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1 Introduction

Summability of multivariate Fourier series (briefly: F. S.) has been the object of
intensive studies for this century, especially after the appearance of the classical
paper of S. Bochner on, what is now called, the Bochner-Riesz means of F. S.
in 1936 and again after the appearance of the papers of A. P. Calderén and
A. Zygmund on singular integrals in the early 1950s, see A. Zygmund [13,
Chap. XVII], E. M. Stein & G. Weiss [9, Chap. VII], and also V. L. Shapiro
[8]. In connection with his investigations of multivariate orthogonal polynomial
systems the second named author [11] ran into problems of summability of F. S.
from a point of view which seems not to have been in the main stream of
the theory developed so far. To be more precise, let us introduce the necessary
notation.

Let R? denote the Euclidean d-space, d > 1, and let T¢ = R¢(mod 27Z%)
denote the d-dimensional torus. For a vector x € R, |x|, defines its £,-norm,
1<p<oo.

Let C(T¢) denote the space of (complex-valued) continuous functions on T¢.
To the multiindex & = (o, .. ., 0g) in Z¢ we associate the £-p modulus to be the
£,-norm of « considered as a point in RY, and if 6 = (4, ...,0,;) denotes a point
in T¢, the product « - 6 defines the inner product of « and 6. For an f € C(T%)
its F. S. is defined by

i - 1 —ia-
f(0)~2ajf(a)e ! f(“)“(z_w)? /T J®e %49.

In a way summability of the n-th partial sum of the F. S. of f w. r. t. the
£-00 modul of the index set is apparent; i. e., studying summability properties of
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S0 = Y F@e*?=DSP xf0), neN,

|at|oo<n

see [13, Chap. XVII]. Bochner introduced the ¢-2 partial sum

SOF0 =Y f@e® =D «f©®), R>0,

lal2<R

and the success of his means is based on their relation to the Laplace operator,
see [9, Chap. VII]. But equally natural, if not more so, seems to us to study
summability of the n-th partial sum of the F. S. of f w. r. t. the -1 modul of
the index set; i. e., studying

SUF0)= > f@e*? =D xf6), neNy

|afi<n

see Section 5 in [11] which shows the close relationship to the theory of series
expansions w. r. t. orthogonal polynomials on R?.

In contrast to the first two methods, the last one seems to have been almost
forgotten. The authors could just come up with a single reference by J. G. Her-
riot [6] in 1944. In [12] the second named author gave an explicit formula for
the Dirichlet kernel D,(,l,,)j as a divided difference of a univariate function, the
arguments in the difference being the independent variables. This representation
gives hope for the development of a rich theory of ¢-1 summability.

Here, the authors want to restrict themselves to the study of just one topic. In
1904 L. Fejér proved that for a function in C(T) the arithmetical means of the
n-th partial sums of its F. S. converge uniformly to f, giving the first constructive
proof of the Weierstral theorem. Fundamental to his proof proved to be the fact
that the arithmetical (or the Cesaro) means define a positive linear transformation
on C(T), leaving the const.-valued functions invariant. Here is an analogue to
Fejér’s theorem in multivariate /-1 summability.

Theorem 1 In ¢-1 summability the Cesaro (C ,2d —1) means of the F. S. of a func-
tionf in C(T?) converge uniformly to f. In particular, the means define a positive
linear polynomial approximate identity on C (T?); the order of summability is best
possible in the sense that the (C,6) means are not positive for 0 < § < 2d — 1.

Let us recall the definition of Cesaro summability. The sequence {s,} is
summable by Cesaro’s method of order é: (C, §), to s if

1 ~/n—-k+6-1
(":f)g( n—k >"‘

converges to s as n — o00. If for each n € Ny s, is the n-th partial sum of the
series ) _oq Ck, the Cesaro means can be rewritten as

w2 ()

n k=0
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For the basic properties of Cesaro summability see [13, Chap. III].

