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0 Introduction

This is a typical feature of several complex variables that proper holomorphic
mappings between special classes of domains have strong rigidity properties.
In particular, proper holomorphic self mappings of certain domains are nec-
essarily biholomorphic. This was proved by H. Alexander in the case of the
unit ball [1], by S. Pinchuk for strictly pseudoconvex domains [13] and by E.
Bedford and S. Bell for pseudoconvex domains with real analytic boundaries
[2]. This was also shown to be true for special kinds of Reinhardt domains
by Y. Pan [12], A. Chaouech [6] and M. Landucci and G. Patrizio [10]. More
generally, S. Pinchuk proved that proper holomorphic mappings between dif-
ferent strictly pseudoconvex domains are unbranched and this was generalized
by K. Diederich and J. Fornaess for mappings from strictly pseudoconvex to
smooth bounded domains [8].

Mappings between different circular domains where studied in [3] by S. Bell
who proved that they must be algebraic as soon as they preserve the origin.
Mappings between particular classes of Reinhardt domains were investigated
by G. Dini and A. Selvaggi [9] and M. Landucci and S. Pinchuk [11].

The aim of this paper is to give a classification of proper holomorphic
mappings between bounded complete Reinhardt domains in C?. Our main result
is the following:

Theorem 1 Let f:Q, — Q, be a proper holomorphic mapping between
hounded, complete Reinhardt domains in C2. If f does not have the form
f(z, w) = (42", Bw") or (Aw", Bz") where A,B € C* and m,n € N then,

* The authors came independently to this problem and started to cooperate while the second
Wwas visiting University of Lille in January 1993
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after normalization and a possible permutation of variables, two possibilities
may occur:

a) Q) = Q, = A%, where A is the unit disk in C.

b) @ = {|z]** + |w]*" < 1} and @ = {|z]** + |w| < 1} where n € N,
r € Q" and a,b € R*. Moreover, one of the two pairs (%, %), (%, ) must
belong to N2,

It is worth emphazize that, in case b), non tirvial mappings (i.e. not of the
form (4z", Bw")) do exist. When r = 1, the automorphism group of , is
non trivial. Thus, these mappings may be obtained by composing a mapping
of the form (z*, w') with an appropriate automorphism of Q,. When the au.
tomorphism groups of Q, and ©, are trivial, non trivial proper holomorphic
mappings still exist, as the following example (due to Dini and Selvaggi-
Primicerio [9]) shows. Take @, = {|z|* + |w|* < 1}, @ = {|z| + |w/'? < 1}
and f = 3(22+w?)?, fr= (%)p(w2 —z?)P where peN, p > 2.

As a consequence of Theorem 1, we obtain the following generalization of
Alexander’s result for C2:

Theorem 2 Among bounded, complete, Reinhardt domains in C2, the bidiscs
are the only ones which admit proper holomorphic self mappings that are not
automorphisms.

The paper is organized as follows. We first consider the pseudoconvex case.
In Sect. 1, we study the effect of exceptional tori in the boundaries on the struc-
ture of mapping. This is used in Sect. 2, for showing that if the mapping is
not splitting then the boundaries must be real analytic and strictly pseudo-
convex outside coordinate hyperplanes. The remaining of the proof is based
on the study of holomorphic tangent vector fields which are generated by a
non splitting mapping. In Sect. 3, we show how certain holomorphic tangent
vector fields may be used to characterize ellipsoidal hypersurfaces of the form
2" +w/* = 1(n e N, p € RY) among strictly pseudoconvex and real analytic
Reinhardt hypersurfaces. In Sect. 4, after completing the proof of Theorems 1
and 2 in the pseudoconvex case, we generalize them to the non pseudoconvex
case by observing that proper mappings properly extends to holomorphic hulls
(see Lemma 4.1). .

Notations: For any 0 =: 01,...,6,) € R" and z = (z1,...,2,) € C" we shall
denote by e - z the point (e?iz,...,e/lnz,).

For any Reinhardt domain Q in C” we shall denote by bR the boundary
of Q and by bQ* the part of »Q which does not intersect the coordinate
hyperplanes: bQ* = {5 € bQ st. n, ... a0}

For any n € bQ* there exists a n-dimensional real torus T, which is con-
tained in bQ*: T, = {e . ;0 € R"}.

