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1 Introduction

Given a self map v : XYM — M of some space M, the t-th v-periodic homotopy
group of a space X, denoted v~'m,(X; M), is defined to be the direct limit of
(oM, x] E0 ey x D (e x7 (fort > 0).

The main case of interest is when M is a p-torsion finite complex of type n
for some prime p and v is a v,-self map (see §7.1 below). In the past decade
there has been much work done on such v,-periodic homotopy groups, both
stable (cf. [R1, DHS, HS, Ma2]) and unstable (cf. [Mal, T2, MT]). Recently
Bousfield and Dror-Farjoun have developed a general framework for studying
(unstable) periodic phenomena by means of localizations (see [Bo2, DF1, DF2],
and Sect. 7 below).

These localizations — and thus in particular the v,-periodic homotopy groups
— behave quite well with respect to products, fibration sequences, loops, and other
homotopy (inverse) limits — see [DS, Theorems B,C] and [DF2]. However, there
is no evident relation between the (unstable) v,-periodic homotopy groups and
homotopy colimits, even in the simplest cases, such as the suspension. (Unlike
ordinary homotopy groups, there is not even a stable range in which such a
relation exists).

Our interest in this subject was first raised by the following seemingly in-
nocuous question: given a v,-self map v= XM — M andamapf : X — Y
which induces an isomorphism in v~ 'm,(—; M), does f : X — XY induce
such an isomorphism, too? This appears to be a hard question, even if we replace
the v-periodic groups by “homotopy groups with coefficients in M”: that is, by

the groups m,(—; M) <4 [X'M,—] for 0 <t < oo (see [BT]).

* The work on this paper was done while the authors were at the Hebrew University of Jerusalem
and Northwestern University, respectively. Second author supported by the NSF.
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The question for the v,-periodic groups has been answered in the meantime
by Bousfield, under somwhat limiting assumptions (see Sect. 7 below). Here we
present a first approach to a more delicate question: in what way do the (unstable)
v, -periodic homotopy groups of a space X determine those of its suspension XX ?
Our main result in this direction is:

Theorem A. Let v = £°M — M be a v,-self map and X a sufficiently connected
space X with v;'m,(X;Vyu_1) = 0 for 0 < m < n (where V,,_, is a suitable
complex of type m); then there is a first quadrant spectral sequence converging
to v 1 (XX ; M), with E*-term isomorphic to the derived functors of a certain
(algebraic) functor 5 applied to v='m.(X;M).

(This is stated more precisely in Theorem 10.1 below.) Once more the answer
we give requires somewhat restrictive assumptions on X. As with Bousfield’s
result, it is still not clear to what extent these are inherent in the problem, and
to what extent they are due to technical difficulties in the approach we take.

This approach is based on Stover’s construction of the simplicial resolution
of a space which he used to attack the analogous question of determining the
homotopy groups of a wedge m,(X VY) from 7, X and 7, Y — cf. [St]; as in his
case, our results generalize to other homotopy colimits.

1.1 Outline

In order to use Stover’s approach, we need a version of periodic homotopy
in which the periodic homotopy groups are representable in some (homotopy)
category. The naive approach would be to use towers of spaces, as described in
Sect. 2 (see (4.3)). However, this does not quite suit our purpose, mainly because
infinite wedges of towers do not constitute a categorical coproduct. So we are
forced to extend our original category to one of “virtual towers” (in Sect.3):
these should be thought of as a “cocompletion” of the category of (ordinary)
towers with respect to homotopy colimits, an idea which may be of use in other
contexts too. In this category the construction of [St] can be made to work: we
construct a simplicial v-periodic resolution 3, of an arbitrary tower X in Sect. 5.

Next, we need a Quillen spectral sequence relating a simplicial tower X, to its
realization ||X,|| (which for X, = 3, should be closely related to the original X).
This is done by means of mapping spaces for towers, which translate questions
about a simplicial tower and its realization back into questions about simplicial
spaces and their realizations. These are considered in Sect. 6.

In Sect. 7 we summarize some results of Bousfield on localization with respect
to v,-self maps; the most important is Corollary 7.9, which tells us in particular
that if f : X — Y induces an isomorphism in v, !m.(—; Vju—y) for 0 < m < n
(and if X, Y are sufficiently connected) then Xf does, too.

Section 8 then allows us to apply Bousfield’s results to towers. It is the
technical difficulties here which force us to restrict attention to spaces of type n;
otherwise, it would appear that a full knowledge of {v,, !m.(X; Vn-1)}-, should
suffice to determine v, '7.(XX;V,_1)}.
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Finally, the appropriate analogue of the concept of a II-algebra — which en-
codes the “algebraic” information regarding the v-periodic homotopy operations
on v~ !7,(X; M) needed to recover v~ !7,(XX; M) — is defined in Sect.9. This
is used in Sect. 10 to describe the EZ-term of the suspension spectral sequence
of Theorem A.

1.2 Conventions and notation

Let .7 denote the category of connected pointed CW -complexes, with base-point
preserving maps. All spaces will be assumed to lie in .7, unless otherwise stated.

M will denote a model space. For simplicity we shall assume it is a
homotopy-commutative co-H space which is a finite-dimensional CW com-
plex. We adopt the stable convention that M" denotes the suspension of M
with top cell(s) in dimension r (so that M" does not necessarily exist for small
r). The homotopy groups with coefficients in M of any space X € .7 are
mX ;M) 2 M X1,

Let v : M9 — M"™ be a fixed self-map (with d > O unless otherwise
noted), which we shall assume to be a co-H map. We shall denote all its sus-
pensions X" v : M4 — M" simply by v : M? — M, unless there is danger
of confusion. We also assume that v is not nilpotent — i.e., that for all n, the
composite v o Z4v o ... X"y is not nullhomotopic.

With this notation, we define the ¢-th v-periodic homotopy group of X with
coefficients in M to be

v ImX:M) % colim, { M7, X125 ..M x] 2L (Mo XY,

1.4 Apology We wish to apologize for the somewhat technical nature of what
was originally intended to be a “conceptual” paper, and in particular for the
large number of definitions. We have tried to indicate at each stage why these
were forced upon us.

2 The category of towers

In order to represent v-periodic homotopy we first consider the naive choice -
namely, the category of towers of spaces, which are clearly related to the idea
of periodicity.

It should perhaps be remarked that Brayton Gray ([Gr2]) has considered an
analogous concept, which he calls the category of cospectra. This terminology
emphasizes a certain duality, which will be evident in this section, between un-
stable periodic homotopy, represented by towers, and ordinary stable homotopy,
represented by spectra.

First, some definitions:



14 D. Blanc, R.D. Thompson

2.1 Towers of spaces

The objects we shall be studying are towers in .7 — i.e., sequences of spaces
and maps:

X={.. . Xn+112X(n] 2% X - 1122 .. B5X[0] ),
where the space X|[n] is called the n-th level of X (n > 0), and the map p,
is called the n-th level map of X. We use Gothic letters (X,9),...) to denote
towers.