The proof of the main part of the theorem reduces to proving that the (C, 2d —
1) means of the Dirichlet kernel D,(,f‘), define a positive linear transformations on
C(T9); in other words, we have to verify that

n+2d—1 2d—1 n—|a|1+2d_l ia-@
. = >
(11)( S ] )a,,,d ®) HZ;( od 1 e*? > 0
al;<n

on C(T9;

implicitly we defined o ; to be the (C, ) means of the Dirichlet kemels.
For £-2 summability the Riesz means of the F. S. of a function f in C(T¢):

A\ O
S 6dFi0= Y (1— [@] )f(a)e"a"’ A\6>0, and R >0,

R
|a|2<R

do not define a positive transformation on C(T¢) for A > 2 (A = 2 are the
Bochner-Riesz means), while for 0 < A < 2 there exists a bound §(\) > 0
(6(1) = (d + 1)/2) such that the (R, \, §) means define positive transformations
for § > 8(\) on C(T¢), as was proved by B. I. Golubov [5] in 1981. We do not
know about any results on the positivity of the Ces4ro means in /-p summability,
1 <p < oo, for F. S. in C(T?) - by a personal communication we learned from
Professor J. Korevaar that in the early 1950s he did study ¢-1 summability of
bivariate Fourier series and proved among others that the (C,3) means define a
positive approximate identity; he did not publish his results. To us the theorem is
surprising; even more so is its proof which depends heavily on results from the
theory of special functions, in particular, on positive sums of Jacobi polynomials,
which go back to R. Askey and G. Gasper in the 1970s, see the SIAM-Lectures
[2] of Askey.

In the following section we will prove the theorem for bivariate F. S. Here,
the proof can be reduced to better-known statements on trigonometric series. In
Section 3 we will derive various representations of the ¢-1 Dirichlet kernel, while
Section 4 is reserved for the proof of the theorem. In the last section we will
briefly discuss the closely related Abel means.

2 The bivariate case

Let us begin by giving an elementary proof of the theorem for bivariate F. S.;
better, by reducing the proof by elementary arguments to known inequalities on
Fourier series. These arguments, however, did not lead to an extension of the
proof for multivariate F. S. in general.

In his paper, loc. cit., Herriot gives the following formula for D,(,l’;, which
can be easily verified; he states
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DOGLG) = Y e
|ar[+]oz|<n
_ cos 36y cos(n + 1)0; — cos 3 6, cos(n + 1)6,
- sin 1(6; + 6,) sin 1 (6, — 6,)
Setting
Gn2(¢) = —cos 3pcos(n + 1o, 0<p<m,

it is not too difficult to verify that the (C,3) means of the derivative of G, 2(0)
are positive on 0 < ¢ < . Indeed,

G, »(¢) = 1 sin J¢ cos(n + D¢ +(n + L)cos 1¢sin(n + 1)g;
and formula (1.21) in [2, Lect. 1] explicitly states that for each n € N,

- —k+2
@.1) sn(¢)=2(” v

)(k+%)sin(k+%)¢ >0, 0<¢<m.
k=0

Incidentally, this inequality goes back to Fejér too, cf. again [2, p. 4]. Further-
more,

n
—k+2
@)=Y (” 2 )cos(k+%)q>>0, 0<g¢p<m

k=0
the function ¢, (¢) has —s,(¢) as its derivative on 0 < ¢ < 7, hence it is strictly
decreasing on the interval and ¢,(7) = 0. Consequently, the (C,3) means of

Gn 2(01) — G 2(62), 0<b,<b,<m,
are positive, and so are the (C, 35 means of the quotient

1 G 2(01) — G o(62)
sin %(01 + 02) sin '21-(01 — 02)

. 0<6,,0, <.

In other words, for each n € Ny

n+3 0,':‘: 2(01,92)= Z n _(|a1|+ |a2|)+3 ei(a|0|+a292) 2 0 on TZ,
3 . 3
|t [+az|<n
proving the first part of the theorem for C(T?).
The fact that the result is best possible in the sense that the (C, ) means do
not suffice for 0 < § < 3 follows from the fact that
n
n—k+2—e¢ In |
sny€(¢)=z < 2 )(k+5)sm(k+§)¢, O0<o<m,
k=0
changes sign in any interval 0 < ¢ < ¢, ¢ > 0, for infinitely many n when
€ > 0. This was proved by I. Fuchs, cf. [2, p. 90]. Following the arguments given
above quickly verifies the claim.
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3 Representations of the Dirichlet kernel

It is difficult, if not impossible, to come up with arguments why ¢-1 summability
of multivariate F. S. has received so little attention in the past. One plausible
reason seems to us the lack of a closed form for the Dirichlet kernel with all its
consequences. In [12] the second named author proved that for each n € N the
n-th £-1 Dirichlet kernel can be written as a divided difference of a real-valued
function.

