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Introduction

In this paper we study the local and global mapping behavior of energy minimiz-
ing maps from a surface X into a surface S carrying a cone metric of nonpositive
curvature. By this we mean that S is flat except at a finite set & of singularities
and that near each ¢ € ¢ the surface looks like the cone over a curve of length
2ma. We require that @ = a(g) > 1 so that each of the vertices contributes
to negative curvature. In appropriate local parameters of the underlying smooth
Riemann surfaces the energy functional takes the form of the variational integral

E(f)= / oD [ + [y ) d dy
b2

where f = w(z) is the local expression of the map.

The study of the present harmonic map problem was proposed by Eells and
Lemaire as an example for harmonic maps into spaces with singularities in [3, 4,
11]. A general existence and regularity theory for such mappings was developed
only recently by Gromov and Schoen in [7]; our analysis relies on the methods
and results contained in the first part of that paper. Harmonic maps into a special
threedimensional cone were considered by Lin [12].

In [6] Gerstenhaber and Rauch proposed constructing the Teichmiiller map-
ping by a maximum-minimum approach involving harmonic maps. This has been
investigated further by Reich and Strebel [14, 15] and Miyahara [13], who ob-
served that the Teichmiiller map is harmonic in a certain sense with respect to
the cone metric induced by the Teichmiiller quadratic differential on the target.
The existence problem for these cone metrics was also studied by Leite [10].

This paper is organized as follows. In section 1 we prove existence of min-
imizers in a homotopy class using the Bochner formula in an approximation
argument. In section 2 we classify the homogenous harmonic maps into three
different types, one of them being the typical singularity of a Teichmiiller map.
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We then obtain some regularity results for local minimizers through blow up
arguments based on [7]. These will be improved to a complete description of the
mapping behavior of minimizers in a homotopy class of degree one in section 3.
A global condition of this type enters naturally because the main problem is to
analyse the preimage of the vertices under the map. We show that the minimizer
is unique and that the preimage of a cone point is either an isolated point or a
finite union of analytic arcs meeting at certain angles. In section 4 we prove that
the second case occurs always except when the cone metric is the Teichmiiller
metric on the target. We finally prove that the Teichmiiller map minimizes energy
in its homotopy class with respect to that metric.

1 Existence in a homotopy class

The existence problem will be solved here through approximation by nonde-
generate metrics of nonpositive curvature. The same method was used in [10],
although Leite did not prove the minimizing property.

Let c:S!' — S? be a constant speed parametrization of a simply closed,
smooth curve of length 2 with o > 1, and let C C R3 be the cone generated
by c with the origin as vertex. An intrinsic model for C is obtained from the
isometric embedding

J:(C,ds*) =5 C CR?, J(w) = |w|*c (%) , (1)
where
ds* = o |w**=V |dw|?. ?)

Any branch of w® provides a local isometry of ds? with the standard euclidian
plane. A geodesic segment joining w;, w, € C is the preimage of a line segment
under w?, if the w; lie in a common sector with angle less than g or the union of
the ray segments joining w; to 0 otherwise. Applying formally the Gauss—Bonnet
theorem yields K dA = 27(1 — ) 8, where & is the Dirac measure at 0 € C.
Now let S be a closed Riemann surface of genus g > 2.

Definition 1 ds? is a cone metric on S if for any q € S there isan o = a(g) >1
and a local parameter w such that ds* = o |w|**=V |dw|* near q. The finite set
of concave vertices is & = {q € S: a(q) > 1}.

Given another compact Riemann surface X' with local uniformizer z = x +iy,
we consider the class of maps f € C%X,S) with the following property: For
any open {2 C X such that f({2) is contained in the domain of an isometric
embedding as in (1), the map F = J o f|g belongs to W12(£2, R?). We define
the energy density of f on {2 by

1
e(f)z) = = (|Fx|? + |Fy[*) dx dy.

Since dF(z)=0fora.e. z € F ‘1{0} we have alternatively
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e(f) = o |w[**™V (Jw, |* + |w;|*) dx dy

and obtain a welldefined global energy

E(f) = /2 e(f).