For any holomorphic mapping f from C” to C”, we shall denote f' the
linear tangent map to f and its Jacobian by det f’.
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1 Effect of exceptional tori

It was proved by S. Bell (see [4]) that every proper holomorphic mapping
f:€91 — €2, between bounded complete Reinhardt domains extends holomor-
phically to some neighborhood of Q,. In the following proposition we assume
that the target domain is pseudoconvex in order to show that this extension is
locally open at most points of bQ2;. We restrict ourselves to the case of C2.

Proposition 1.1 Let f: Q) — Q, be a proper holomorphic mapping between
bounded complete Reinhardt domains in C%. Assume that f extends holo-
morphically to some neighborhood Q) of Q) and that @, is pseudoconvex.
Then the extension f of f is locally open at any point ny € bQ, satisfying
f(no) € bQ23.

Proof. As a first step, we shall prove the existence of some neighborhood ¥
of 110 such that f (V\Q1) N Q, = 0. Consider the logarithmic image of Q,
in R%: #(2,) = {(Lulur], Ly|uz|); (w1, up) € 2,}. Since @, is pseudoconvex,
Z(£,) is convex. Then, for any 5 € bQ,, such that f(n) € bQ;, we may find
real numbers a1(17) and ay(n) such that a;(n)? + a()? = 1 and a;(n)[x; —
La|f,(m)) 1+ 02(n)[x2 —Ln| f5(n)|] < 0 on £(Q,) as a function of x = (x1, x2).
By applying the Hopf lemma to the subharmonic function @n(u) = oy(n)[Ln| f1

(un)| — Ln| f,(m)|1+ oa[Ln| £2(un)| — Ln| £ (n)]] on the unit disk {lul < 1}, we
find:

d
'd_t[(Pn(t)]l:I >M>0, VpeVnbQ,

where V' is a small neighborhood of 7o such that f(n) € bQ2; for any n €
V' NbQ. On the other hand, a straightforward computation reveals that:

dZ
IR > st:Vye VNbQ,, Vtell,R]: Imqo,,(t)l <K

(Here the fact that f,(n)fz(r])rl:O for any n € ¥V N bQ, is crucial).
By using (1), (2) and Taylor’s formula we get:

M _
Vi € V N bR,V €]1, min (1 +2?,R> [f(t) €D .

Shrinking ¥ yields to the announced property.

We are now in order to show that 7 is an isolated point in f { fi (10)}
which means that f satisfies Osgood’s condition at 1g. Indeed, the connected
component 4y of 7o in {z € @, st. f(z) = f(n0)} is an analytic set in Q,
which does not intersect Q, ; it therefore suffices to verify that 4y C b2, since
in that case 4, would be a compact (and therefore dlscrete) analytic set in
Q). If this would not be the case, we could find a point ' € 4o N bQ; and
an arbitrarily small neighborhood U of #’ such that f (U\Q1) N bR, % 0. This
would contradict the first step of the proof.

This ends the proof of Proposition 1.1 since Osgood’s condition implies
local openess (see [5], p. 327, Theorem 4).
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In the remaining of the paper we shall identify the mapping f with its
extension f. The aim of our next proposition is to show that the mapping is
splitting as soon as it exchanges “small” families of tori in boundaries.

Proposition 1.2 Let f:Q, — Q, be a proper holomorphic mapping between
complete bounded Reinhardt domains in C2. Assume that there are subsets
& of bQ; with the following properties:

1) F are invariant by “rotations” i.e.: Vn € S,V0 € R%: ¢ . ey
2) %+0 and 7 = 0;
3) f(A)NbQ; C L, and ~U(F2)Nb2; C 4.

Then the mapping is “splitting”, i.e. it has the Jorm (f1(z1), f2(z2)) or
(f1(z2), fa(z1)).

Proof. We proceed in several steps:
First step: Ny € &2,V € f~N(T,)N bQ}: f(Ty) C T,

Consider the function ¢(0,, 6,) = (IS - r/)l2 - |;7j|2)2. If ¢ is not con-
stant then there exist 6, € R? such that grad ¢(0p)=+0. We may also assume
that det f’(e® - n')+0. Let us set 0, = (0, 0) for simplicity. The non van-
ishing of grad ¢ implies that f(7, ) is not locally contained in Ty around
f(n'). We may therefore replace 5’ by an arbitrarly close point #” on T,
such that f(n") € bQ, and f(T,) = f (T,y) intersects Ty, transversally at
S("). Since by properties 1) and 3) f(Ty) and Ty, are contained in %5,
it follows that %, contains an open neighborhood of S(n"). This contradicts
2), therefore ¢ is constant and f( T,)CT,.