Since the notions of a divided difference of a function and of a B-spline play
a basic role in our paper, we want to give their definitions and state some of their
properties. Let f be a real- or complex-valued function on R, and let n € N,.
The n-th divided difference of f at the (pairwise distinct) knots, xg, x, .. ., x, in
R, is defined inductively as

[X(),...,x,,_llf = [xl,...,x,,]f.

X0 — Xn

[xO]f =f(x0) and [an » e ,-xn]f =

It follows that the difference is a symmetric function of the knots; while, consid-
ered as a functional on the vector space of functions on R, it is linear. Indeed,
we have

n
(x
[XO, sidle axn]f = Z ,,‘f‘ﬁk)—:
k=0 T (o — x;)
j=0
i
a representation which will be used explicitly in the proof given below. Moreover,

depending on the smoothness of the function, knots may coalesce.
The B-spline of order n and with knots, xy < ... < x,, is then defined by

(- =)
Rou — Mn(ule,--~,xn)=[xo’-"*x"]{W}'

The spline function vanishes outside the interval (xp, x,), on the interval itself it
is strictly positive, and

1
/M,,(u|x0, vy Xp)du = —
R

n!’
One of its fundamental properties can be stated as follows:

Let f : R — C be n-times continuously differentiable, then

[xo,...,xn1f=/f<"><u)M"<u|xo,...,xn)du.
R

The relation can even be considered as a definition of the B-spline; for these and
further properties see e. g. the survey [3] of C. de Boor.
We have



454 H. Berens, Y. Xu

Lemma 1 For each n € Ny,
(3.1) D) =[cosb,...,c08041Gna, O=(61,6s,...,04) in T,
where

cos(n + 1)¢ for d even,

= () 1 #(sin p)?—2
Gn,a(cos ¢) = (—1)"7 "2 cos 7¢(sin @) {sin(n+%2)¢ for d odd.

Furthermore,
1
(3.2) D" (6) = / GUTD(tM,_ (1| cos . .. ,cos8,) dt,
=i
where My_1(-|cos0,...,cos0,) is the (d — 1)st B-spline with knots at —1 <

cosf; <1,1<j<d.

Representing the Dirichlet kernel as a divided difference of a univariate func-
tion and further as an integral reduces the study of /-1 summability of F. S. to the
investigation of summability properties of the univariate function g, 4 := G,(,‘fd_ B
the multidimensional variables being nicely hidden in the B-spline kernel; this
will prove to be more than just useful. We will derive various representations for
the function g, 4; but to make the paper self-contained let us first sketch a proof
of the lemma — since we are only dealing with ¢-1 summability, we will in the
following omit the superindex.

Sketch of proof. The kernel can be rewritten as

D,,7d(0) = Zd Z, Ccos (1101 « - COS ad(?d,

|e|i<n

where o = (ay,...,a) € Z¢ and where Z' means that whenever an index-
coefficient ¢; is equal to zero the term containing cos c;6; is to be halved. Let us
write D, 4 = 2¢ Zn,a- We need the following (not so) well-known trigonometric
formulae:

foreachn e Ngand 0 < ¢, ¢’ <,

Z’ cosk¢’sin(n — k + )¢

k=0

cos 5 ¢cos(n + )¢ — cos 1 ¢’ cos(n + )¢
cos ¢ — cos ¢’ ’

= sin %q&{

Z’ cosk@' cos(n — k + )¢

k=0

=cos %cﬁ{

sin 1 ¢/ sin(n + 1)¢' — sin§ gsin(n + )¢
cos ¢ — cos ¢’
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The proof of formula (3.1) is by induction which is based on the following
relation

n
Enan®) = " coskbi Zu_i ),
k=0

where 6 = (6/,6,41), 0’ € [0,7]%, and 64,; € [0, 7], and on the well-known
formula

sin(n + %)6‘

2sin} 6

Let us assume that the formula has been proved for integers up to d and let us
assume that d is even. Then

Xn(0) = = cos 36(sin 6) ' sin(n + 1)6.