Assuming that X' is also closed and that +y is a homotopy class of maps we finally
let

I'={f € v:E(f) < 00}. 3)

Lemma 1 For ds? as in definition 1 there is a family ds2, € > 0, of nondegen-
erate metrics with nonpositive curvature such that ds? > ds2 for e > v > 0 and
ds? — ds? as e — 0. The convergence is in C° on S and locallyin C*® on S\ #.

For example one can take ds? = o® (€3n(%) + r2)@D |dw[? where r = |w| and
n 2 0 is a suitable cutoff function. By the theorem of Eells-Sampson [5] there
is a smooth map f, € ~ that minimizes energy with respect to ds?, and the
application of Moser’s iteration technique to the Bochner formula for A||df.|?
gives

sup{ldf-(p)||:p € £} < K E(f.)"/?

with K independent of ¢, see [17]; here we use a fixed metric on X. This implies
forpi,pp e X

d(f-(p1),f-(p2)) < K E.(f.)"/ dist(py, p2)

where d(-,-) is the distance for ds?. As E.(f;) < E.(fe) < E.(f.) for T < e we
find a subsequence of {f.} which converges uniformly with respect to d to a
map f € I'. The estimates for higher derivatives in [5] imply that f is smooth
and harmonic on the complement of

P=f"YB. )

Note that the Lipschitz continuity of f means that the local expression f = w(z)
belongs to C'/%, cf. [10]. In order to prove the minimizing property we need

Lemma 2 For g € I' and p > O there exists h € C*(X,S) N I” such that
|E(h) — E(9)| <.

Proof. Let Xs = {p € X:d(g(p), €) < 6} and let ¢ € C*°(R) such that ©(s) = 0
fors < 1/2, p(s)=1for s > 1 and ¢'(s) > 0. Define

R
P5:R SR, Bs(X)=¢ (5) X; R=|X|

Then ||d®s(X)|| < K with K independent of X,8. On each component of Xy
we can replace G = J o g by Gs = $5 0 G. It follows that |[E(gs) — E(g)| <
(K? +1)E(g,X5s) < n/2 for é sufficiently small. By the Sobolev chain rule gs
belongs to W!2(X,S) with respect to a nondegenerate metric. As gs is also
continuous the claim now follows from standard Sobolev space theory. ||
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Proposition 1 There exists a minimizing map f € I' which is Lipschitz continu-
ous with respect to the metric ds>.

Proof. Let f be as above, g € I' and h as in lemma 2. Then E(f) <
liminfe o Ec(f.) < lim._0E.(h) = E(h) < E(g) + 7. Thus f is minimizing
and also E.(f;) converges to E(f) as ¢ tends to 0. |

Of course this result is only a special case of theorem 4.4 in [7].

2 Local regularity results

Let D = {z € C:|z| < 1}. Depending on what seems more convenient we use
either f:D — (C,ds*) or F =J of:D — C C R3 to describe the same locally
minimizing map. It is a standard fact that for a local minimizer the formula

®(v,v) = |dF - v|* — |dF - iv[? — 2i(dF - v,dF - iv) (5)

defines a holomorphic quadratic differential, the Hopf differential of F. Alterna-
tively one has
® = 42 |f|2@Vf, £ dz?. (6)

For a nonzero holomorphic quadratic differential & on a Riemann surface X
there exists at each p € X' a natural parameter z with z(p) = 0 such that around

3 2
P = (m+2> 2™ dz>. @)

2

Here m € Ny is the vanishing order of @ at p and z is unique up to multiplication
with an m + 2-th root of 1. If m = 0 the lines {x = const} are the integral curves
of the distribution {v € TX:®(v,v) < 0}; they are called vertical trajectories.
For a harmonic map these are the lines of minimal stretch since

|dF -v|* = %(|dF|2|vlz +Re(D(v, v))). (8)

We shall need the following reference map wy: C — C which depends on pa-
rameters k € [0,1], m € Ny:

z for k=0

wp(z) = (l

m+2 9
_(k“%z—z"+k%zz)) for 0<k<I. )

2

Here we agree that wy maps the rays over the m +2-th roots of 1 into themselves;
these rays form the image of wy if k = 1.

