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1 Introduction

In this work we consider the Cauchy problem for systems of hyperbolic non-
linear equations of semilinear type in Minkowski space R"*! :

Ou = F(u,du) (1.1)
u(0,x) =f(x) ,u(0,x) = g(x), (1.2)

where u = (u"))_; stands for a R -valued function defined in Minkowski space
R"*!. The non-linear function F (y,z) is a C* function on a neighborhood
of the origin satisfying F(0,0) = 0 . Here R™*! denotes Minkowski space ,
consisting of points (x°,x',...,x"), x® = ¢ , equipped with the flat metric 7 =
diag(—1,+1,...,+1), O = 83 — 87 — ... — & is the wave operator, 0, = prs
,0=0,1,...,n . We write u = (Gyu, Oyu, ..., 8,u) for the full space-time gradient
of u . The initial data f, g are taken in the weighted Sobolev spaces (f,g) €
H*=1(R") x H*~15(R"), where the norm || - ||s.5 , s € Z* , § > 0 , is defined
by (cf. [3] , [5)):

lullys = (3 /R (1+ x5 Vi) ) /2. (13)
i= /R

Here one is interested in the existence of global solutions to (1.1)-(1.2) in
case the initial data norms are sufficiently small. It is known ([9], [5]) that if
n > 3 global small solutions exist. In the critical case n=3 , it is also known that
global solutions cannot exist unless the nonlinearity F satisfies a certain structural
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condition called the null-condition ( [9] , [5] ). This means that for every null
vector £ € R*™! ( that is to say, £ € R*! , n#€,£, = 0) we have:

O*F e
m(@ﬂ)ﬁ §"=0. (1.4)

Roughly speaking , it means that the quadratic part of F(u, du) is a linear com-
bination with constant coefficients of the basic null forms:

Qo(u’,0u’)y = 1°Po,u' au’, (1.5)

Qap(Ou’,0u’) Bou' Ogu’ — Bgu’ Bou’ . (1.6)

For the sake of simplicity let us just consider here the case when the non-linearity
F is of type (1.5)-(1.6). The more general case can be dealt with in a similar
way by appealing to the Sobolev embedding theorem.

Exploiting the special decay properties of the null forms (1.5)- (1.6) it is
possible to establish the existence of small global solutions([5] ) in case the
initial data satisfy the regularity requirements :

feH**R? , ge HYRY). 1.7)

Recently, Klainerman and Machedon ( [10] , check also [2]) were able to im-
prove the regularity requirements on the initial data (1.2) and obtain a sharp local
existence theorem for equations of type (1.1) in case the nonlinearity F(u,du)
satisfies the null condition. The main idea relies on estimating space-time norms
of the whole quadractic forms:

/ / |Q(Ou, Ou)|*dtdx (1.8)
R3x[0,t,]

in terms of the initial data norms. In particular , one is able to obtain local
solutions in H 2 provided the initial data are in H2x H. For general nonlinearities
and three dimensional wave equation Ponce and Sideris ([11]) showed that the
local solution is in H* for s > 2, by using the Strichartz estimate in place of the
Sobolev inequality.

The aim of this paper is to investigate if those low-regularity local solu-
tions can exist globally in time. The affirmative answer to- this question can be
summarized in the following result:

Theorem 1.1 Let F(z) be a C™ function defined on a neighborhood of the origin,
with F(0) = O, satisfy the null-condition (1.5)-(1.6). Suppose also that the Cauchy
data lie in the low-regularity space (f,g) € H>'(R?) x H"(R?) . Then, there
exists an €g > 0 such that for all 0 < € < g, if

[ llg20 +1lgllm2 <, (1.9)

then there exists a unique global solution u € L*®([0, +00), H>'(IR%)) to problem
(1.1)-(1.2) taking at time t = O the data (f, g) and verifying :
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/ / (1 + [t + e ]DACL + |t — |x]|)?/Q(Bu, Bu)|2drdx +
R*!

// (L+ e+ x|D*( + |t — |x]))*|0Q (Du, Bu)|*dtdx < +oo (1.10)
R3+1
for any of the null forms (1.5)- (1.6) .

Moreover the solution has the following decay property:

C
|u(t, x)| < A+ +[x[DA+ ]t = |x|])’

where C depends only on the norms ||f ||5,1 and ||g||1 2.