DT K cos L 6(sin 62 &
Znan@) = ( 2d)—l Z . 2 U1 i Z'COSk0d+1cos(n—k+%)0,
1=0 T](cos 6, — cos@;) k=0
j=1
i
_ (~nEF (& cos%&,(sinO,)"“sin(n+%)0,
] Z d+1 =
=0 [1(cos; — cos6;)
j=1
-

d .
: : 1 + cos §;)(sin ;)2
— $in 0441 sin(n + 30441 2 ’ (d+| 1)(sin 6;) }

=0 T (cos 6, — cosb;)
j=1
i
For d even, the function (1 +¢)(1 — tz)d*?Z is a polynomial of degree d — 1.
Hence, its d-th divided difference at the knots #; = cos§;, 0 < 6; < 7 and
1 <j <d, vanishes; i. e.,

4 (1+cos)(sind)?=2 (1 +cos Bar1)(sin 0g.1) 2 -
Z d+1 * d+1 = Uy,
=t T](cos6; — cosb;) IT (cos6us1 —cosb))

j=1 i=1
i Jume
incorporating the formula into the equation for X, 4,1 gives
d+1 1 . d—1 .: 1
a 2 cos 5 0;(sin8;)* " sin(n + 5)6,
2 T g = (DY 2 .
1=0 [1(cos b — cosb))
j=1
i
= [cosf,...,c0860441]Gp a41,

which completes the proof for d even. For d odd the proof is similar — inciden-
tally, in [12] a detailed proof has been given for this case. 0
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We will derive explicit formulae for the function 9n,d>» n € Np; to do so, we
set

Gna=tFna+Fn1a and gng = foq+fi-14,
where

T,+1(t) for d even,

= (=D — 2y
Foa@®)=(=D"7"1 -1 {U,,(t) for d odd,

and

Jna = F,Elfd_l),
T, and U, being the n-th Chebyshev polynomials of the first and second kind,
respectively. We will make extensive use of the Gegenbauer polynomials C»
and, more generally, of the Jacobi polynomials Pi*?, respectively, as they are
defined in the monograph [10, Chap. IV] of G. Szegd. — Actually, Szegd writes
P) for the Gegenbauer polynomials instead of CV, but this will be the only

inconsistency.
As a first formula we prove

Lemma 2 For each n € Ny,
= d-1

3.3) fra=(d- 1)!2(—1)’( , )c"“’_z,-
1=0

Proof. For d =1 and 2 the formula is true as can be easily checked. We prove
the inductive step: d — d + 2. A quick calculation verifies that

Fuan@)=—(1—t)F, 4, =1Zt <1,

but then

fn,d+2
= {1 = 1H)Fp g} D
= {1 = AF%GY - 2d + )FY) — d(d + DF "}
= —{(1 — )y — 2d + Dtf) 4 — d(d + 1)fy, 4}
d—1
~1
=@d-1ny (-1 (d ] ){—(1 —)CL) +2(d + 1)1CP+d(d + 1)CY,, ).
=0

Using the differential equation for Gegenbauer polynomials, formula (4.7.5)
in G. Szeg6 [10, Chap. IV], as well as the formulae (4.7.14) and (4.7.28), which
state

CV'=2dCAT" and (n+20CN =) —1CV,

n—1

respectively, we can rewrite the curly brackets inside the sum as
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1C0+n =2 — 20 +2d)+d(d +1)IC?,,
= 2dC%) +(n— 2 +d — 1)(n - 21 +d)C?D,,,
and further by use of formula (4.7.29) in [10], which states
(n + NCH =22{C*D — ¢y
as
d{n-2+d+1)CE) — m-2+d-1)C?,_,}
= dd+D{C) - 269, + G )
Inserting this form back into the sum completes the proof after some manip-
ulations with binomial coefficients. O

There is a second representation of the function f, 4 which may be of independent
interest; its proof is similar to the one given above.

Lemma 3 For each n € Ny,

£

1
(3.4) fra=@d-1Y" (d f;l X I)Crf”'

I=1

The two representations (3.3) and (3.4) of the function Jn,a might suggest that
it is the more interesting object compared to the function Ind = foa +fuzi,4)-
This impression changes if we considers the (C,d — 1) means of Jna and g, 4.
Indeed,

Lemma 4 For each n € Ny,
" In—k+d—2 <l
- - — - (d)
Z( Sy )fn,d—<d~1)!2< . )C,,_,,
k=0 =0

and consequently,

"\ (n—k+d—2 d
(3.5) Z(" b )gn,d=(d—1)!z(‘f)6,f‘?,.

k=0 1=0

Proof. The formulae are proved if we can verify that for any d € Ny, any n € Z,
and any biinfinite sequence {c; } we have

n _ d+1 d+1 d+l1 d+1
Z(" ;‘*d)Z(—l)’< , )ck_2,=2( . )c,._,,
1=0

k=0 1=0

where we incorporated formula (3.3) of Lemma 2 into the sum. For d =0
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n
Z{Ck = Ck__g} =Cp +Cp—1.
k=0