If F : 7 — 7 is any functor of spaces, we denote by FX the re-
sult of applying F levelwise to the tower X. For example, "X denotes
{...2"X[n] ol Y'X[n—1] — ... — X"X[0]}; and similarly for bifunctors
suchas XV 2.

In any case where we define a tower only from the n-th level and up, it may
be extended to a full tower by considering the “corrected” truncated tower:

onX % (. Xn+1] 25 X[n] -5 X[n]... = X[n]},

which may be obtained from any tower X by replacing X[n — 1] — ... — X[0]

at the bottom of the tower by n additional copies of X[n].  Finally, for any
space X € .7 let €(X) denote the constant tower: {...X = X ...}.

2.2 Maps between towers

As in the case of spectra, the morphisms in our category are more complicated
than the objects: let X = {...X[n] 25 X[n—1]...} and QY = {+..¥Y[n] >
Y[n — 1] — ...} be two towers as above. Then:

(@) A strictmap f: X = 9) between them is a sequence f = {f[k] : X[k] —
Y [k]}52, of maps such that g o f[k] = f[k — 1] o px for k > 0. The set of all
such strict maps between X and 9) will be denoted Hom?,, (X,9).

Note that such a sequence defined only for k > n is equivalent to a strict
map f:o0,X — 2.
(b) The set of (weak) maps between X and %) is defined to be

2.3) Homzpu(%,9) & colim, HomS, (0,%X,9).

Thus a (weak) map f: X — ) is a “tail” of sequences {f[k] : X [k] — Y [k]}{2,
as above — i.e., the equivalence class of all such sequences which eventually
agree. Each element in this equivalence class is called a strict representative of
f. We denote by n(f) the least n for which a strict representative 0,X — ) of f
exists.

The category of towers of (connected pointed) CW -complexes and (weak)
maps between them will be denoted .7 ow.
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(c) In particular, a (weak) homotopy between two (weak) maps, § : f ~ g, is a
(weak) map § : X x I — 9) such that F|x. (0} = f and F|xx {1} = @, as usual.
Note that equality here is that of weak maps — i.e., of equivalence classes — so
a strict representative of § need not be a strict homotopy between any two strict
representatives f and g, but merely between suitable tails thereof.

(d) As usual, the set of (weak) homotopy classes of maps between X and 9) will
be denoted by [X, D] 75w, or simply [X,D)].

We write m(2); X) for [Zkx,9] (k > 0), and call 7,();X) the homotopy
groups of Q) with coefficients in X. A tower map f : 2) — 3 will be called an
X-weak equivalence if it induces an isomorphism in 7,(—; X).

(e) A diagram of towers F : I — .Zow will be called strict if there is an N such
that for each morphism i of I, n(F()) < N. This means that the diagram oy §
can be written as a tower of diagrams of spaces (rather than merely a diagram
of towers). Of course, every finite diagram of towers is strict.

Also, a tower map f : X — ) will be called a cofibration if for some strict
representative {f[k]: X[k] — Y [k]}z2, each f[k] is a cofibration.

Zow is in fact a simplicial category ([BKI, X, 3.1] — i.e., it has simplicial
Hom-sets:

Definition 2.4 For any two towers X, %) the strict function complex
map®},  (X,9) is defined (as for topological spaces or simplicial sets — see

[M1, §6.4]) to be the simplicial set whose n-simplices are map*;,, (X,2)n i

Hom%, (X x A[n],Q). Aln] denotes as usual the standard topological n-
simplex.

In light of (2.3), if X is a tower of epimorphisms (e.g., if each p, is a fibration)
we may define the (weak) function complex

2.5) map 7,,(%,9) 2 colim, map%, (0, %,9),
(so that map 5, (X, D) = Hom 7,,,(X x A[n],2)). Note that
...map*y, (0,-1X,) — map*;, (0,.X,9) — ...

is a sequence of cofibrations, so the limit here is in fact a homotopy colimit. It
is not hard to see that as usual:

(2.6) (2%, 9] ¥ m(map . (X,2)) forall t>0.

Remark 2.7 Given towers of spaces X, 9 as above, the function complex
map . (X,9) may be described explicitly by means of limits if we assume
) is a tower of fibrations, as follows:

Let Hom.[,;]aw(x ,9) denote the set of strict maps between towers “through
the n-th level” — that is, sequences f = {f[k] : X[k] — Y[k]};, of maps
such that gz o f[k] = flk — 1] op; for 0 < k < n. Likewise we may define
the “truncated function complexes” map"(X,9)) by replacing Hom%,, (—,—)
by Hom.[,"7]0w(—, —) in definition 2.4 above. There is an obvious projection map
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7 : map™(X,9) — map,(X[n],Y [n]). Since ) is a tower of fibrations, we
have a pullback diagram

map"\(X,9) map (X [n),Y [n])

(qn )#
Pn )# om

map" (X, ) map (X [n],Y [n — 1])

and map%, ,(%,9) = lim, map (X, ).

3 Virtual towers

As noted in §1.1, for the purposes of the next section we need to work in a
cocomplete category — or at least, one which we can construct pushouts, infinite
coproducts (wedges), and realizations of simplicial objects. The category .7 ow
has finite colimits, but it is not hard to see that a wedge 9) = /i, X; of infinitely
many towers (as defined in §2.1) is not the categorical coproduct, in as much
as the maps f : §) — 3 are not in one-to-one correspondence with arbitrary
collections of maps {f; : X — 3}5,. We now describe the “cocompletion of
Z ow under (homotopy) colimits”, which we call the category of virtual towers;
these are essentially filtered towers with a prescribed collection of filtrations, and
the definition is motivated by our need to force V;’:l X; to become the categorical
coproduct (see §3.6 below).

It should be pointed out that we are really interested in the homotopy theory
of (virtual) towers, and thus would like a closed model category structure (in the
sense of Quillen — cf. [Q1]) for the category of (virtual) towers (compare [EH,
§3.3]). We hope to address this question in a future paper.

Definition 3.1 A virtual tower (X, F,.7) is a sequence of spaces ¥ = {X [n1}22,,
together with a filtration by towers F = {Fy X}, — that is,"a sequence of tower
maps iy : FxX — FuX (k > 0), each a cofibration, with n(iy) = k, such that
X[n] = F,X [n] for all n. (We allow the trivial tower Fi X = €(pt)). Thus a virtual
tower has partial level maps F,X[n + 1] 22 F,X[n] = X [n].

In addition, we are given a set & of allowable refinements of the above
maximal filtration F — i.e., filtrations by towers F' = {F}% & F £ .}
together with cofibrations ji : F X — FiX such that

Xnl= |J FiXinl  foralln.

n(jx)<n

This set F is assumed to be directed — i.e., any two filtrations F',F"" € % have
a common refinement F"' € F .
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In most cases we shall allow any possible reﬁnement of the gtven maximal F
to belong to .7 ; and we shall often abbreviate (%X,F,.7 ) by X, distinguishing
F if necessary as 7.

Alternatively, the virtual tower (.’f F, %) may be thought of as the equiva-
lence class F of sequences of filtrations by towers F' = {(FlX > F X}
where F' ~ F"' if there is a third sequence F"' having both as refinements. We
must place some restriction on the ﬁltratzons (e.g., to ensure that they form a set),
and then the maximal filtration is Fi X = Up.c 7 Fi %.