Now suppose F:C — C is a nonconstant, locally minimizing map which is
homogenous of degree 7 > 1, thus f is homogenous of degree 7/ as a map
into C. By passing to Fj,(z) = F(bz) with a suitable b € C* we may assume
that the Hopf differential @ is given by (7) unless @ = 0; in the latter case we
require instead that
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1
— | |F|PPds=1. (10)
27T )))

We can now classify the homogenous harmonic maps.
Lemma 3 Let f be a homogenous degree T harmonic map. After the above nor-

malizations and after passing to R of with suitable R € O(2), one of the following
alternatives hold:

@) f(z) =wo(z)”/* wherek =0, 7/a € N.
(b) f(z) = wox)™/* where0 <k <1, 7/a € Nandm =2(r — 1) € N,
(¢) Forl € {l,...,m+2} there existsw; € S" such that f (re'®) = |w0(reie)|7/a W
1 27 1 27
— <0< —) =L = 1, 7 =30r
for(l 2)m+ 0"‘(l+2)m+2 where k m=2(t—1)e Ny

and Z(w,wis) > 7/

Proof. We have Z|F|? = 2(F,Fq) = 2 (F,,F,) = —1Im(®(z,2)). 1t is easy to
see that & = 0 implies that (a) holds; let us therefore assume (7). For z = re'?
we get by integration along 6

1

IFI*@) = 5 (nr™? +Re (z™?)) (11)

with = 2|F|*(1)— 1. |F|*> > 0 implies x > 1. F is a harmonic map into a cone
thus for |[F| >0

)

1 2\ 2
|dF|*(z) = SAIFP@) = (m; ) pr™. (12)
Now (8) yields
1 /m+2\?
do? :=f*ds* = : ( - ) (ur™|dz)? + Re(z™dz?)). (13)

We can also compute the Jacobian of f:

2
Jf = <m+2) Vir—1 o

2 2 (14)

Case 1: p > 1

Letk = p—+/p2—1€ (0,1), i. e. p = 3¢k~ + k), and denote by ¢ = ((w)

the inverse of wy as in (9). Locally we can write ¢ = g3 0 g, 0 g; where g;(w) =
2.

W, gs(wy) = wi? and ga(wn) = /22

compute

U +1i Li—lvl with wy = u; +iv;. We
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(*do® = g} g;g;do?
* % 1 2 2
= 91o E(ﬂ,d“&l + Re(dw?))
- +1 —1
= gl gZ ( 2 du22 + 'u 2 dv%)
= g @duf +dv?)

2
. m+2 -
= gl = ("32) ol duf

Therefore m = f o (:(C, (%2)? |w|" |dw|*) — (C,ds?) is a local isometry.
The restriction 7: 9D — 8D is then an isometric covering, which implies that
f(@) =m(wo(z)) = Rwo(zy for some j € N, R € 0(2).

Case 2: y=1
Let again wy be as in (9), but now with k = 1. By (13) f is constant along the ver-
tical trajectories of &, while along the rays 6 = - 2% one has |F|X(rei®') = rm+2,

Setting w; = f (€' 9’) we arrive at type (c¢). Now if m = 0 then f is independent of
¥ (z = x +iy) and a standard comparison argument implies that f|g is a minimiz-
ing geodesic, i. e. Z(wy,w,) > m/a. For m > 1 we consider on {¢:Im(¢) > 0}
the minimizing map A(¢) = f(¢ ﬁ) to conclude that Z(w;,w;41) > 7/c holds in
general. ||

Now let f:D — (C,ds?) be a locally minimizing map with £(0) = 0. By
theorem 2.3 of [7] f is locally Lipschitz continuous. Define

E(o)

1]

/ (F< > + |Fy ") dx dy, I(a)=/ IF(z)ds and
{lzl<a} {lz|=o}

ord(o) o E(0)/1(0).

]

The following statements are proved in (2.5), theorem 2.3 and proposition 3.3 of
[7], see also [12]:

Lemma 4 Suppose f as above is not constant.

(i) ord(o) is monotonically nondecreasing with T = lim,_,o ord(c) > 1.

(i) The function 0=2"='1(0) is nondecreasing.