(1.11)

The idea of the proof consists of using the conformal compactification method
of Penrose and reducing the global problem to a local setting, where estimates of
the Klainerman-Machedon type could in principle be proved. Due to the curvature
of the Einstein manifold E = R x S3, one obtains a hyperbolic operator with
non-constant coefficients, so that the task of proving such an estimate reduces to
establishing some kind of L*-estimates for Fourier integral operators arising in
the parametrix construction of the solution. Here one does not need to exploit the
exact structure of the manifold S3, the proof being absolutely identical for any
compact manifold . We rely only on the finite dependence domain argument for
solutions of hyperbolic equations, which allows a localization of the estimates .
The basic ingredient consists of a Paley-Littlewood decomposition of the initial
data on S? in order to isolate the terms in the quadratic forms carrying the main
singularities causing the loss of derivatives in the Strichartz estimate . These
terms are very sensitive to the fact that the quadractic forms satisfy the null
condition (1.4) and their estimation is reduced to establishing the L?-continuity
of an oscillatory integral operator:

T : L*(R%) — L*(R%).

A suitable parameterization reduces the problem to proving the L?-continuity of
a local Fourier integral operator

T : I*(RY — LX(RY

for which we can apply a criterium due to E. Stein ([13]).

The plan of the work is the following. In section 2 we review some basic
facts concerning the conformal compactification method and the statement of the
main theorems in terms of the compactified setting. In section 3 we introduce the
parametrix construction of solutions to the wave equation and isolate the terms
carrying the main singularities . Finally, in section 4 we consider the estimates
for the oscillatory integrals. In order to apply the L?-continuity criterium to our
oscillatory integrals one is forced to consider a change of variables of the same
type used by Klainerman and Machedon .

After this work was completed, we learned that earlier C. Sogge obtained
independently similar estimates for quadractic forms on compact manifolds ([12]
), by using also the theory of local Fourier integral operators.
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2 The conformal transformation

In this section we review conformal compactification method (cf. [4], [5)). For
general n, n > 3 one considers the Penrose compactification map:

P:R"™ — g™ 2.1

which maps Minkowski space onto a bounded region of the so-called Einstein
cylinder (E"*!, g). This is the space-time manifold E*™*! = R x §" equipped
with the time coordinate T € Rand 0 < R < 7, w € §""! parameterizing
(cosR, sin Rw) € S". The metric g is the product metric:

1]

—dT? + dw?
—dT? + dR? + sin®Rdw? (2.2)

n—1»

g

where dwf_, is the usual line element of S"~!. Penrose’s compactification map
is given in local coordinates as:

P:RIH-I —_ En+l
tr,w) — (T,R,w), (2.3)

where r = [x|, w = g7 € $"7', and TR are defined by:

T
R

arctan(t + r) + arctan(t — r), 24)
arctan(t + r) — arctan(t — r). 2.5)

Il

The image P(R™') C E™! is the bounded region of the cylinder charac-
terized by the conditions —* < T+R <7, -1t <T—-R <, 0 <R<mT
and its boundary 9P (R"*!) is called the infinity of Minkowski space. Observe
that in the region of the cylinder E™*' covering Minkowski space-time the new
time runs only in the bounded interval —m < T < 7. Also, the weighted Sobolev
spaces H**~!(IR") are mapped isomorphically onto H*(S"). The crucial property
satisfied by the Penrose mapping P is that it is a conformal isometry:

n = 2%, (2.6)

where {2 is the function :

e 2
T L+ [+ x|PV2(1+ | — x| PD)I2

2.7

In particular one can exploit the conformal invariance of the wave operator
under conformal changes of metric as follows. Assume that the function & solves
(1.1) in R™! with nonlinearity F . Define a new function 4 on E™! according
to the relation & = 2°7 u . It follows that the new function u will solve the
non-linear wave equation on the cylinder E**':

_m—1p

Og u u=F@u,Vu) (2.8)
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with F defined through
FG,2)= 2FF@,2). 29)

The relation between (¥,7) and (y, z) is given in terms of an analytic bundle map
E : T*E™' — R"™! defined solely in terms of the Penrose map (2.1). More
precisely, for every o/ =0, 1,...,n one has:

EX = QI" + K* Ay, (2.10)

where I, and K are C* vector fields on ™! and A, are C™ functions on
E™! (cf. [5] for an explicit description). Also:

EAV,02=0Y, @.11)

for some C° functions Y, on E**!. The new dependent variables on the cylinder
are defined through the equations:
n—1

y = 277y, (2.12)

2

From now on we shall consider only the case n = 3. One has to show now
that in terms of the new coordinates our nonlinear forms Q will be a product
of 2* with functions which are analytic on the cylinder IE>*!. Let us consider
first the form Q. In local coordinates on E3*! we have 2 = cosT + cosR. By
straightforward differentiation one obtains V,2VH2 = —22 + 22 = (cosT —
cosR) and then it is possible to show that

n— n
Zw = QT[Elz,+ yYorl. (2.13)