Definition 3.2 A virtual map | : (X,F,. %) — (1),G, ') between virtual tow-
ers is a sequence of (weak) tower maps f : F e ka for some F' € & and
G' € %, such that

F% Gi9

i l li,:

Y s fr+1 T

FigX —— G2
commutes. We say that § is defined with respect to the filtrations F "and G'. Of
course, we can always take G' = G, the maximal filtration on 9). Unless there is

risk of confusion, we shall usually use F to denote the maximal filtration for all
virtual towers at hand (and write Ff for fi).

The category of virtual towers and maps will be denoted v.Z7ow. There is
an embedding of categories I : .7 ow — v.7 ow with I(X) = (X,F,.7), where
Fk.% X for all k, and .% consists of filtrations of the form €(pt) = ... =
&(pt) C X = X...; we shall often denote I(X) simply by X. For X € .7ow and
9) € v.7 0w we then have

(3.3) Homy, 7,u,(I1(X), D)) = colimy Hom 7,.,(X, FiD).

Definition 3.4 Like .7 ow (§2.4), the  category v.7ow is also a s:mplzczal cate-
gory: for any two virtual towers X, 9), the function complex map., 70w X D),
is again the simplicial set with

R L De A A
map .70 D 2 Hom, 75u(E x Aln), D).
Again (3.3) implies that if X is an ordinary tower then
(3.5) map , 7,,(X),D) = colim map z7,,(X, FcD).
Example 3.6 If {xa}ae,, is some collection of virtual towers, define a virtual
tower D) =V ueu X, as follows:
Y [n] = Ve Xaln] and ka VaeA(Fk)axa, and the allowable refine-

ments of F are those of the form F9) = VQEB(F,‘)Q}?Q where B C A and

(F")o € F, . This is in fact the coproduct in the category of (pointed) virtual
towers — i.e.,

Homv.Vow(Qj’ 3) = H Homv.70w(§a, 3)

a€A
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Example 3.7 Similarly, given two virtual maps f ¥ - @ and § : X — 3, where
g is a cofibration, say, we can define the pushout 90 as follows:
Choose a F’ € .7 with respect to which f and § are both defined, so that

o o Fif
FIz —2ep3
Fif
(3.8) Fkﬁ:)
is a compatible collection of weak tower maps (for all k).

For each k, let n(k) = max{n(ka),n(Fkg)} so (3.8) is a strict diagram in
levels > n(k). Define F,90[n] to be the pushout of the n-th level of (3.8). This
forms a tower FkQ)J (in levels > n(k) — see §2.1), and there is a cofibration

: F 90 — F 90 for each k. Now set W(n] = F,2[n], and the allowable

reﬁnements of the given filtration {Fkﬁ]} are those obtained from compatible
allowable refinements of F % FQA), and F 5-

Definition 3.9 If T : .7, — .7 is a cofibration- preservmg functor on spaces, ap-
plymg it levelwise to each ﬁltratlon of a virtual tower X yields a new virtual tower
TX - for example, ¥ x I or £X. Thus one has a concept of virtual homotopies,
and as usual we denote by [X, @] the set of virtual homotopy classes of virtual
maps between the virtual towers X and ﬁ (or use the variant notation of §2.2(d)
above). In light of (2.5) above, if X is an ordinary tower we have

(3.10) w,(@;,’{) = colimy, W,(Fkﬁ;.'f)

Definition 3.11 A simplicial tower (resp. virtual tower) is a simplicial object in
the category 7 ow (resp. v7ow) — cf. [MI, §2.1]. In particular:

(a) A simplicial tower X, is called proper (compare [M2, Definition 11.2]) if
each degeneracy map 5, [n]: X ,[n] — X ,,[n] is the inclusion of a sub-complex
for each n > n(s;) =

(b) Given a proper simplicial tower X,, its g-skeleton Sk, .’{. is the simplicial
tower defined:

(Sk Xo)r = -%r forr < q, and (Sk Xo)r = U'_() lm(sjl(Sk xo,) € X;[n] forr > q
andn > N, where N is the maximal n()\) for A: X, — X,41 aface or degneracy
map of towers in simplicial dimension < n. The simplicial identities guarantee
that the restriction of the face and degeneracy maps of %o to Sk, X define a
simplicial tower.

(c) A simplicial virtual tower (.%., Fe, %) is called proper if for each r > 0 all
face and degeneracy maps ¢ : X, — X, are defined (§3.2) with respect to the
given maximal filtrations F, and F, . This means that for all k > 0, F}, Xo isan
(ordinary) simplicial tower. We require also that it be proper in the sense of (a)
above.
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Definition 3.12 Let (X,,F.,. %) be a proper simplicial virtual tower; then its
realization is the virtual tower || X, || defined as follows:

For each k, FX, is a proper simplicial tower, so its q-skeleton Squk.'A{.
is in fact a strict simplicial tower (see §2.2(e)) — i.e., Squk.%. [n] is actually a
simplicial space for n > N (k, q), and these fit together into a tower of simplicial
spaces. (Here N (k,q) is the least level at which all face and degeneracy maps of
Skq Fy X « have strict representatives).

Now recall (from [Se, §1] or [M2, §11.1]) that to a simplicial space X o we can
associate a single space || X .||, called its realization, or homotopy colimit. Thus
realizing Sk, F X, levelwise for each k, q yields together a bifiltered virtual tower,
which we denote by || X, |, with the diagonal filtration F,||%,| = 1Sk F Za|.
where j is maximal such that N(j,j) < k.

Definition 3.13 A diagram of virtual towers § : I — v.Zow will be called strict
if for each k, the diagram of ordinary towers Fi§ : I — Fow is strict ( 82.2(e)).
Again, every finite diagram is strict.

In this case, we define the homotopy colimit of the diagram, written hocolim § €

v.7 0w, to be the virtual tower filtered by Fyhocolim § o hocolim Fi§ € Zow.

One could in fact define homotopy colimits for arbitrary diagrams of virtual
towers; we have done so only in the two cases we shall require, namely, the
(infinte) coproduct (§3.6) and the realization of a simplicial virtual tower (§3.12).

4 v-Periodicity

Now assume given a fixed model M with a self map v : M9 — M’ as in
§1.2. We here make explicit the relation between towers and v-periodic homotopy
groups, which motivated the previous two sections:

Definition 4.1 From v we can construct various towers of the form

M={... > M 2 b U5 g,

where {k, }32, is some increasing sequence of non-negative integers, and of course
rn = (ky — kn—1)/d. Such a tower MM will be called a v-model tower. If MM’ is
another v-model tower, a map b : M — IM is called a v-map if at each level
hln] = v* for some e, > 0. We denote by .46 = _#, the set of all v-model towers;
this is partially ordered by >, where M’ = M if there is a v-map § : M — M
(necessarily unique). In order to make use of the function complexes of (2.5), we
can assume when necessary that all v-model towers are towers of fibrations (at
the price of replacing M* = X%~ M by a homotopy equivalent space, and v
by a homotopic map; this may be done without affecting any of our arguments
below).