2
(iii) As o; — O the sequence F () = Hoy) F(0iz) contains a subsequence

g
which converges locally uniformly and locally in energy to a nonconstant
homogenous degree T harmonic map F,:C — C.

Any limit F, as in lemma 4 is called a tangent map of f at 0.
Lemma S Let f be a locally minimizing map as above.

(i) All tangent maps of f at 0 have the same stretch k = kr(0) € [0,1].
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(ii) If kr(0) < 1 then 0 is an isolated point of f ~'{0}.

Proof. Let m € NoU {oo} be the vanishing order of the Hopf differential & at 0,

and assume w. l. o. g. that @ is an in (7) if m < oo. If F,, converges to F, then
m+3

b, = 15('0—') & converges to some .. By (ii) of lemma 4 we must have 7 < "‘T"z

Now if 7 < '"T*z then @, = 0 and all tangent maps are of type (a). For 7 = '"—;3

we put g = lim,_,o 22 and obtain &, = W‘—M ("’T"z)2 2™ dz2. On the other hand

T om+3

the definition of F,, gives

i—o00

/ |F.*ds = lim |Fo,|*ds = 1.
oD oD

It now follows from (11) that the stretch parameter of F, is given by k =
p— /pu*—1 (and that g > 1). This proves the first claim, and the second
follows immediately because if 0 is not an isolated point of f~! {0}, then at least
one and therefore all tangent maps are of type (c). |

Due to the simplicity of the metric ds? it is easy to describe the behavior of
f at an isolated point of f ~'{0}. Suppose that for the local minimizer f:D —
(C,ds?) we have f~1{0} = {0}. By passing to f(z) if necessary we can assume
that the local winding number of f around 0 is equal to some j € N. Taking
branches of g(z) = f(z)* and of z* one obtains the singlevalued map z 7%g(z)
on D\ {0}. As g is locally a pair of standard harmonic functions, we get functions
Y1(2) = 277%g,(z) and t»(z) = 2*g:(z) which are holomorphic on D \ {0} with
at most a pole at the origin. Thus for some ay,a; € C*, m;,m, € Z one has
expansions

{ P1(z) az™+...

Y(z) = az™+...

Let m be the order of the Hopf differential, 7 the order of f and k the stretch of
f at zero. Then one has the following possibilities:

’ 15)

2
k=0 = m1=——1,m2=m+1,T=ja<m; (16)
+2
O<k<l = m1=—1,m2=m+1,7-=ja=mTand 2=k,
a

s

. . m
k=1 = m|+ja=m2—1a=5=7—1and laz| = |ay]-

Obviously (15) can be translated into an expansion for f by integrating to get g
and taking the 1-th root. In any case we have for |z| =r — 0

=1 1% PCED1+00r) it k(0)=0
ke (0) + O(r) if k;(0) > 0.

Unfortunately we do not have such a simple description of f at a nonisolated
point of f~'{0}. Note that the preimage of a point may be complicated even
for harmonic maps into regular metrics while the zero set of the Jacobian is
relatively simple [20]. All we can prove here is

kf(z) = (17)

k4
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Lemma 6 Let f be as in lemma 4 with T = 1. Let z = x + iy be the natural
parameter for the Hopf differential near 0, i. e. ® = dz2. For ¢ > 0 there is
aé > 0 such that if z,2' € Qs = {z:|x|,|y| < 6} and f(z) = f(z') = O, then
x—x'| <ely —y'I

Proof. By passing to the natural parameter and rescaling we have F € Lip(D,C)
and @ = dz2. Assume by contradiction that there are sequences z;,z; — 0 such
that F(z;) = F(z/) =0 but |x; —x/| > ely; — /|- Selecting a subsequence one has
ol‘,(zi' — ) — 20 € OD where 0; = |z — z{|, 20 = xo + iyo and |xo| > €yo|. Now
let F;i:Dy — C, Fi(z) = Ui F(z; + 0iz). From the proof of proposition 3.3 in [7]
we infer that the F; subconverge uniformly and in energy to a minimzing map
F.:D, — C. The Hopf differential of F, is again @, = dz2. Now for r > 0 and
p € (0,2) one gets (with obvious notation) 1 < ord(F,, p) = lim; _, o, ord(F;, p) =
lim; o0 ord(F, z;, 0ip) < lim;_, o ord(F,z;,r) = ord(F,r). Letting r — 0 we
conclude from lemma 3.2 in [7] that F, is homogenous of degree one. But then
the classification of tangent maps (lemma 3) gives