Second step: V€ &5 fTNTH)NbQF =YY, T,

J=1 =,

It follows from the first step that f~!( T,)Nbey =1, T, , we have to show

that this family of tori is actually finite. Assume to the contrary that there exists

an infinite family of tori (T, o )i=1 such that f(T, ) C Ty for all j. First we may
J J

observe that only a finite number of these tori may intersect any relatively

compact set in bQ7. Otherwise we could find 7, C Q7 such that, after taking

some subsequence, lim Ty = Ty. Then f(T,;) C T, and this is impossible
J

since there are points on T,y where f défines a local biholomorphism. Now
we show that f(7,/) = T, for every T, € {T,,;}. Since f(T,/) is obviously
closed in 7, it suffices to show that f (Tyy) is open in T,. Let a € T,y and
b = f(a). According to Proposition 1.1 there is an open neighborhood V of a
such that W =: f(¥) is an open neighborhood of b. By the above observation
we may assume that (UQT,’;)O V=TyNV, thus WNT, = f(VN T,/) and
f(T,) is open in T, at point b.

We are now in order to show that UaT,,; is finite. Indeed, if this fam-
ily is not finite then # admits an infinite number of preimages in bQj. Le!
Mis---s Myyy be (m+ 1) distinct preimages of 4 in bQ7 where m denotes the
multiplicity of f in Q. It follows from the proof of Proposition 1 that therc
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are open neighborhoods V; of #/  such that V;NV; =0 for j+k and f(V;) are

open neighborhoods of #. Then any point in (ﬂ f(V;))N &, admits (m + 1)
preimagese in €; this is impossible.

Third step: ¥ € %3 : UY\Dyy € £7'(Dy) € f7I(T,).

For any compact K C C%K denote the polynomially convex hull of K. It
is well known that K coincides with the hull of K with respect to the class
of continuous purisubharmonic functions on C?: 2SH,(C?). For convenience
we shall note f~'(7,) = K. The maximum principle applied to po f, where

p = max(|z;|* = |m [, |22 - In2]*), shows that f[U’lvD ] C D,. We shall now

establish the second inclusion. Let p € 254 ((C?) be such that p < 0 on
K. Since f is proper, we may define a p.s.h. function ¥ on Q by setting :
¥(z) = sup{p(w),w € Q and f(w) = z}.

Let 79 be a fixed point in T, and let (z,) be a sequence of points in €,
such that limz, = no and lim,,sup ¥ = lim ¥(z,). The mapping f being
finite, there are points w, € €, such that f(w,) = z, and Y(zp) = p(wp).
After taking some subsequence we may assume that lim w, = n’ € K, then
limyysup ¥ = lim ¥(z,) = lim p(w,) = p(y’) < 0 and therefore ¥ < 0
on D, by the maximum principle. In other words we have proved that
£ UD)c K.

Fourth step: The mapping is splitting.
It follows from the second step that f~!(T,) C U, : ,,/ U {z1z = 0}. On the
other hand, the hull of U / U {z12; = 0} coincides with K U {z;z, = 0}

where K denotes the logarlthmlcally convex hull of Uj:l ! (see [15]). Thus,

one sees from the third step that there are real numbers ry, ry, r|, r5 such
that, after a possible permutation of variables, f{|wi| < ri,|wa2| = r} C
{21l < Iml,|z| = [n2l} and f{lwi| = ri,jwa| < 2} C {lail = Iml. || <
[72]}. 1t readily follows from these inclusions that 'C T and % ; are identically
zero on . n

Remark 1.3. 1t follows from the three last steps in the above proof that, if
there exists # € bQ3 such that f(T,) C T, for any n' € f ~I(Ty), then the
mapping f is splitting. This will be useful during the proof of Proposition 2.1.

2 Regularity of boundaries outside coordinate’s hyperplanes

The sets of tori in bQ;(j = 1,2) in a neighborhood of which bQ} are not
real analytic or, when bQ* are real analytic, not strictly pseudoconvex will be
shown to be “small” in the sense of Proposition 1.2. This way, we shall prove
that, if the mapping is not splitting, then both b} and bQ3 are nicely regular.
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Proposition 2.1 Let Q| and Q, be bounded, complete pseudoconvex Reinhardi
domains in C2. Let f: Q, — Q, be a proper holomorphic mapping. If f is
not splitting then bQ; are real analytic and strictly pseudoconvex.