Define the v-periodic homotopy groups of a virtual (or ordinary) tower X to
be

vimX= colim_g, ) (X M),
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where the limit is taken over all v-maps. Note that the graded group v='7, %X is
periodic in the sense that there is a natural isomorphism v='m X ¥ v=lm,. X
(induced by the obvious v-map v : 49N — M for any v-model tower M). Thus
in fact

4.2) v 'm X = colim p,»y colimy m,(FiX;M).

Finally, for any space X € 7 and any v-model tower N there is an isomor-
phism:

4.3) T(€CX )M ¥ v ImX;M),

so that in this case v~'7,&(X) = v~ 7, (X ; M) are actually periodic in the above
sense, though for an arbitrary (ordinary or virtual) tower X, the M-homotopy
groups m,(X; M) need not be — i.e., in general there will be no q > 0 such that
v Mg X v 'mX forall t.

Definition 4.4 An (ordinary) tower X = {... — X[n] P Xn—1].. .} will be
called v-regular if each p, induces an isomorphism in v_'m,(—;M). A virtual
tower (X, F, %) will be called v-regular if each F; X is such.

For an ordinary tower X let Q,(X) -4 lim, v~ im (X [n]; M), where we
think of v='m,(—;M) as a 7./d-graded abelian group. An element 3 € Q,(X)
is represented by a collection of maps f, : M Wty X [n] (n > 0) with
Pn Ofy =fa—1 00"~ for some increasing non-negative sequence {j, }3%,.  For

a virtual tower X = (X, F , ) we define Q,(X) e colimy Qy(FiX).

Lemma 4.5 For any self-map v and tower X there are natural homomorphisms
&, v Im X — Qi(X) (for each t > 0), such that &, is an isomorphism if X is
v-regular.

Proof. &, is induced by homomorphisms &, . 3 g : T(FiZ; M) — Qu(FX)

for any v-model tower M = {... — M*“ “Tnv M*-19 __}, natural in 9 and
FX. To define these, note that any a € m,(F; X; 9) is represented by a sequence
of maps f, : M'*** — F X [n], with p, of, = fu—100™ —i.e., (Fipa)slfu] = [fu-1]
in vT!m(FiX[n — 11; M), so {[f,1}52} is a well-defined element P £ 2.2 (@)
in Q,(kaf). Note that in Q,(Fk.‘%) the degree ¢ is only considered modulo 4.

Now let X be v-regular:

First, assume &,([y]) = 0 for some v € v=!m,X. Then qj(x,ni,mz)([g]) =0 for
some v-model tower 9 and g : M — F; X representing ~. This means that for
each n there is an e, such that (v®)*g, ~ 0. Define another v-model tower Ot/
by 9'[n] = X?M [n], with the obvious v-map h : I’ — IN; then h*[g] = 0,
s0 v =0 € v~ !'mF X and thus @, is a monomorphism in the limit.

Next, given an element § € 0:%), represent it by a sequence of maps
fi : M 5 FX[n] with p, of, = f,_1 o v -1 Defining a tower I by
M [n] = M’ we have f : ¥’ — X with P, £, 3,00 (D) = B, s0 again &, is an
epimorphism in the limit. O
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Example 4.6 Of course, if an ordinary tower X is v-regular, then
M X ¥ QX)X v ' m(X[n; M) for each n > 0;

similarly, for v-regular virtual towers v X ¥ colimg v 'm(FiX [n]; M).

5 The v-periodic resolution

Now that we have the proper set-up, given a self map v as above, we can use
the Stover construction to define, for any virtual tower of spaces .%, a simplical
tower f(. which serves as the “v-periodic resolution” of '’y (in a sense to be made
precise below). We shall actually only need the case where X = ¢(X) is the
constant tower of some space X, though the construction works in general.

5.1 The mapping cotriple

As in [St, §2], we define a functor Z, : v.70ow — v.7ow by setting ‘%(.’%) =
Vone.n 3m, where 3oz is defined to be the functorial pushout (§3.7) of the
diagram

Vg i&

VseHomu.nw(csm,a‘s) My Vsemmu.nw(cm,i) CMs

*

¢ :
(5.2) ;
fEHom,, 751 (MM, %) M

Here i : 9 — CM is the natural inclusion (at each level) of the space
M [n] into its cone CM [n], and ¢* takes the copy of 9 indexed by a map
F : CM — X in the upper right-hand coproduct isomorphically to the copy
indexed by i*F in the lower right-hand coproduct.

Z, is clearly a cotriple on the category of virtual towers, with the obvious
counit € : %(i) — X - namely, “evaluation”, with €lm, = f and €lcom, =F -
and comultiplication y : /%(.%) — Z( %(Z%)) — where p|qn, is an isomorphism
onto the copy of M in %(\%(5{)) indexed by the inclusion Mty — ‘%(i), for
any f: M — X; and similarly for CMs.

The filtration on Z,(ﬁ%) is by “level of origin of indices” - i.e., sm; o
Fk%(i) & f : M — X has a strict representative f : ;N — FiX, and
similarly for C90;. This clearly implies that & : Z,(%) — X is defined (§3.2)
with respect to F Gy Fg-

Now given X € v.Z70ow, one may define a functorial simplicial virtual tower
3. by setting 3, = Zr*1%, with face and degeneracy maps induced by the
counit and comultiplication respectively (cf. [Go, Appendix, §3]). The counit
also induces an augmentation ¢ : f{. —~ %
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Fact 5.3 The virtual simplicial tower 3. defined above is proper (see definition
3.11).

Proof. Note that any degeneracy map s; : 5, — 3,41, and all face maps ?; :
5, — 5,_1 except for 0, are isomorphisms on the coproduct summands in the
description of f{, = Z,(:(, 1) above, and thus are defined with _respect to the
filtration on the 3, s (cf. §3.6 & 3.7 above). Since g : 3, — 3,.” is _]USt €:
%(ﬁ,_l) — 3,_1, it too is defined with respect to given filtration on 71,(3, -
O

Example 5.4 For any fixed ¢ > 0, we may assume if necessary that all the level
spaces Fi3,[n] are c-connected, by replacing 9 by 0,9 throughout Definition
5.1. This is because the connectivities of the spaces M [n] are increasing, since
we assume d > 0 (§1.2).

Lemma 5.5 For any t > 0 and v-tower M, the augmented simplicial group
e (Fa3 M) =5 (X5 M)
is acyclic — that is, ﬂs(w,(f(.;i))’t)) =0 for s > 1, and mo(m, (ﬁ.;i)ﬁ)) = 1, (X; M).

Proof. (cf. [St, Proposition 2.6]):  write P, for the simplicial group T(Fe; M);
then using normalized chains (N.P,, 0) (cf. [M1, §17]), one may represent any
v € Ny P, by a (weak) map g : ' — 3y, with dj[g] ~ 0 for 0 <j < k.