/
0#F.(z) = lim F; <z" = z") = lim — F(s/)=0.
i—o00 ag; t—o0 J;
This contradiction proves the lemma. ||
Lemma 5 and 6 hold with the same proof for harmonic maps into nonposi-
tively curved surfaces which have singularities asymptotic to the considered type
in an appropriate sense, but we shall not pursue this.

3 Minimizing maps of degree one

From now on we assume that X, S are closed surfaces of the same genus g > 2,
and that v is the homotopy class of an orientation preserving diffeomorphism.
For the minimizer f € I" constructed in section 1 we have the holomorphic Hopf
differential ® € QD(X) and the stretch function ke: X — [0, 1] from lemma 5.

Definition 2 A vertical arc of & is a compact topological interval contained in a
vertical trajectory with ® # 0 at interior points.

The following result should be compared with the corresponding statement
for regular target metrics of nonpositive curvature [18, 16].

Theorem 1 Let f be the minimizer in a degree one homotopy class constructed
in section 1. Then

() f:X2\P — S\ & is diffeomorphic (2 = f (%))

(ii) If the Hopf differential $ vanishes, then f is biholomorphic.

(iii) If @ # O, then the preimage & of any point q € S has one of the following
types:
(a) 7 is a single point p with ks(p) = 0.
(b) 7 is a single point p with 0 < ks(p) < 1.
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(¢) 4 is a nonempty, simply connected union of finitely many vertical arcs
and kg| , = 1.

Proof. Let 2 = {p € X'\ #: &(p) # 0}. The function

|wz'|2

h=log |w, |?

(18)

is harmonic on {2 and is known to be an important tool in the study of harmonic
diffeomorphisms, see [9]. By [16, 18] the approximating maps from section
1 are orientation preserving diffeomorphisms. Thus ) is connected for any
g€S, h<0Oon 2 and

h =logk? on 0. (19)

Lemma 5 shows that if & contains more than one point, then kil, = 1. In
particular @ = 0 implies that S is biholomorphic, so from now on we assume
@ # 0. For p € ) with &(p) # 0 we infer from lemma 6 the existence of
a square Os, deﬁned in terms of the natural parameter z at p, such that either
74N Qs ={p} or 4N Qs = {iy:0 <y < 6} or 7 N Qs = {iy: -6 <y <6}
Takmg into account the trajectory structure of @ [19] this shows that ) is either
a point or a connected union of finitely many vertical arcs. Since the map induced
by f on the fundamental groups is injective, 4, cannot contain a loop that is
nontrivial in Y. But it cannot contain a contractible loop either, again by the
trajectory structure of @. Therefore {2 is connected and the maximum principle

yields
h <0 on 2. (20)

Now f: X'\ ” — § \ % must be homeomorphic since otherwise there would be
a continuum of points with the same image, which contradicts (20). The fact that
the Jacobian of f is strictly positive on X'\ 2 follows from [8]; alternatively
one could use lemma 3. Finally, if /) = {p} is an isolated point, then (17) and
the maximum principle for 4 yield kf(p) < 1. Thus all assertions of the theorem
are proved. ||

We now have enough information to settle the uniqueness question.

Theorem 2 Ify is the homotopy class of a diffeomorphism, then there is a unique
minimizer f in I.

Proof. Let fo be the minimizer constructed above, and suppose that f; € I" is a
different minimizer. There is a geodesic homotopy

F0,1Ix X =S, f(t,p)=fip)

connecting fy to fi- Let 2(t) = f,~ (8), 2@) = X\ 2(t) and Y;: 2(t) —
1S, Y, (p) = 61 (s, p). Note that for 2 CC §2(t) there exists 7 > 0 such that
flit—r+71x @ is smooth. By theorem 4.1 of [7] we have for any 2 C ¥

2
G EG 2 > [ [V finP vy
t n
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in the distributional sense. This gives
d(fo,fi) =d > 0. (21)

On the other hand for 2 CC £(t) one gets Jo VY Pdxdy = ;’%E(f,,(}) =
0 where V denotes covariant derivative along f;. Thus one obtains a parallel
vector field on § \ & by setting Z(g) = Yo(fy '{g}). Equation (21) implies
ds(Z)=d > 0.

