorem. Let P be as in 5.1. Then:

1. The abelian variety P is of Weil type (n,n), with field Q(i) and
detH = 1.

2. There exist bases of H,(P,Z) and H, (P,R) (which has the structure of
a complex vector space via its identification with ToP) such that the period
matrix Q satisfies:

Q= (i) tH(P,Z) = Z" — Hi(X,R) = ToP = C*  with 1 € Hay .

In particular, P is isomorphic to an X, with 1 € H,,.
3. In case n =2, the general abelian variety of Weil type (2,2) and field
Q(i) with detH = 1 is isogeneous to a Prym variety as in 5.1.

Proof. We consider the action of the automorphism ¢ of order 4 on H\(P,Z).
According to [F], p. 62, there is a symplectic basis Ai, Bi (0 =i < 4n) of
Hi(Cany1, Z) with:

$d) =divin,  $*B) =B (1 <i<n).

Since H\(P,Z) = Hi(Cant1,Z)**="" (the classes anti-invariant under d), a
basis of H\(P,Z) is given by

o :=A; —Aiyom, Bi:=Bi—Biyy, (15i< 2n).

An easy computation shows that the action of ¢ on H\(P,Z) is given by the
matrix M, i.e. ¢(%) = 0ipn, G(Bi) = Pizn with 1 < i < n. Taking the o; as a
C-basis of H;(P,IR), the period matrix must satisfy MQ = QA, which implies
that t € IH,,. This proves the second point.

Using this result, the first point is easy to verify (cf. 2.1).

For the last point, we consider the Prym map:

P My gz — As, (CG)—P

where #3 7,4z is the moduli space of genus 3 curves with a cyclic subgroup
of order 4 in Pic® and &/, is the moduli space of principally polarized abelian
varieties. We already proved that Im(2) lies in the 4-fold 3¢ := Im(H4 —
S4 — 4). To show that Im(2) is Zariski dense in 2 it suffices to show that
the differential of 2 has rank 4 at some point of .#3 7,4z, or, equivalently,
that the codifferential of 2 is injective at some point of .

The remainder follows the arguments of Schoen, [S], p. 26-p. 30, we just
show the (obvious) modifications. The cotangent space of .#3 z/4z at a smooth
point [(C, G)] is H'(C, Q‘C®2 ). Let 7 : Cy — C be the 4:1 etale map, then, using
the action of ¢, we have:

T Q¢, = Qt & (2:®0%2) & (QL @ 1) B (2L ®a®®) with G = (o) .
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Then Tp.o/4 and T3, the cotangent spaces of /4 and # at P are given by:
Tr ol s = Sym*(H(C,QL ® ) ® HY(C, 2t ® o)),
Tro# = H(C,QL®a) @ H(C, QL ® o)) .

The codifferential of 2 : #3 z/az —  is now just the multiplication map:

HY(C, Q1 ® @) ® HY(C, QL ® &) — HU(C, Q8 ).
The proof that this map injective for general [C] € .#3 follows from the Base
Point Free Pencil trick, as in [S], p.30. O

5.4 Remark. Since dim.#4 = 9 = 32, one might hope that the Prym map:
P Mazz — H¢ would be generically finite on its image. If that is the
case, then Im(2) is Zariski dense in #¢ and Schoen’s cycles would solve the
Hodge conjecture for the general abelian sixfold of Weil-type with field Q(i)
and detH = 1.

5.5 Remark. The previous Proposition also ‘explains’ the 6 singular points of
order two on the theta divisor of the abelian fourfolds we considered. Recall
that a theta characteristic on a curve C is a line bundle L with L& = Q.

For a curve of genus n+ 1 and a point f € Pic’(C) of order two, there are
27=1(2"—1) pairs of odd theta characteristics L, L’ with L' = L& (this is most
easily checked using the classical notation for characteristics). Let 7’ : C' — C
be the etale 2:1 cover defined by f, then

L= "L,  HYC,n*L)=H%C,L)® H(C,L), (a*L)®*=Q¢,

thus 7’*L is an even theta characteristic with at least two independent sections.

Let now « € Pic’(C) with «®? = B. Then y := n'*a has order two in
Pic(C’) and moreover, by Serre duality, H'(C,L ® a) & H(C,L® o~ ')* =
H(C,L’' ® a)*. Therefore, also (n*L) ® y = n’*(L ® «) is an even theta char-
acteristic on C'.

Now it is well known (for example from the classical Schottky—Jung identi-
ties) that pairs M, M ®y of even theta characteristics on C’ with H %C',M) >0
correspond to singular points, of order two and even multiplicity, on the theta
divisor of the Prym variety of the coveting C” — C’ defined by y. These
singular points correspond precisely to the vanishing (even) theta nulls.

Starting from a genus n + 1 curve, the 2n-dimensional Prym varieties in-
troduced in 5.1, thus have at least 2"~!(2" — 1) vanishing (even) theta nulls,
in agreement with the fact that X;, for v € IH,, has that number of vanishing
theta nulls (simply put z =0 in 2.3.1).
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