But any map f : X' — 9) has a corresponding wedge summand X sz
Z(D), with eoif ~ f. (This is how the comultiplication p : 7, — Zy o 7, was
defined). Applying this to 2) 3, we obtain an element [iy] € Py4) represented
by i : Tmy — (7,,(3,() with dolig] = e4lig] = [g] and dilig] = lig_,g] for
1<j<k+ l

Since d; 1[g] ~ 0 for 1 <j <k + 1, by construction each wedge summand
My _105 — 3« extends to a cone C X'Mz — 3« (presumably in more than
one way), so that ig_,oq : XMy _0g — C{k is nullhomotoplc

We have thus found [iy] € Ni+1Pe With Oligl=ldooigl="7 - i.e., mPe =0
for k > 1. .

For k = 0 we have shown that if v € Py = m(Z,X; M) has e*y = 0, then
v € Im{0 : Py — Po}. Thus moPe = Po/Ker(e*) ¥ Im(e*) = m (X; M), since et
is clearly an epimorphism. ]

Corollary 5.6 For any t > O the augmented simplicial group vimSe =
v, X is acyclic, too.

Proof. Tt is a colimit of acyclic simplicial abelian groups. O

6 Realizations and mapping spaces

The category of virtual towers was needed to define the v-periodic simplicial
resolution, since the construction requires that the v-periodic homotopy groups be
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representable (as homotopy classes of morphisms). However, since it is still more
convenient to work with topological spaces, we need a mechanism for passing
back from (simplicial) towers to spaces, while still preserving information about
morphisms. This is provided by the mapping space functor of §2.4 & 3.4.

In order to relate this to the realization of simplicial objects, recall from [BF,
Theorem B.5], [Q2] that for each simplicial space (or bisimplicial set) X o there is
a spectral sequence converging to the homotopy groups of the realization (resp.,
diagonal), with

Esz,g =mg(mXa) = 7Ts+!“X¢“~

(As above, applying m, dimensionwise to the X,’s yields a simplicial group
P[t]e = mX,, and E?, = m,(P[t]s).)

Lemma 6.1 If X, is a proper simplicial space with each X , r —1-connected, then
for any r-dimensional CW -complex M the natural map ~ : ||map ,(M ,X ,)|| —
map (M , ||X .|| is a (weak) homotopy equivalence.

Proof. First, for M = S* (k < r), we know by [M2, Theorem 12.3] that
12X o|| — $2||X || is a weak equivalence; so ||2¥X || — £2%||X ]| is, too. Now
consider the cofibration sequence §¥ — K — M (where by induction on the
CW filtration of M we may assume the Lemma holds for K, and of course $*).
This induces a fibration sequence map,(M ,X,) — map (K ,X,) — 02X,
for each n > 0; by [A], we obtain a fibration sequence of the realizations

lmap .M , X 2)|| — ||map (K, X o) — [192°X.],
which maps to the fibration sequence
map (M., ||X o[)) — map (K, ||IX.[)) — 2" X.].

By induction and the Five Lemma we conclude that the Lemma holds for M,
too. 0O

As a consequence we note the following:

Corollary 6.2 For any r-dimensional CW -complex M and (r — 1)-connected
simplicial space X o as above, there is a first quadrant spectral sequence
E?, = m(m(X o; M) = T (|| X o|; M) .
Proof. Apply the spectral sequence of [BF] to the simplicial space map ,(M , X ,).
O

Definition 6.3 Given a model space M, define an M -CW complex to be a conic
space obtained by a process of “attaching M -cells”, in a manner precisely analo-
gous to the usual definition (cf. [W, II, §1]), with spheres replaced by suspensions
of M. The theory of CW -complexes carries over essentially without change, as
long as we use m,(—; M) to replace ,(—) throughout, in particular in the defi-
nition of weak equivalences in [W, IV, (7.12)].
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Thus, for example, if f : X — Y is a map between M -CW -complexes which
is an M -weak equivalence (i.e., induces an isomorphism in 7,(—; M), then f is
a homotopy equivalence. (This is the analogue of the Whitehead Theorem — cf.
[W, V, Theorem 3.8]).

Fact 6.4 For every model M there is a functorial M -CW -approximation (or M -
colocalization — see [Bol, 7.5]) functor CWy : & — % such that CWy X is
an M -CW -complex, together with a natural transformation ¢ : CWy — Id such
that (Ox )s : T.(CWyX; M) = m (X, M).

Compare [Bol, CPP, DF2]).

There is also a v-periodic version of the Quillen spectral sequence, for a
sufficiently connected simplicial space:

Propeosition 6.5 For a self map v : M — M9 as in §1.2, and an (r +d —
1)-connected simplicial space X o, there is a first and fourth quadrant periodic
spectral sequence

Ef,, =1 (X s M)) = v e (| X o3 M) .

Proof. SetZ, = map (M ,X,), so that |Z,|| ~ map, (M ||IXel|l) (Lemma 6.1),
and in fact HQ“Z | =~ ||imap,(M**" X )| ~ map (M, ||X,)|, too, though
in general we only know 2*~9~"||Z ;|| ~ map ,(M*, || X ,)|| for k > d +r. Now
consider the Quillen spectral sequence for the simplicial space (or bisimplicial
group) Z ,, with

El, =mtZ;=m(Xs;M) = 75 + 1| Z o|| = Tssrar(| X o||; M).
If we reindex so that
E.vl,t =T X M) = 7rs+,!2""||Z,|| t>r—k),

we can think of this as a (first and fourth quadrant) spectral sequence for

7 27 ||Z,|| = m.map M*,|X .)|| We need to either disregard those terms
in E;",’ with s +¢ < k —r, or set Es, = 0 whenever s +¢ < k — r and “fringe”
the remainder (cf. [BK2, §4.2]) so that those £’ ,’s which supported differentials
into the missing terms are suitably reduced.

By naturality, the map of mapping spaces induced by v also commutes with
realization: |[v*|| : ||Z4|| — ||£2?Z || is homotopic to v* : map (M, || X.| —
map (M || X .||), so more generally

Q|| 22| - 22|
is
v* :map ,(M*,||X )| — map,M*,||X,)|.

Thus we get a map of simplicial spaces ot Z. — 247, inducing

v M (X M) — Tara(X 53 M) on E},, and also v* : mger (| X[ M) —
Tres+r+d (|| X o||; M) on E*°.
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Since homology commutes with sequential direct limits of chain complexes
(cf. [Mi]), the spectral sequence for a simplicial space also commutes with se-
quential homotopy direct limits.

Thus if we define the relescope Tel(Y ) of a space Y (with respect to a self
map v : M%*" — M as above) to be the homotopy colimit of

r v r+d o* r+kd
map M",Y) — map M"™)Y) — ...map M™ Y)— ...

bl

then m Tel(Y) = v~ 'm (Y ;M) by [Grl, Proposmon 15.9], and we get a spectral

sequence with E/, = limy {m,(X ;M) 5 Tporea(X ;M) 5 moapina(X s,M ) 5
=T I X S,M ), and thus the E2-term is as stated, converging to v,
(IIX IsM). O

7 Localizations

For the rest of the discussion we shall need to make use of some technical
results of Bousfield. This is the first place where our approach will no longer
work for general towers, or even for those constructed from an arbitrary self map
v: M9 — M as above; we are now forced to restrict attention to v, -periodic
self maps (to be defined immediately). However, these appear to be the only
examples of real interest (and in fact these are known to be the only examples
stably — cf. [DHS]). First, we shall need some

7.1 Notation and terminology

Fix a prime p, and for each n > 0 choose a finite r,-dimensional CW complex
V,—1 with a self-map v, : X%V, _; — V,_,. For simplicity we assume that v,
(and so in particular V,_,) is a suspension. We require that V,_; be of type n —
that is, the m-th Morava K -theory K(m).V, =0 for m < n and K(n).V, #0 -
and v, is a v,-self map — that is, v, induces an isomorphism in K(n),, and O in
K(m). for m # n. (See [R2, §1.5]).