Qo(it, ) = Q“g’“’V#uVUU
+ .(23[aa(T,R,w)uVav+bo,(T,R,w)Vauv+c(T,R,w)uv]
= 2'Qo(u,v)
+ 2°[agu Vo + bV ouv + c.uv] (2.14)

where a, b, ¢ are C > functions on E3*!. In case of the forms Qg the situation
is not so manifest. We have:

Qup(@,0) = PUELu, +uYo)Efv, +vYp)
- (Ebv,+ VYo )(Efu, +u¥g)]
= Q[ELEL (uuv, — vuu,)
+ ENYp(uv—uvy) +Eg Yo (vyu —vw,)).  (2.15)
Inserting the expression (2.10) for E in the above expression we see that all
terms appearing in the first summand will be manifestly the product of 2 with

a function which is analytic on the cylinder, with the possible exception of the
term

K"KY Ay Ag: (2.16)

In this case though, the contraction with the null form will vanish:
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K*KY Ao A (v, — u,v,) = 0. @2.17)

The last summands are considered in the same fashion and one verifies that
the troublesome terms (which are not manifestly the product of 2 with a function
which is analytic on the cylinder) can be grouped as:

K* Ao Y (uyv — uvy,) + KYAg Yo (vyu — vu,)
(AwYgr — A Yoo )(Ku.v — u.Kv)
= (AANY)op(Ku.v — u.Kv). (2.18)

It is possible to show (cf. [5]) that for all choices o/, 8 = 0, 1, ..., 3, the functions
(ANY)yp are C* functions on E>*! so that eventually we obtain:

Qa'ﬂ’ (ﬁ ) 5)

.(23[k(’;,';,,(V,,uV,,v - VouV,v)

+ ab,V,uv+ b5V v+ c.uv)

= QS[k,l:fl;al Ouv(u,v)

+ al,Vuuv+bhV, vu+cuvl, (2.19)

where k%, ,ak, bk, and c are C* functions on E*! . This reduces our task to

estimating the quadractic forms:

Qo(u,v) g*'V,uV, v (2.20)
Quu(u, U) = vp,uvuv - V,,MV”'U (221)

It turns out that the original problem of finding global solutions to (1.1)- (1.2)
reduces to finding local solutions ! in L®([—, 7], H%(S?)) of the problem:

@y — Du = Q(Vu,Vu) 2.22)
with Cauchy data:
u(0,x) = up(x) € H*(S?) , u,(0,x) = uy(x) € H'(5%) (2.23)

and with non-linearity Q of type (2.20)-(2.21). This is exactly the problem con-
sidered in [10] in Minkowski space. The whole approach hinges now upon the
possibility of establishing space-time estimates of Klainerman-Machedon type
for the manifold S* . Our main Theorem 1.1 shall be then a simple consequence
of the following:

Theorem 2.1 Let (u,v) be the corresponding solutions to the Sfollowing linear
inhomogeneous wave equations on S3:

@, —Du=F 2.24)
with Cauchy data u(0,x) = ug(x) € H?%(S*),u,(0,x) = uy(x) € H'(S?) and:
@, - =G 2.25)

! In the rest of this work we rename our coordinates on the cylinder by lowercase letters. The
new time is just renamed ¢ € [—, 7] for example.
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with data v(0,x) = vo(x) € H*(S3),v,(0,x) = vi(x) € H'(S?), where F and G
are given functions F,G € H'(S3). It follows that there exists a time interval
0 <t < t. and a constant ¢ > 0, independent of u and v such that Sfor any null
forms (2.20)-(2.21) the following estimate is verified:

19
/ / VO, v)Pddvolss < c(ljuolli + [[m|lgr + / IVE(s, l|zds)
$3Ix[0,1.] 0

lvollns + o s + /0 IVGs, ||ads).
(2.26)

Once this estimate is proved one can set a Picard iteration scheme, as in [10]
and obtain a local solution to problem (2.22)-(2.23) in the time interval [0,¢.].
In particular, the solution will verify the estimate:

||u(t,., ')”HI(S3) S c||u(0, ')”HZ(SJ). (227)

Since the Einstein metric on S* X R is time-independent, it is possible to iterate
this estimate N times, with N > 7> by taking the initial data ||u(0,)||52s3
so small that estimate (2.1) can be applied in every step. Property (1.10) in
Minkowski space-time will now be a simple consequence of the main estimate
(2.26) on the Einstein cylinder . This follows from the transformation properties
(2.12)-(2.13) of the Penrose transform, the relation between the volume elements
drdx = 2=*dTdvolgs and the transformation relations (2.14)-(2.19) for the null
forms. From the boundness of the H2-norm on § 3 the Sobolev embedding and
relation (2.12) we deduce in a similar vein the decay property (1.11).