Now let g € #7; we have to exploit the negative curvature at the vertices. We
want to show that the local vector field Zy(w) = a|w|*~! Z(w) has a continuous
extension into w = 0; here w is as in definition 1 so that |dw|(Zy) = d. First
note that Z°(0) C £2(¢) for small ¢+ > 0 because d(fo,fr) =d -t > 0. f, maps
75 = fy"'{q} into the distance circle of radius d - ¢ around g and for p € 4
f(,p) is a geodesic ray emanating from g. Thus Y,(p) is proportional to the
normal of the distance circle. Since Y, is parallel it follows (using the structure
of &) from theorem 1) that the image f,(&;) is a single point g(t); q(t) is a
geodesic ray with d(q(1),q) =d - t. Now let p; € 120) with p; — py € ). Let
9i = foi), i = fi(p:) so that g; — ¢ and §; — G = fi(py). Let Vi = fC,pi).
Then +; converges to the geodesic segment g(-). Thus if we parametrize ¢(-) by
arclength with respect to [dw|? for small ¢ > 0, then Zo(gi) — d - q'(0). As this
is true for any sequence p; — &4, we have obtained a continuous extension of
Zyp by Zp(0) =d - q’(0). But Z is parallel and therefore Z; rotates around 0 by
the angle 27(1 — a(q)) < 0. This contradiction proves that a minimizer different
from f; cannot exist. ||

We are now interested in the following two questions: Do the line singularities
as in (c¢) of theorem 1 really occur? On the other hand, if they occur, how
complicated can the set & be?

The next result will allow us to show that the singular lines do occur except
in a very special situation (see section 4). It also implies a bound for the number
of vertical arcs in . For example, if alg) < 3/2 then 7} is either a point or
one vertical arc disjoint from the zeroes of ®.

Definition 3 For f as in theorem 1 and q €S, ye let

1
dy=a@ -5 (| Yom | +2],
PE,

where my, is the vanishing order of the Hopf differential at p.

By the harmonicity of the function 4 defined in (18), we have on 2= {p €
I\ &:9(p) # 0} the closed 1-form

w() = % dh(iv). (22)

For any ¢ € S the form w has a welldefined period per(w,q) € R around
Jq=f""aq}.
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Theorem 3 Let f be the minimizer in a homotopy class of degree one. For any
q € S we have

6(q)=Per(w,q)=f w.
74

According to the different possibilities in theorem 1, 8(q) is negative in case (a),
zero in case (b) and positive in case (c).

Proof. We first describe the asymptotic behavior of f at any point and then prove
the statement.

Step 1: Local expansions of f

Let 7 = ord(f,p) > 1, k = kr(p) € [0,1] and assume that Z,w are local
parameters such that & = ('"T*z)zz”’ dz? and ds? = o?|w[**=D |dw|? where
z =0 corresponds to p, w = 0 to f(p). Depending on k we have to consider three

cases, the first two following readily from the discussion of isolated singularities
in section 2.

(@) If k =0, then 7 = @ and for p = min{é,m +2 —2a} > 0 and appropriate
¢ € C* one has (r = |z]):

w(z) = cz + O(r'**). (23)
Furthermore 5
—h(z)=4('"+2 —a) Lo 24)
or 2 r

(b) f0<k<l1,thenT=a= '"T"Z and (after a rotation of w if necessary)
w(z) = wo(z) + O(r'*/®) (25)

with wy as in (9). Also the point p is a removable singularity of h and w.
(¢) If k =1 then f(p) = g € € by theorem 1 and p is not an isolated point of
;. We may assume that w(z) is nonzero on a wedge

. 1 2« 1 2
— ’9: < —_——— l——
w {re 0<r <, 2m+2<9<< ) w3l (26)

but that w(z) is zero on the sides of W. Here T = "‘T‘“Z and! € {1,...,m+2}.
On W we use the coordinate