In particular, we shall assume that V_; = § 2, with v : V-1 — V_,; the degree
p map, for some prime p. Then V, = §3 Up e* is the 4-dimensional mod p Moore
space, and we take vy : X?2P~*1yy — TV, to be the Adams map for p > 2
(or its 4-fold iterate for p = 2 — see [CN]). In general we let V, be (a suitable
suspension of) the cofiber of the map v, : X¢V,_; — V,_; (cf. [HS, Theorem
5.12] or [D]).

We are interested in the v,-periodic homotopy groups v, 'm.(X;V,_,), de-
fined as in §1.2; note that vo"w,.,(—; V_1) is just 7.(—) ® Z[1/p].

Definition 7.2 A map f : A — B is called a v,-periodic weak equivalence, or

vy 'm-w.e., if it induces an isomorphism f, : v T (A; Vy_1) = v m, (B; V,_y).
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One of the basic tools for dealing with v,-periodic phenomena is the concept
of localization with respect to a pointed space W (or more generally, a map
f :A — B), first considered by Dror-Farjoun ([DF1]) and Bousfield ([Bol]):

Definition 7.3 Recall from [Bo2, p. 3] that, given a fixed space W, a space X
is called W -local (or W -periodic) if W — x induces a homotopy equivalence
X = map(W ,X). A map f : A — B is called a W -weak equivalence, or W -

w.e., if map(B,X) L, map (A, X) is a homotopy equivalence for every W -local
space X. Finally, a map ¢ : X — X is a W -localization (or W -periodization) if
X is W-local and p is a W -weak equivalence.

Such localizations exist for any W (and in fact the definition generalizes,
replacing W — x by an arbitrary map f : A — B). A functorial version of
W -localization is denoted by Py X (the notation Ly (X) is also used). See [DF1]
and [Bo2, §2].

Example 7.4 We are interested in the case W =V, as in §7.1. In particular, a
Va.-weak equivalence will be called a P, -equivalence. It turns out (cf. [Bo2,
Theorem 9.15]) that this concept does not depend on the precise choices of the
spaces V,, (or the v, -self maps), but only on the connectivity of V.

In [Bo2, §10.1] Bousfield defines (non-constructively) an increasing sequence
of integers c(n) > n +2 (with equality conjectured), such that each c(n) < 1+
the connectivity of V,. (Thus ¢(0) = 2 and c¢(1) = 3 for odd p). Note that of
course

(7.5) m—12>c) for n > 1.
Bousfield then proves the following generalization of [T1, Theorem 1.2]:

Theorem 7.6 [Bo2, Theorem 11.14]: For each n > 0 the maps v, : X%*V,_; —
Vi1 are v, lr.-w.e.’s, after at most 2 suspensions.

as well as:

Theorem 7.7 [Bo2, Theorem 13.3]: If X, Y are c(n)-connected spaces, then a
map f : X — Y is a Py, -equivalence if and only if it is a v, L -w.e.’s for each
0<k<n.

Corollary 7.8 The maps Xv, : X%*'V,_, — XV, _,arein fact P,, -equivalences.

Proof. Any space X of type n — so in particular V,,_; — has v, 'm,(X;V,,_1) =0
for0<m<n. O

Corollary 7.9 Let {X o }aca and {Y o }aca be two diagrams of c(n)-connected
spaces, and {fo : X o — Y o }aca a map of diagrams with each f,, a v\ me-we.
Jor 0 < m < n. Then hocolim,, (fy) : hocolim, (X o) — hocolim, (Y ) is a

v, ' me-w.e. for 0 < m < n, too.
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Proof. 1t is evident from the definition (see [Bo2, §2.5]) that (pointed) homotopy
colimits preserve W-w.e.’s for any W; we may use Theorem 7.7 to restate this
in terms of v, 'm,-we.’s. O

Finally we record the following two facts:

Lemma 7.10 [Bo2, Theorem 11.5]): For any pointed connected space X, the lo-
calization map oy : X — Py X isa vy ' me-wee. forall 1 <m < n. 0O

This is in fact true with Py, X replaced by Pssy,X for any s > 0.

By considering the long exact sequence for the cofibration sequence
ZMVast =5 Vo =V,

we immediately deduce from the the above and the definition of the localization
Py, X the isomorphisms

(7.11) O T X Vo) ¥ vy Py, X Vi) = w4 (Py, X Vey)

for all X and t > 1.

8 P,,-equivalences and towers

In this and the following sections we shall assume we are given a v,-self map
v: X4y — V,_; of the form described in §7.1, which we shall denote
simply by v : X4**M — M, with 9 a corresponding v-model tower.

As noted in the introduction, it is the proof of Proposition 8.5 which actu-
ally forces us to restrict attention to spaces of type n — i.e., those for which
v, (X3 Viu_1) = 0 for 0 < m < n. (It is not clear whether the Proposition is in
fact false for diagrams of arbitrary P,, -regular towers, though the proof provided
evidently will not carry through in greater generality.)

Definition 8.1 A map of virtual towers | : X — 9) will be called a P,, -

equivalence if it induces an isomorphism fy : v,;'mX — v, 'mQ) for each
0<m<n.

(Compare Theorem 7.7).

Definition 8.2 An (ordinary) tower X = {... — X[n] 25 X[n —1]...} will
be called P, -regular if each level space X [N] is c(n)-connected (§7.4) and each
level map p, is a P,,-equivalence. A virtual tower (X,F %) will be called
P, -regular if each Fi X is such (compare Definition 4.4).

Fact 8.3 As in §4.6, if an ordinary tower X is P, -regular, then

vI'mE ¥ 0u(X) ¥ vy ' m(XINT; Vi),
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where Q;(—) and v~'m,(—) are taken with respect to any of the v, : V  —
V1 0f §7.1 for 0 <m <n and N > 0; and similarly for P, -regular virtual

towers X we have v—!m,X ¥ colim, v, 'm(FX[N; Vn—1) foreach0<m <n
and N,k > 0.

IA’roposition 8.4 Let v be a v,-self map as in §7.1, and X a virtual tower. Let
Je =Js — X be the v-periodic resolution of §5.1; then I3e]] is v 'my-w.e. to X.

Proof. By §5.4 we may assume all level spaces ka},[n] of f}. are (r, +d, — 1)-
connected. By construction, each v-tower 9 is Py, -regular (by Corollary 7.8),
so each ka(, is, too, by Corollary 7.9. If we set 3k = O'N(k’k)Skkai., then
each tower 3} is P, -regular, so by Corollary 7.9 again ||3%|| = F,||3.] is also
P,,-regular, which by definition means ||3,|| is, too.