To prove the inductive step: d —1 — d, we first note that by use of the elementary
combinatorial relation (*}') = (4) + (,%,), which we shall henceforth refer to as
the Pascalian,

d+1

d
Z( 1)’( )Cn—2l = Z(—l)’ (tli) {en—2 — cn—2-2}.
1=0

By induction

Z(n—;”d )"zl‘( 1),<d+1)Ck - i(‘f){cn_,—cn_,_l},

k=0 1=0

and consequently,

d+1

> (" k”)Z( 1)’( Ner-s
—§< )Cu I8

O

The representation (3.5) somehow indicates that d — 1 is a critical index for
the Cesaro summability of multivariate F. S.

4 Proof of the theorem

To prove the positivity of the Cesaro (C,2d — 1) means of the Dirichlet kernels
D, 4, let us introduce the following notation: We write sf’d, n € N, for the (C, 6)
sums of the function g, 4 — writing sums instead of averages signifies that we
suppress the normalizing factor 1 /(”*6) And using the notation introduced in
the first section we have

1
<n;6)of,d(9)=/ s,‘f,d(t)Md_l(t|00501,...,cosOd) dt.
-1

We will prove that the sums s (t) n € Ny, are nonnegative on [—1, 1]. Since
the B-spline kernel is nonnegatlve this will prove that the Cesaro (C, 2d - 1)
means of the Dirichlet kernels are nonnegative, proving the main part of the
theorem.
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The proof of the nonnegativity of sff’d—l will be as follows: We will take the
(C,d — 1) sums s,‘,’;' and will rewrite them as a linear combination of Jacobi
polynomials. From this representation we will be able to conclude by use of
an inequality of Gasper on Jacobi sums that the (C,d) sums of {s,‘,i ;'}, or the
(C,2d — 1) sums of {g, 4}, are nonnegative on [—1, 1]. ’

Let us begin by stating the central inequality of Gasper; the inequality was
conjectured by R. Askey and proved by G. Gasper [4], see in addition [2, Lect. 8]
where Askey discusses the inequality and some of its applications in greater
generality and in great detail. Setting

P,(,a’ﬂ)

0P = — g
P(1)

avﬂ > _la

we have
foreachn e Ngand 0 < a+ (6, 3> — 1,

@D Z(”"k+“+ﬁ)<k+‘,:+ﬂ>g,ﬁ“"”(t)zo on [-1,1]

n—k
k=0

— here we have to admit that the notation is not standard, but we will have to

use this normalization so often that we decided to introduce an abbreviation. We
need two further formulae on the reduction of the indices for Jacobi polynomials
which can be easily derived from the formulae (22.7.18) and (22.7.19) of [1,
Sec. 22],

for each n € Ny and each o, 3 > 0,

4.2) (n+a+BO” = BOOPD 4 (n+a)Ql1P
10D = 500D (ne et

We start by replacing the Gegenbauer polynomials in the sum (3.5) by Jacobi
polynomials to get

d d
d d) _ d n—1+2d -1 (d-%,d_.%)
;(l)c""_g(l 2d - 1 On— ‘

Next we will apply the Pascalian and the formulae (4.2) to reduce the indices
of the polynomial Q,(,‘i’,ﬁ ) as far as possible; indeed, we do the index-reduction
d-times, to obtain

Lemma 5 For each n € Ny,

€3]
n+d~1 11
1=0

where
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. (m)m 4
1 D —=1),
l (”*’("H-.Z_), d=2m+l.

(m+1),

1 1
GHDm—i(m+5 =), _
@ _ (m) 2 omo TP TN d=2m,

Here, (a)o =1 and (a); =a(@a+1)---(@+1 — 1), ] € N, are the Pochhammer
symbols.