In order to prove Theorem 2.1 we appeal to Duhamel’s principle and the
following:

Theorem 2.2 Let (u,v) denote, as in Theorem 2.1, the respective solutions to the
wave equations (2.24)-(2.25) with vanishing inhomogeneous terms F = G = 0
and with Cauchy data up(x) = vo(x) = 0 and uy(x) =f(x), vilx) = h(x), (f,h) €
H'(S3) . If Q denotes any of the null forms (2.20)-(2.21), then the following
estimate will be verified:

// |Q(u,’u)|2dtdvolss < Cllf”LZ(sJ) : ||h||Hl(33) (228)
S§3x%[0,1.]

Jor some t, > 0 and constant C > 0 independent of the initial data.

By appealing to the finite dependence domain argument for solutions to the
wave equation, it is possible to localize our estimates, so that Theorem 2.2 will
actually follow from the proposition:

Proposition 2.1 Let (u,v) be the solutions to the wave equations (2.24)-(2.25)
as in Theorem 2.2. Assume in addition that the initial data (f,h) € H(S3) is
Supported in a fixed geodesic ball B(1,€) of radius € centered at a fixed north
pole 1 = (1,0,0,0) € S3, where 0 < € < 7 is a sufficiently small real number.
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It follows that there exists a time interval 0 < t < t, and a constant ¢ > 0,
independent of u and v such that for any null form (2.20)-(2.21) the following
estimate is verified:

/ / |Qu, v)dtdvols < C||f||1a¢s3) - ||h]]m1cs3- (2.29)
S3%[0,t.]

Proof of Theorem 2.2. Let 0 < € <  and t, the universal constants given in
Proposition 2.1. These numbers do not depend on the size of the initial data.
Consider now a partition of unity {¢; };(V:, € C§°(S?), N = N(e) such that each
¢k is supported in a geodesic ball of very small radius , chosen in such a way
that for any k, the supports of the functions ®; having non-empty intersection
with suppy; are contained in a geodesic ball of radius less than €. Let then &
denote the infimum of the geodesic distance between any two disjoint suppports
of the members of the covering. Localize the initial data (f, h):

N N N N
F=of =) fi, h=Y ph=3 M (2.30)
k=1 k=1 k=1 k=1

and denote the corresponding solutions of the Cauchy problem (2.24)-(2.25) by
u; and vy respectively. By bilinearity we can write:

N
Q,v) =Y O, ). 2.31)

k=1

There are now two possibilities. Either both f; and 4, are supported in a geodesic
ball of radius at most €, and in this case the estimate will follow from Proposition
2.1, or their supports are distant at least § from each other. In particular, by taking
t. even smaller and recalling the finite dependence domain property of solutions
to the wave equation, we conclude that u; and v; have disjoint supports so that
Q(ur,v) = 0 and there is nothing to be estimated in this case. This concludes
the proof of Theorem 2.2.

In the next section we shall develop the necessary Fourier analysis tools and
prove Proposition 2.1.

3 Fourier representation of the quadratic forms

The first step to represent the quadratic forms (2.20)-(2.21) consists of deriving an
approximation of the solution u(¢, x) of the wave equation on the n-dimensional
sphere S”, n > 3. We consider the problem on E"*!:

RTY)
Dgu—(n 1)

u=0 @3.1)
subject to the initial conditions:

u(0,x) =0 ,u(0,x) =f(x) (3.2)
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when t = x° = 0. Here f € H'(S™). Initially we shall restrict our attention
to functions which are supported in a neighborhood B(1,6) of the north pole
1=(1,0,...,0) of S". We shall consider a local chart x : B(1,5§) — R”" and
denote the coordinates of p € B(1,6) by x(p) = (x!, ..., x"). In local coordinates
the metric read as:

xix
s(x) =6 + —/—0  —— 3.3
9= by + ——ry (33)
and the wave operator as:
O, u =8%u — Lai(\/gg"faju). (3.4)

Vi

According to the general theory? the solution to problem (3.1) can be approx-
imated by its parametrix. More precisely, for any N € Z* we can write u(, x)
solving equation (3.1) as:

u(t,x)=U(f)(,x) +R(f)t,x), (3.5)

where U is a sum of local Fourier integral operators of type:

1)t x) = / . expigi(t, x, Ea_(t,x, EF €)de 3.6)
R
and the remainder R is a smoothing operator of infinite order mapping continuosly
for any s and any N:
R:H — H™*N, (3.7)

The structure of the operators (3.6) can be totally described in terms of the
metric g. Here a_;(t,x,£) is a classical symbol a_; € §~!(IR*! x R?) homo-
geneous of order —1 obtained by solving the corresponding transport equations

. The phase functions ¢i(t,x,£) are homogeneous of order one obtained by
solving the eikonal equation *

Op+(t,x,6) = 9" (X)Bi (1, x,6).0;p4 (2, x,6)]'/? (3.8)
subject to the initial data:
¢:!:(07x1£) =X £ (39)

It is sufficient to our purposes to know that the solution to the eikonal equation
(3.8) will exist for some time ¢ € [0, ¢,]. The same remark applies to the solution
of the transport equations defining a_;(t, x, £). Moreover, by considering a cut-
off function k() near € = 0, we can always write

a—l(tvxvé) = K(E)a—l(t:x’§)+(l - n(&))a_l(t,x,ﬁ)

and absorb the last term in the remainder R so that we can always assume that
a_1(t,x,£) =0 for all [¢] < 1, say.

2 We shall follow here [15], chapter VI.1, for example.
Equanons (1.49)-(1.50) in [15], vol.2, pages 311-312.
4 Equation (1.41) in [15], vol.2, page 310
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We turn now our attention to the proof of Proposition 2.1. Let u and v
be the corresponding solutions to problem (3.1)- (3.2) with respective Cauchy
data f,h € H'(S"). The quadractic forms QO(u,v) will be written as a linear
combination of terms involving the remainders R and terms of oscillatory type:

Q(u,v) QU+ (f),1+(h))

QU+(f), R(h)) + Q(R(f), I+ (h))

O(R(f),R(h))

I+ +111. (3.10)

+ +

For simplicity of notation we shall consider in detail only the case when both
phase functions in (3.8) are chosen with the + sign and simply drop this subscript.
The other cases can be treated in a totally analogous fashion.

The terms of type III in (3.10) involving the remainders can be estimated in
a straightforward way, simply by using the regularizing property of the operators
R. For the mixed terms of type II it is sufficient to apply,for fixed time ¢,the usual
L2-continuity theory of Fourier integral operators by appealing to the inequalities:

QUG RME, lzwsy < clVIE)E, |- | VRAXE, e, (3.11)
NQRE), I, Mlzwsy < c|VRENE, e - [[VICRE, )| 2. (3.12)

The estimates follow then from the Sobolev embedding theorem. For ex-
ample, the first term in (3.11) is bounded by noticing that VI(f) is a Fourier

integral operator with symbol of type gy € S%(R® x R?) and non-degenerate
phase function (for fixed t) so that the L2-continuity theory applies and we get:

QU ), R(h)|| 2w cllfllzey- I VR(A)| oo m3)

c|lfll2ay- I V2R | 2 g
CIV”L’(R-‘)'“" | |L2(R3)

IAIN IA

by the Sobolev embedding theorem and the regularizing property (3.7) of the
remainder . In a similar way we can estimate:

[IQR), I (h)]| 2w (3.13)

by using (3.12) instead of (3.11). In order to estimate the main terms I in (3.10)
we have to use the special structure of the null forms (2.20)-(2.21). These are
the main terms which survive in the flat space theory.

In general, for any quadractic form :

Q(u,v)= q“ﬂaauagv +q1)0alt.v + g4 -0av + quv (3.14)

it is not difficult to see that Q(/(f),I(h)) can be written in the following form
as an oscillatory integral:

O h) = / / PR ED g x € FOR(MEd.  (3.15)
RIXR?
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Here:

D(t,x,&,m) = @, x,&)+¢(t,x,m), (3.16)
q(t,x,&,n) a(t,x,€).b(t,x,n), (3.17)

where a,b € SO(R*!' x IR?) are classical symbols of zero order. It is possible
to expand the symbols a, b as a sum of principal symbols ag, by and remainders
in the symbol class §~'(R*' x IR3). The principal symbols ag, by lead to the
following representation of the main amplitude term qo(t,x,&,m):
QO(f’X,fﬂl) = aO(tvxyg)'bO(t’xan)
= q*P0a99p¢a_(t,x,E)b_(t,x,m), (3.18)

where we recall that a_,b_;, € S~'(R*' x R®). In the particular case we
consider the quadratic null forms (2.20)-(2.21) we obtain for main symbols:

40(171, E’ 7’) = gaﬂaa¢(t7xv {)aﬂ(p(tax’ n)a—l(t,X, {)b—l(tyxv 77) (319)

in the case of the form (2.20), or:

9(t,x,&,m) = (Bad(t,x,€)0sd(t,x,n) — pd(t, x,£)0ad(t,x,n))
a1 (t,x,9b_(t,x,8) (3.20)

in case of the forms (2.21). In both cases we notice that the main symbol vanishes
over the set of vectors such that & = - ¢ §2:

€1~ Inl
g £
q(tax;_a_)=0- (32])
RN
More precisely,one can prove that for every pair of vectors £,n # 0,we have
£
‘I(t,X,faﬂ) SC___ (322)
s sl S el =)

and for every multiindex a, |a| > 1:

e

I

This follows from the smoothness of the symbols and relation (3.21).

Let now Qo(f, h) be the oscillatory integral (3.15) with amplitude q(t,x,&,n)
replaced by go(z,x, &, n). We shall prove that:

Qs h) = Qo(f, Wl |2 xry < cllf[lez - [1A]]a- (3:24)

Indeed, by noting that ab — aphy = (a — ag)by + a(b — by) the remainder term
will be a linear combination of product terms of type:

|afc:lxq0(taxa€777), < Cal% - (3.23)

F(f)T-1(h) and T_,(f)F(h), (3.25)
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where Z (f)(¢, x) denotes a local Fourier integral operator of the kind:
%(f)(t,X)=/3CXPi¢(t,x,§)ak(t,x,§)f(§)d£ (3.26)
R

with ¢(z, x, £) solving equation (3.8) and a; € S¥(R*! x R?) a classical symbol
homogeneous of degree k.

The first term can be estimated by applying the L2-continuity (for fixed time
t) of the Fourier integral operator .7, (cf. [8]):

BT 1Mlpwsy < |l B2 - | T-1 (k)|

a

< el N e
< elllle - Igrglle - il @29
and then, integrating over ¢ € [0, §]:
BT 1 ()| 2wty < cONIf 122 - |11 (3.28)
To estimate the term
TA(F)F(h) (3.29)

we need to resort to a generalization of the usual Strichartz estimate ([14]):

Proposition 3.1 ( cf. [1] ) If %(f) denotes the Fourier integral operator (3.26),
then:

B Nswey < cllfllamy, (3.30)
ll'q—l(f)”L‘(RM) < CHf“H—l/z(Ra). (3.31)

From these two estimates it follows directly that:

T B M@y < 1T g - B0 @
< cllf -7 - Al
<

cllfflzz - |||z (3.32)

and this concludes the proof of estimate (3.24).

Finally, in order to estimate the leading term Qo(f,h) we need to use the
specific form of the null forms. We shall carry out this in detail in the next
section.
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4 L- estimate of the leading oscillatory integrals

To complete the proof of Proposition 2.1 we introduce a Paley-Littlewood parti-
tion of unity for the initial data:

F=X 6, k=) h @.1)

j>0 k>0
with
f©O=ere© A©=p0h®© k21 @2)
. £ . 5 € .
fo(€)=Z<p(§)f(€) , ho(€)=Z<P(§)h(€) (4.3)
j<0 j<0

and ¢ € Cy°(R") satisfying:

suppp C {1/2 < |¢| < 2} (4.4)
and: ¢
> oe)=1. (4.5)
i
The important thing to notice is that at most three of the terms in the sum:
=35 (4.6)
j=20

(similarly for h) have supports intersecting non-trivially, so that for any Sobolev
norm H*, s € R we have:

& Il < B < € 37 151 @)

=20 Y

In order to estimate the space-time L2-norm of the oscillatory integral :

Oo(f h) = / / SPRENQ (1 x € P OhMm)dEdn  (4.8)
R¥xR?

with go denoting the main amplitude (3.18) we introduce the partition of unity
(4.1), property (4.7) and the bilinearity to reduce proving the estimate:

[1Qo(f, W2ty < ClIf ||z ||A]|a 4.9)
to the estimates:
11Qo (5, i)l lizgery < C27V M) 16 ||| ey (4.10)

with a numerical constant C independent of j and k. It is easy to check estimate
(4.10) in case the integer k dominates, that is to say, when

j<k+No @.11)
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for some sufficiently large integer Ny to be specified later. Indeed, in this case
we can represent Qo(f;, i) as a product F(f; ) Z(hy) of fourier integral operators
of type (3.6) and apply directly the Strichartz estimate (3.30) to obtain:

Qo B2y < (B0 |swony- | o) | Lorowry
< Cllfillaa-lhellge- (4.12)