Therefore, if we let Zf = 3k[N], for any k and N > N(k,k), by Fact8.3
above

v7'm 3, % colimy vy 'm(Z5; V)

and similarly v='7,||3.|| % colim; v~ '7(|Z%|l; Va—1). Applying the v-periodic
Qullen spectral sequence of Proposition 6.5 to each simplicial space Z%, we get

E}, = m( ' m@Z5 M) ¥ 1y (Fi 3o M)

converging to v~ ', (|Z5[; M) ¥ vy (||Fi5||; M). Since homology, and
thus spectral sequences, commute with sequential direct limits (cf. [Mi)), taking
the direct limit as k — oo yields a spectral sequence with

A

vimX if s=0

£2 o~ —1 Ay
ES, = m(vT mde) { 0 if s>0

by Corollary 5.6, converging to colimy v, 'y, ([|Z%|[; V,_) & v o (|36 || M),
and the proposition follows. O

Proposition 8.5 Let {f: X, — &Y a)}aea be amap of strict diagrams of virtual
towers (§3.13) with each f,, a P., -equivalence, and assume each virtual tower X,
is Py, -regular with v, ' 7, (Fi X o[N1; Vyy_1) = 0 for each 0 < m < n and all N,
k, and that each tower @(Ya) is constant with Y o, c(n)-connected. Then

hocolim,, fa : hocolimg, %o — hocolim, (Y ,)
is a Py, -equivalence, too.
Proof. For every index « there is a filtration F’ on X, with respect to which f,
is defined, and
v'mE, = colime lim, v m (F{X o[n];M) 922 o=, 8(¥),
(8.6) = 'U—I"r*(Ya;M)

is an isomorphism. Without loss of generality assume n(F, /$o) = n(F, wix) = k (for
F,{;%a Ik Fj +liﬂ Fi"—ff Y »), so we have a diagram as in Figure 1 to describe

F
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v
ik
FIX ok —4Es Fl, Xalk]
Fpk

FlXalk —1]

i —1[k — 1]

Fialk]

FiXal0] "> F{_Jalk — 1]

F{jal0]

Yo

Fig. 1. Explicit description of fa

Note that each Fyp; is a P, -equivalence by assumption, so after applying
Py this is still true by Lemma 7.10. Thus PyFpy is a XM -weak equivalence
by (7.11). (Recall that M = V,,_; and V = V,,.) Now apply the functor CWyy,
of §6.4 to Fig. 1: then CW sy (Py F|py) is a homotopy equivalence (§6.3), so it
has a homotopy inverse r : CWey(PyF[X o[k — 1]) — CWspm (Py F/X o[k]).
We thus get a diagram

, Tie1 0 ig[k] ,
.. = CWiy Py FIX o[K] —CWxy Py Fl, Xalk +1] — ...

Fl:’f\a[km‘ ‘/F,:Hfa[k +1]06
(8.7) Y

[ed

Changing the horizontal maps into cofibrations we get

==t ZH —

Y

(8.8) o

with each Z’; ~ CWyey Py F/X olk] a V -local XM -CW -complex which is XM -
weak equivalent to Py F;X ,[k], and thus v='m,-w.e. to F{X,[k] by Lemma
7.10. If Z, = colimy Z* is the (homotopy) colimit of the horizontal maps in
(8.8), then m(Z ;M) =¥ colimy =,(Z ';;M ) (cf. [Grl, Proposition 15.9]), and
Jfo : Zo4 — Y, induces an isomorphism in m(—;M) for t > 1 (and so in
v~ m(—; M) by (7.11). Therefore, if we set
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Z " hocolim, Z o, ¥ % hocolim, Yo, and f 2 hocolim, £,

by Corollary 7.9 wesee f : Z — Y is a v 'm,-wee..

Now since the given diagram (.%a)ae,, is strict (§2.2(e)), hocolim,, X, is
defined and filtered by hocolim,, F ,ﬁi‘a, where hocolim,, F} X2)[n] = hocolim,,
F/X,[n] forn > N (see §3.13). But

hocolim,, Z , = hocolim,, colim; Z '; ~ colim; hocolim,, Z’;

since homotopy colimits (of spaces) commute with each other (cf. [Vo, Theorem
2.4]), and since Z'; is v~ !m,-w.e. to F{X ,[k] for all o, k and hocolim,, F|X,
is still P, -regular we have

v~ !, hocolim,, X,

colimy v~'mhocolim, F{X,
v~ !m,(colim; hocolim,, Z¥ ;M)
v~ 17 (hocolim,, Z o; M)

v (Y ;M)

v=1m,&(hocolim, Y )

colimy v~'m,F/hocolim, X,
colimy v~'m (hocolim, Z*; M)
v~ (hocolim,, colim; Z*; M)
v im(Z;M)

v~ 17, (hocolimy, Y o; M)

R n

R

ng mow om

v~ 'mhocolim,, E(Y »)

which completes the proof of the Proposition since all spaces (and towers) in
question have v, !m,(—;V,_1)=0for0 <m <n. O

9 IT-algebras

In this section we provide the “algebraic” underpinning needed to describe the
E2-term of the spectral sequence which we shall set up in the next section.

Recall (e.g., from [Bl, §3.1] or [St, §4]) that a IT-algebra is an algebraic
object modeled on the homotopy groups of a space, together with the action of
the primary homotopy operations ([W, XI, §1]) on them. We have analogous
concepts for other representable functors:

Definition 9.1 First, one may replace the spheres representing ordinary homo-
topy groups by some other model space M, to get M -homotopy operations cor-
responding to each homotopy class o« € m,(M™ V...V M™;M) (subject to
the universal relations among such operations, corresponding to compositions
of maps among wedges of M" ‘s).

We then define an M -11-algebra to be a graded set {X; }75,, together with an
action of the M -homotopy operations on them. As usual, the free M -II-algebras
are those isomorphic to 7,(\/ o M M) for some (possibly infinite) wedge of
model spaces (cf. [Bl, §3.1.2]).

Now if v : M? — M is a self map of our model space, the situation for
v~ !m,(—; M )-homotopy operations is somewhat different:
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Definition 9.2 A primary v-periodic homotopy operation of type (ny, ..., n;r)
is defined as usual to be a natural transformation

9o My (M) x .o x v i, (= M) — v (= M.

It is natural to extend this definition to v-tower homotopy operations, where we
consider v='m, (—) : v.7ow — Abgp rather than v im (= M) T — Abgp.
In light of (4.3), any v-tower homotopy operation is in particular a v-periodic
one (though not necessarily conversely!).