C)=e""zF, z()=e'79z7
where ¢ = 7, 17/! = 1//7 = 1. Thus ¢ lies in the right half disk {¢=

E+in:€ >0, |¢| < rg”'}. Finally we take a branch g(z) of w(z)® and obtain
for g(¢) = g(z(¢)) and suitable a € R the expansion

=12 g(c) = % (¢ +(=11E) + % 1+ IE )+ @7
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We claim that a is in fact strictly positive. Namely, the function log (|g¢[*/|g¢|*)
is harmonic and strictly negative on the right half disk. Therefore the Hopf
boundary point lemma implies

d gl I+1
0< ——log—=(0)=4 —a. (28)
€ % JgcP !
If m =0 and / = 1 one obtains
a_h(z) =—8a +0(r), (29)
Ox
while if m > 1orl > 2
oh 1
+-@)=0@F77). (30)
or

Step 2: Proof of the formula

For the case of a conformal point (ks (p) = 0) or a Teichmiiller point (0 < k¢ (p) <
1) the statements of the theorem follow from (16), (24) and (25). Now assume
that & is a union of vertical arcs. We define a path to evaluate the period of w
as follows: For a small radius » > 0 and any p € % withm > 1orl > 2 in (26)
we choose a natural parameter at p and delete the coordinate disk of radius r
from the surface Y. The remaining part of & consists of finitely many vertical
arcs along which we can choose a natural parameter z = x + iy with the arc
contained in x = 0. For 0 < £ << r we can go along the lines {x = +¢} from
the boundary of one disk to the boundary of the next. Now choose an appropriate
orientation to define the path c, . depending on r and €. Using (29) and (30) we
get

lim lim w
r—0e—0 /.

1 [ oh
e 7{/ Oy dy = f/ w,

where each vertical arc is traversed twice in opposite directions and z = x + iy
is the natural parameter with the positive y-axis defined by the direction of the
path. By (28) the period is strictly positive. Defining g = w* by continuous
continuation along c, . one has

1
— d =
5w f dwso=c

since w is diffeomorphic outside &. One can now use the expansion (27) to
compute the argument integral. We omit the straightforward calculation and state
only the result. Let .Z4 be the set of points in & with m > 1 or I > 2. For
p € 6 the disk of radius r around p decomposes into j, > 1 wedges as in

per(w,q)
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(26) with angles l{, mz’iz, 1 <j < jp. By letting first ¢ — 0 and then r — 0 one
obtains

Now j”l 11} = "% and Euler’s formula for the graph & gives card .Z —

7 8
: > pc.nJp = 1. Therefore the above double sum is equal to ; (( PET m,,) )
and thus 6(g) = § @ This proves the theorem. ||

4 Characterization of the Teichmiiller map

In this section we continue to assume that -y is a degree one homotopy class and
suppose additionally that it does not contain a holomorphic map. By Teichmiiller’s
theorem there is a unique quasiconformal homeomorphism f; € -y having constant
dilatation K € (1,00), cf. [1, 2]. Furthermore there are unique holomorphic
quadratic differentials ¢ on X' and ¥ on S, normalized by the condition that the
area Ag(S) of S with respect to the cone metric |¥| equals one, such that the local
expression of fj in the natural parameters is given by (9) where k = K +, € (,1).

The following generalizes and interpretes geometrically a result of Miyahara
[13]:

Corollary (to theorem 3). Let f be the minimizer in a degree one homotopy class
for the cone metric ds®. If f is univalent (or equivalently if f has no conformal
points), then it is the Teichmiiller map and ds? is (a constant multiple of) the
Teichmiiller metric |?|.