Proof. For the proof we disregard the factor (d — 1)! in (4.3). Using (4.2) one
verifies easily that

d—1
- d-1 n—1+2d -2 d—1d-3)
Srd’ =Z( ! )( 2d -2 )Q""’z 2

1=0

=‘§ d-2 n—1+2d -3 d (d-—-d -) % Q(d—%’d—%) '
ag)y 2d -3 Ta -1

After 2m and 2m + 1 reductions the sums read

it “‘22’" d—2m\ (n—1+2d —2m — 1 1
A l 2d —2m — 1 d —m)p

=0
m
Z (m)(d + % —2m +J)m—j(m +5 it .l)j Q(d—‘-’ 3. d—2m+j—1)
=0
and
-1 _ d_i—l d—2m—1\(n—1+2d —2m -2 1
i 1=0 l 2d - 2m —2 d — m)y,
m
2 (m)(d +3=2m = 14 pym + 3 — jy; QU I
=

respectively. Let us verify the inductive step: 2m — 2m + 1. Using the Pascalian
again,

Sea =

d_in:_l(d—2m—-1)(n—l+2d—2m——2> 1
— l 2d —2m -2 d—m)p
s m
-Z(.)(d+%—2m+j)m_,-(m+%—j),-~

=0 M

) n—101+2d —2m —1 (d—j—%,d—2m+j—%)
2d —2m —1 =t

n—1 @—j—},d—2m+j—})
4+
24— 2m — 1911
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We apply the reduction formulae (4.2) to the expression in the curly brackets
and obtain

d= 2”“']—‘ (d—j—%,d—2m— |+,—7)+ m—j (@d—j—3d—2m+j—1)
d—m—é n—I d—m—-% n—l

The inner sum }; can then be rewritten as

m

E: " | d—2m+ il Ly
<)(d % 2m+j)m—j(m+%_j)jd—_]_Q(d j—4§,d=2m—14j—1)
j J —m

j=0

m
m m — ._'__,1 2m—1+—1
+Z(,._ )(d+——2m 14/ Iy 1 (m+3 =) - 'Z_FQ" : D,

Furthermore, for j =0,1,...,m,

E(d+— 2m +jIm—j,
d+3—2m—1+4))u_j=

1(d+% —2m — 1+j)m—j+l,
2

and consequently,

S,d=

(d+1—@m+ 1)), QU 1m0, Y d+i-@m+1) 4y -
Jj=1

'{('Jr'l>(m+%_j)j () m+ 3 =J)j—a0m — J+1)}Q(d1 bd=2m—14j-})

Since

1 1 _ iy
(j)("”z 2

+

(m J+1)(m+——1), 1=

l

) +3 =) +jim+3 —j)_1}

( (m+3 —jy,
we proved the inductive step. We omit the verification that 2m + 1 — 2m + 2.

Setting d = 2m and d = 2m + 1, respectively, completes the proof of the
lemma. O
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Taking the (C,d) sums of the sequence {s,‘f,;'} and using the representation
(4.3) of Lemma 5, we obtain for each n € N

4]

n
- n—k+d-1\(k+d—-1 1
sS4 =d-D1Y Y ( Py )( 0 )Q,f" mrm 5,

1=0 k=0

Clearly, for each index /, the inner sum X is nonnegative by Gasper’s inequality
(4.1) and the coefficients c,(d) are positive and sum up to one — positivity follows
from the definition and to prove that they sum up to one just set n =0 in (4.3).

We thus proved that the (C, 2d —1) Cesaro means of the sequence of functions
{gn,a} are nonnegative on [—1, 1], and consequently the (C,2d — 1) sums of the
Dirichlet kernels D, 4 on T¢ too. To show that the (C,8) sums are not for
0 < 6 <2d — 1, let us study the (C,d — 1) sums of {gn,a(®)} at t = —1 which
are, except for the factor (d — 1)!, equal to

+d -1
s,‘,’:(—l)"("d_1 ) n € N,

recall that Q{*”(—1) = (—1)". Setting
n
sf,:Zs,ﬁ‘l, l1=1,2,....,d and n €Ny,
k=0

we have by definition the recursion

so=sg! and s!=sl_;+sit, l=1,2,...,d and neN.

We just proved that s¢ > 0 for n € Np; moreover, the representation
n
d_ cfn—k+d—1\[(k+d -1
(4.4) sn—Z(-—l)( P i1 ) neN,
k=0
d

implies that s¢ = (—1)"sd, n € Ny. Hence, s§,,, =0, m € Ny. The terms s
for even n € Ny can be even evaluated explicitly; indeed, by formula #38 of [7,

Sec. 4.2.5] we have s§, = ("*¢~"), m € Ny. Using the recursion, we have

d—1_ d d-1 _ _d
Sym =S5, and 5 =-S5, m € No.