We then have the following analogue of [W, X1, Theorem 1.3]:

Lemma 9.3 The v-tower homotopy operations of type (ni, ... ,ng;r) are in one-
to-one correspondence with elements of

HLareoomery = lim o™l (SO VLV D).
me. /2

Proof. Given a v-tower homotopy operation
9 v_'7r,,,(—) X w0 X v_'7r,,k(—) — v_]ﬂ',((—);M),

forany M € A6 let W= LM V...V ™I, with inclusions j; : ™M < 0.
Then 9([j1], ..., [x]) € v~'7,20 may be represented by a tower map fy : M —
20 for some M’ € /4, with the obvious compatibility conditions with respect
to v-tower maps M’ — M”, and so on. -

Now any (vi,...,7%) € v~ 'm,, X x ... x v~'m, X may be represented by
g o X"M — X (i =1,...,k), and so by g : 2 — X, with g; = foj.
Then 9(y1,..., %) = dgojil,-.-,[g o je]) = gwd(li1l, ..., [ik]) = gelfol =
fﬁ('yl, ...yY)- The converse direction is obvious. 0O

Corollary 94 If v : M? — M is as in §7.1, then the v-tower homotopy op-
erations of type (ny,...,n;r) are in one-to-one correspondence with elements
of

v (M™Y. VM M)

Proof. In this case each v-model tower is P, -regular by Theorem 7.6, as is each
finite coproduct 20 = XMV ...V Z*M (Corollary 7.9), and thus

v 20 ¥ 0,@0) E limo T m (Wn M) = v m (MM V.. v M™ M)

n

by Lemma 4.5. Also, each v-tower map h : 9’ — M then induces an isomor-
phism between Q,(M’) and Q,(M), so the inverse system in the definition of
Auy,....mr) 18 constant. 0

Thus in this case the v-periodic homotopy operations are the same as the
v-tower ones.
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Definition 9.5 As in §9.1, we define a v-II-algebra to be a 7 /d-graded set
{X; };‘;,1, together with an action of the v-tower homotopy operations on them
(subject to the universal relations holding among the Fp, ... p,.r)’s under compo-
sition). This is a category of (Z/d-graded) universal algebras (cf. [BS, §2]), or a
variety of algebras in the terminology of [Mc, V, §6].

Examples of v-II-algebras include v=—'m,(X ; M), for any space X, or more
generally v='7, X for any tower X.

Example 9.6 If n =1 and p is odd, with v = v| the Adams map between mod p
Moore spaces, then by Corollary 9.4 the free v-I1I-algebras (cf. [BI, §3.1.2]) are
those isomorphic to v~!7,(W;M) for any (possibly infinite) wedge W of mod
p Moore spaces.

v~ '7,(M*; M) has been fully calculated by the second author in [T1, The-
orem 1.1], so the Hilton-Milnor theorem (cf. [W, XI, Theorem 6.7]), together
with the fact that M/ A M* ~ M7*~1 v MJ** (cf. [N, Corollary 6.6]), give an
explicit description of the free v-II-algebras in this case.

Example 9.7 A stricter analogy with §9.1 would require a choice of a specific
v-model tower 91; we then consider Mt-homotopy operations

v Wn.(_;m) X ... X 7['"*(-—;%) — ﬂ-r(_;m)
for towers, which are obviously in one-to-one correspondence with elements of
T (MM V...V ZON; M),

One then has a concept of 9-1I-algebras, as before, modeled on n*(a‘e;zm) for
any virtual tower %. Since w*(@(X ;M) = v lr (X; M) for any space X, the
IM-homotopy operations are in particular v-periodic ones, so we can think of a
MN-II-algebra as a “simplified” v-IT-algebra.

9.8 Derived functors

Note that the simplicial virtual tower 3o of §5.1 has each Fi3, homotopy equiv-
alent to 20;, where 20, is an (infinite) coproduct of X'9’s. Moreover, the
tower map i : ij, — F,Hlf(, is homotopy equivalent to a projection on
a sub-coproduct, followed by the inclusion of a summand, so by (2.3) and
Lemma 4.5 v~!m,3, = colim; v~'m(gWi; M) = colimy v~ 'm (Wi; M) is a
free v-IT-algebra. In fact, by Corollary 5.6 the augmented simplicial v-I1-
algebrav ' —v~ 17, % is a free simplicial resolution of v='m, X (which is just
vl (X M) if X = ¢(X)).

Now given any (not necessarily additive!) functor T : v-II-Alg — & into a
suitable ([BS, §2.1]) category &, the n-th derived functor (in the sense of Quillen)
of T, applied to v~!7,(X; M) € v-II-Al g, is isomorphic to the n-th homotopy
group of the simplicial & -object T(v"‘mf{.). It is denoted L,T (v~ 7, (X ; M))
(see, e.g., [BS, §2.2]).
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In particular, let F : .7, — .7, be any functor which preserves v lr,-we.’s.
Then we can define a functor F : v-IT-Alg — grAbgp as follows if ©is a
free v-II-algebra, then © ¥ v~z (X;M) for some x V XM, and we
may let F(©) = v~ !m(F(X); M). Note that if also © ¥ v~!7,(X’;M), then X
and X' are actually weakly equivalent, so X and X’ are certainly v~—!7,-w.e.,
and thus F is well defined on free 9M-IT-algebras (compare [Bl, §7.1.2]). Now
we extend F to an arbitrary O-IT-algebra ¥ by setting F¥ = (LyF)¥ (cf. [BS,
§2.2.4]).

Example 9.9 Consider the functor v~ !7,(X(—); M) from spaces to graded abelian
groups; this takes v~!m,-w.e.’s to isomorphisms by Corollary 7.9, so we have
the induced functor

b5 v-1I-Alg — grAbgp.

10 The suspension spectral sequence

We are now in a position to construct the v,-periodic spectral sequence for the
suspension of a space X € .7

Theorem 10.1 Let v = v, : X9V,_; — V,_; be a self map as in §7.1 (n > 1);
then for any c(n)-connected space X with v,,'m.(X;V,,_1) =0forall0 <m < n
there is a first quadrant spectral sequence with

E}, = (L 2w 'm(X; M), = v 1 (ZX; M),

where 5 : v-I1-Al g — grAbgp is the functor of §9.9 above.

Proof. Let 5, be the v-periodic simplicial resolution of ¢(X) of 85.1, where by
§5.4 we may assume all level spaces are c(n)-connected, too. By Proposition 8.4
we know ||| is v~ !m,-w.e. to &(X), so X||5.| is P, -equivalent, and thus in
particular v~ !7,-w.e. to L¢X) = ¢(XX ) by Theorem 7.7 and Proposition 8.5
since we assumed vy, ' 7. (X;V,,_1) =0 for all 0 < m < n.

But as for any proper simplicial virtual tower (or _space), ||Z3.|| ~ 5|31,
and by Proposition 8.5 X||3,| is v “Ime-we. to Z¢(X) = €&(XX). Thus the
v-periodic Quillen spectral sequence for X7, (Proposition 6.5) converges to

VI Z3e) ¥ v M D) Fe || ¥ v ' E(ZX) ¥ v T (ZX; M).

To identify the E2-term, note that v~ '7,3e = v~ 77*3. is a free v-II-algebra
resolution of v™'7,&(X) = v=!m.(X; M), and thus

E?2, =m(v™'m 23e) = (v M £30) = (L E)w  m (X3 M)),

as defined in §9.9 above. O
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