Proof. The Gauss—Bonnet theorem for cone metrics implies

> 8@=) (alg) - -y = =o0.

qes q€ES peX

By theorem 3 each of the two assumptions is equivalent to 8(g) = O for all
g € S, that is all points are Teichmiiller points. By (25) these are removable
singularities for the harmonic function h so that by (19) k(p) = k € (0,1).
This means that f has constant dilatation and therefore is the Teichmiiller map.
Assume w. 1. 0. g. that the area of S with respect to ds? is equal to 1. If f = w(z)
and @ = (z)dz? denotes the Hopf differential then % k& ol thus & is also
the quadratic differential associated to f in Teichmiiller’s theorem. Now the
differential ¥ on the target is defined by the condition that ¥ = ("‘T”) w™" dw?

whenever w is a parameter on S such that for a natural parameter z of @ f = w(z)
is given by (9), see [2]. Therefore the Hopf differential of f with respect to |¥|
is also equal to & and this gives ds? = |¥|. ||

The Teichmiiller map is a harmonic map in the sense of this paper.

Theorem 4 The Teichmiiller map fy: X — (S, |¥|) is the unique energyminimiz-
ing map in its homotopy class.
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Proof. By theorem 2 and lemma 2 it is enough to show that if f = f; and
g € C*(X,S) is homotopic to f, then E(g) > E(f). Our proof follows the proof
of uniqueness for f as given for example in [2]; we exploit that f: (X, |®|) —
(S, @) is totally geodesic. Note that

1 /1 1 1
Ef)y=-| -+ == — .
o) 4<k+k> Ag(X) 2<K+K)
Let p € X with &(p) # 0. Denote by v*, v~ the unit tangent vectors to the
horizontal and vertical trajectories of @ at p, and define

AEg)p) = |¥(dg - vE,dg - vH)|"/2.
Now let a > 0 and

[, (09 dse,  if p is the midpoint of a horizontal
()\fg)(p) = (vertical) arc « of length 2a 31)
0 else.

Let f:[0,1] x X' — S be the geodesic homotopy from f = fy to g = fi. By
compactness reasons the lengths of the curves f(-,p), 0 <t < 1, have a uniform
upper bound d < oo independent of p. For a as in (31) the curve fyoa is a
minimizing geodesic. But the curve f(-,p1)~! * (fi o @) *f (-, po) is homotopic to
Jfo o a, where py, p; are endpoints of a. Thus

AE9)P) = MEf)p) — 2d.
Applying Fubini’s theorem as in [2] yields

/E OE9)(p)dAs(p) = 2a /E OE9)(p) dAs(p).

We obtain
/ Oig)dde > / (AZf)dAg — 2d As(E)
p5} X
= 2a / A\Ef)dAs —2d As(X)
=
1 ' 2d
by 9) = a { (—ﬁ + \/1?) —~ ;} Ap(D).

Therefore we can estimate for sufficiently large a

1
3 JLOXaR + gy das
x
1 2 2
2A¢(2){(/):/\gdA¢) +(/EA gdA¢) }
1 2 2
= —Saqub(E){(/E)\agdAas) +(/2/\agdA4>) }

e { (G A2 (G- -2)')

E(g9)

v

v
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Letting a — oo we get

1/1
E(g) > 4 (E +k) Ag(X) = E(f).

This proves the theorem. ||

A result similar to theorem 4 but for quasiconformal solutions to a Dirichlet
problem on the unit disk is proved in [15]. It is possible that the result was known
for example to Bers, because the proof uses the same argument as in [2], but we
could not find it in the literature. Miyahara [13] stated that the Teichmiiller map
is harmonic, but only in the sense that its Hopf differential is holomorphic.

We finally remark that theorem 4 implies a sup-inf characterization of the
dilatation K of the Teichmiiller map suggested in [6]. Namely we have

Corollary (to theorem 4). § (K + 1/K) = sup {infrc,, Ey(f): ds? is a conformal
metric on S with A 2(S)=1}.

Proof. Since Ey(fo) = 3 (K +1/K), theorem 4 shows that the right hand side
is not smaller than the left hand side. On the other hand we can use f; as a
competitor for a given metric ds®>. We compute in natural parameters for f = w(z)
and ds? = p*(w) |dw|?

Eds2 (fO)

/2 p*(w) (Jw, * + |w; |*) dx dy

_ I(1 2
= 4(k+k) /Zp(w)dxdy

_k+k [ 1 1
= Tk—k /Sp(w)dudv—2<K+K). |

It would be interesting to solve the existence problem for the Teichmiiller met-
ric and the Teichmiiller map via the above variational characterization, as was
proposed in [6].
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