Using the fact that £ is equivalent to 2/ on the support suppf}(&) and the relation
(4.11) we get:

Willa-llbellas < C@Y2RY2If |2 e .2
< CYM2 16|28 e |2
< C27VH2) E A g (4.13)
and this proves estimate (4.10) in case the condition (4.11) between j and k is
verified. The remaining case

Jj>k+Ny (4.14)

can be treated by rewriting the oscillatory integral Qo(fj, hx) (defined through
equation (4.8) ) as a Fourier integral operator Qi ® (1 — A)'/2p) acting on
the pair f ® (1 — A)'/2h € 12 x L2:

@(jk)(t’x) = Qo(ﬁvhk)(t X)

iP(tx,E, )qO(t x,§,m) _‘f_ n
//RR T mp Y@
FOI — 22y (m)dedn. (4.15)

By a duality argument we see that estimate (4.10) will follow from:

“@ﬁ)(X)“LZ(Rng;) < cllxllz@y, (4.16)

where

—-t¢(l,x,£ n)qO(t x,&,m) é n didx (4.17
Do 0O m) = / /R e TR WG dds (.1)
is the adjoint operator to (4.15).
Now we rescale the variables £ — 2 ¢, n — 2/7 so that the left hand side of
(4.16) becomes:

@ / / G0 €, Dy ey, “.18)
Now we follow the references [2] and [10] to introduce a change of variables:
- - " 2
C—€+n,T—|n|,a—mes (4.19)

so that
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Ty, T;0)

G2 €,2n) = A+ @A’

(4.20)

where

Ty 0O, 730) = / / T IRRETOTOR g (1 3, — 70, T )X, Xl
R

4.21)
is a Fourier integral operator with symbol
To2
qi)(t, %, ¢, 730) = go(t, x,{ — To, To)p({ — T")‘P(z_k (4.22)
depending on a parameter ¢ € S2 and such that:
1 2k k+1
Supp qqiy(t, x, +, 3 0) C {5 <[(-710| <2, FTSTS b (4.23)
The L2-norm in the left-hand side of (4.16) can be rewritten as:
@ [ 100 o acarian)” (4.24)
sz R3xR

since %57%1 = d({dtdo. Therefore, the desired estimate (4.16) will be a con-

sequence of the following family of inequalities with ¢ € S? considered as a
parameter:

c
100G - O 2w xry) < Wllxllumw)-- (4.25)

The oscillatory integral in (4.21) can be estimated with the aid of an inequality
derived in [13] for some general oscillatory integral operators . We shall employ
the following technical tool:

Proposition 4.1 Let X\ > 1 be a large real parameter . For ¢ € RN consider the
Jollowing oscillatory integral operator:

TG00 = / RO x(x)dx, 4.26)
RN

where q(x,() € Cg°(RY x RN). Assume that the phase function ®(x, () in (4.26)
has a non-vanishing Hessian:

d*d(x, ()
Then for any ), the operator
Ty PRY) — LARY) (4.28)

is bounded and the following estimate is verified:

002wy < A2l 2gey (4.29)
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In the proof of (4.29) only an integration by parts in the x-coordinates is
used and we need that the symbol g(x, () is uniformly bounded in the spatial
variables: |07 (x, ()| < C,, for |a| < ko, ko some large enough natural number,
uniformly in ¢ € suppg(x, -). When applied to our oscillatory integral (4.21), this
condition is guaranteed exactly by the vanishing properties (3.22)-(3.23) of the
symbols of the null forms. As a matter of fact, it turns out that Proposition 4.1
is not directly applicable, as the second Hessian:

do s
det| 277 B¢ (430)
dxdr  3xd¢

can vanish at (f,x) = 0. A simple computation based on the eikonal equation
(3.8) shows that this Hessian vanishes (at (¢,x) = 0) exactly at TE_I = 0. To
overcome this difficulty we change the variables exactly in the same manner of
the flat space case, following Klainerman and Machedon ( [10]). Consider the
(singular) change of variables :

€)= (7)), F=7+|( - 70| (4.31)
Note that the Jacobian of this change of variables is proportional to

d7 T—(-0 |[(—T0|+7—( 0
dr ~ ¢ — 70| |¢ — 70|

(4.32)