But then the (C, §) sums of the sequence {s¢~'}, given by

n
e

k=0
are strictly negative for odd integers in N for 0 < § < 1 — for odd integers we
have an even number of terms of the sum, just add always two consecutive terms.
So are the (C, 6) sums of g, 4 for the argument ¢ close to —1 for odd » € N and
for 0 < 6 < 2d — 1. Since the B-spline M (t|cosb,...,cosb,) is nonnegative
and lives close to t = —1 for §; close to 7, j = 1,2,...,d, this proves that the
(C, 6) means of the Dirichlet kernels are not nonnegative for 0 < § < 2d — 1,
completing the proof of the theorem.
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Remark 1 For the bivariate case
gn2=m+DCP +nCP =(CP - cP)+(c?,-c?,)

and

L ER 11
Y g2=CP+2C2 +C2, =+ D{i0 P+ 1oi1y
k=0
by using the reduction formulae (4.2) twice; Gasper’s inequality (4.1) applied to
the left-hand side of the equation then completes the proof.

Incidentally, our very first proof for d = 2 used an estimate by M. Schweitzer;
Schweitzer proved that

> (" _k+2>(k+l)sin(k +1)¢>0, on 0<¢<2r/3,

2
k=0

where the interval [0,27/3] is maximal, see formula (1.24) of [2, Lect. 1]. On
the other hand, formula (1.19) of [2, Lect. 1] states that

(4.5) Z("_k+3)(k+1)sin(k+1)¢>0, on 0<op<m

3
k=0

— this formula again goes back to Fejér. With these inequalities in mind, it is
somewhat surprising to see that

@6 > (" _;_‘ +2){(k+1)sin(k+l)¢+k sink¢} > 0, 0<¢<m.
k=0

Indeed,

(k +1)sin(k + 1)¢ + k sink¢ = 2(k + 3) cos 3¢ sin(k + 1) +sin 1pcosk + 1)g.

The proof of (4.6) then follows from the inequalities (2.1) and (2.2) of Section 2.
This equation did lead us to the proof of the theorem in general, but not directly
and not in an obvious way; one further intermediate step was the following
slightly modified equation

sin(k + 1)¢ ik sink¢
sin ¢ sin ¢

(k+ 12030 4 g2t D

k+1) Al

1

b e L
k+HOF P +k+hHo .

The relations (4.5) and (4.6) have their counterparts for arbitrary dimensions
(d € N) in the statements:

= (n—k+d

4.5") 5 ;

)c,f‘“(t)zo on [—1,1]
k=0
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and

n d
@e) Y (” ‘;‘ t‘i - 1) » (‘;)c,f'i’,(t) >0 on [-1,1],

k=0 1=0

respectively. The first inequality follows directly from Gasper’s inequality (4.1),
while the second one rephrases the content of this section.

S The Abel means

Studying Cesaro means for multivariate Fourier series w. r. t. to /-1 summability,
it is natural to have a look at the Abel means too.
We set

Pra@®) =) rleheiof, 0<r<l,
«

and have on the one hand

1—r?

_— T
1 —2rcos¢+r?’ pel,

d
Pra®=]]pr10),  where p,i(¢)=

k=1

the proof being transparent. On the other hand,

Pr,d(e)

1]

A=) "D a(®)

k=0

1 o0
_ k
a r)/_l Zk=0r Gr.a(t)M(t|cosby,. .. cosb,)dt.

We use formula (3.3) to prove that

d—1 oo
@—-D1A-n > 1) (d " 1) > ¢,
=0 k=0

d—1

d-1 S
(d—l)!(l—r)Z(—l)‘( ; )rﬂzrkc,yﬂ.
=0 k=0

The inner sum ), is nothing but the generating function for the Gegenbauer
polynomials C,fd), see formula (4.7.23) of [10, Chap. IV], while the sum Y,
equals (1 — r2)?~!. Recalling that g, 4 = fy 4 +fu—1.4, We get

A=n_ r*fa
k=0

- (1—r??
(l—r)gr"gk,d(th(d—l)!m, on [-1,1],

and finally
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1 2
60 pa=a- [ LD
-1

wM(ﬂcosHh ...,c080,)dt.

Positivity of the kernel is evident, not so seems to us the representation above.
In a forthcoming paper we will make extensive use of formula (5.1) to study
¢-1 summability of F. S. on T¢, in particular we will study the properties of the
B-spline M (t|cosf),...,cos6;), —1 <t < 1, considered as a function on T¢.
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