The denominator [ —70o| never vanishes on the support of qgx)(t,x, -, -;0) in view
of (4.23) and the assumption (4.14). This enables one to conclude that g—’: =0
on the support of gg(t,x, -, ;o) if and only if ¢1 = 0- In order to compute the
Hessian (4.27) of the phase function &(t,x,£,7) = o(t,x,€) + ¢(t,x,n) in the
new coordinates we use the fact that ¢ solves the eikonal equation (3.8) and that
9*(0) = 8% to write:

o, x,8) =t|€] +x - £+ (e, x,€) (4.33)
with remainder 1 satisfying for every multiindex a:
|0°9(t, %, )] < CIE|@® + |x ). (4.34)
The phase function &(z, x, £, 1) in the new coordinates (¢, 7) becomes:
D(t,x,(,7) = tF+x-C+P(t,x,( —T0o)+ w(t,x.,ra)
= 1P ax (R x, T TC — o+ (e, x, o) (435)
¢ — 7ol
(recall (4.31) 7 = 7+|¢ —70]). Now we Taylor expand the function (e, x, é%g[)
near o € % :

bt,x, ) = w(r,x,a)wg(t,x,a)-(l%—a)

14
£ £ ..

T
—(= — o) R(t,x, =)= —
210 7 ROx g

o) (4.36)
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with Taylor remainder:
S £
R(t)x)_)— ’ﬂg(tax,lw*'(l _“)_)d# (437)
l&l" Jo 14
Using the relation
(—10—|¢—T0lo=( - Fo, (4.38)

obtain finally:

(1, x,(,7) = tF+x-(+Yt,x,0)F +Y[(t,x,0) - ({ — 7o)

1 (—710 ro, (—To
— —0) R(——— —0)-|( —T0|. (4.39
21 =7o] ~ TV RGeg — ) [~ 439)
It is our task now to compute:
de oo
det} IPF 9 J : (4.40)
oxd7  Oxd(

For this purpose we appeal to the following technical lemma:

Lemma 4.1 Seté =(—roand F=7+|¢ — 70|. Then for any ¢ with |¢| > M T,
with M > 0 a sufficiently large constant, the Jollowing estimates are verified:

£

|8¢,2¢] < clm—al‘% (4.41)
10¢,+(€ - Elo)] <, (4.42)
6 6 —1 —1
O¢ #(—=~ — < — — . 4.43
|9, (,£I o)| C'Isl o|~'l¢| (4.43)

Proof of Lemma 4.1. Given any function f ¢, 1), set:

FEA=F, 7, 7)) (4.44)

where 7(C, 7) is defined by the implicit function theorem from the equation (4.31)
7=71+|( — 7o|. The chain rule gives:

O+ = &an , Ocf = 0cf + -a—fa,f. (4.45)
0 O¢
A straightforward differentiation with respect to ¥ and ( leads to:

or £ -2
— = 2|= -0l (4.46)
o7 = g el
or £E. € —2
— —2—=|= —o|™"% (4.47)
¢ €l i 7!

From the chain rule (4.45) and the above relations we get:
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£
14

8¢ = Id+ 2(|—§| ® a)% — a2 (4.49)

and then property (4.41) follows. Property (4.42) follows directly then by the
formula:

-0 % (4.48)

A
oy
|

_2|

&—|€lo=C¢ - To. (4.50)
Finally, property (4.43) follows from (4.41) and (4.42). This completes the proof
of the lemma.
Using this lemma we can estimate the Hessian determinant of the remainder
term:

H(t,x,(,T;0) =
% I%——:—ZI - a)TR('g—_—:%l — 5)-|¢ - 70l. @4.51)
Using the asymptotic relations (4.34) and (4.41)-(4.43) obtain finally:
’» IR
|det [ % qL } | <e(t+]x|) (4.52)
Ox87F  Ox9¢
for some constant C independent of ¢,x, 0, (, 7. It follows then that:
Zo g21 11 o
[ o gl{o Id}+0(t+|x|). (4.53)
ox87F  Ox9¢

And then, in view of the fact that the support suppy can be chosen with
arbitrarily small diameter on the sphere S3, then we can arrange the invertibility
of the Hessian and be in position to apply Proposition 4.1, provided we have
the boundedness (together with derivatives) of the amplitude function in the new
coordinates ¢, 7. Now, changing variables in (4.25) we have:

or
[ Zy O, ',U)HLI(Rng!,) = || Ty, - U)V ET

ILZ(R:, xR}) (4.54)
where now
Tiy(x)( ) or (4.55)
((13)9. O\ RN 87' =

is a Fourier integral operator with symbol (in the new coordinates ):
or
o\ ==- 4.56
a0\ 57 (4.56)

(g—;)'“ = \/E% — |1 .57

Recalling now the relation:

and the property (3.22) satisfied by the symbols of the null condition nonlin-
earities, we obtain directly the desired boundedness of the symbol and we can
apply Proposition 4.1 with N =4 and A = 2. This concludes the proof of the
Proposition 2.1.
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