Proof. We first establish the real analyticity of bQ;. Denote by #; the set of
points in b€} in a neighborhood of which bQ; is real analytic. Let .%; denote
the complementary of #; in b&2;. The set % and ¥, are obviously invariant by
rotations. In view of Proposition 1.2, we can prove that #; are empty by show-
ing that & = %, = () and that f(H) N bQ; C Lo fTUSH)NbY C &)
Let us show that %, is dense in bQ3. Pick n € bQ;, we may assume that
SUT)n bQ7 #0 since the set of points satisfying this property is clearly
dense in bQ;. The mapping f being not splitting, it follows from Remark 1.3
that there exists #' € bQ} such that f(y') = nand f(T,) ¢ T,. Thus, we may
find " € T, such that f(n") is arbitrarly close to 7, w and the gradient of the
function [|£1(e « n")2—[m [1+[| f2(€” + n")]2~|n2|?] does not vanish at 6 —

(0,0). Assume, for instance, that (“’L(’l)o—o | f1(eyl, 1Y) +0. Then the map-

ping ¥: R’ — bQs defined by ¥(1, u, v) = [e" f1(e"ny, ny), e f2(e™n!, )] is
a local parametrization of Q3 at f(n"). (A straightforward computation shows
that ¥’ has rank 3 at the origin). Thus f(5") € %; we have shown the density
of %, in bQ5 and therefore % = (. Let us now prove that f(%)NbQ; C %,.
Let ' € %, since det f’ cannot vanish identically on some neighborhood
of #' in T,,, we may find n” € T, arbitrarly close to 5’ and such that det
S'")£0. Thus f(n') € %N bQ; = &,. Since, by Proposition 1.1, f is
locally open on bQF, & = () follows from %, = . It remains to show that
F~N(FH)NbQ; € & ). Let f' € Ry, we have to prove that n =: (') € %.
If det f(n")+0 this is clear. It not, let Z, be the connected component of #’
in {z € Q| s.t. det f'(z) = 0}, where @, denotes a neighborhood of @, on
which f* extends. Let U be a neighborhood of n' such that U N bQ; C A,
it suffices to show that f (Zy NU) is not a neighborhood of # in T,. If this
would be the case then, after shrinking U, we would have f(ZyNU)CT,
and the maximum principle applied to exp [%IL + % = 2] on Z, would im-
ply that f = 5 on Zy. It would follow from the first step of the proof of
Proposition 1.1 that Zy C bQy, but this is impossible.

We now prove that bQ; are strictly pseudoconvex. Denote by Z; the set
of strictly pseudoconvex points in bQ;. Let &; = %IC n ﬁj N b&2;. We shall
again use Proposition 1.2 in order to show that & are empty. Since ; are
obviously of empty interior and are invariant by rotations, we only must check
that f(#1) N b2 C & and f~!(F)NbQ; C F). It is actually enough
to prove the following inclusions: f(%;) N b5 C Ry and f(A NbQY) C
S . Since the mapping cannot branch at strictly pseudoconvex points (see [8].
Lemma 4), the first inclusion is clear. For the second one we just use the fact
that for any #' € bQ,, there are points on T,, which are arbitrarly close to 7’
and where det /’ does not vanish. L
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3 Holomorphic tangent vector fields on Reinhardt hypersurfaces

Let ¥ be an open set in C* and S be an hypersurface defined by S =:{(z, w) eV
s.t. p(z, w) = 0} where p is a smooth real valued function on ¥ with non
vanishing gradient on S. An holomorphic tangent vector field for S defined on
V is a vector field of the form:

0 =a(z, w)a + b(z, w)——

where a and b are holomorphic functions on ¥, which satisfies the following
tangency condition:

p(z, w) =0 = Re |a(z, w)—(z w) + b(z, w) (z w)| =0.

We shall also have to consider finite-valued holomorphic tangent vector
fields. Let us describe this notion in a concrete situation. Consider a domain Q
in C? and an analytic subset 4 of codimension 1 in Q. An holomorphic vector
field Q on Q is said to be m-valued if:

L. it consists of m holomorphic branches near any point of 2\A4 and each
of these branches may be holomorphically extended along any path in Q\A4
always staying within the values of Q.

2. the components of Q are locally bounded on Q.

Such vector fields naturally arise by pushing forward holomorphic vec-
tor fields by proper holomorphic mappings. If f:Q, — , is a proper holo-
morphic mapping and Q = a(‘— + b%, then the vector field f.(Q) defined
by (f« - O)z, w) = f'of~(z, w). O outside f~'[f({detf’ = 0})]=:4 is an
m-valued holomorphic vector field on Q,.

We shall say that an m-valued holomorphic vector field Q on € is tangent
for bQ at some point 7 if there exists an holomorphic vector field H, defined
on some neighborhood V' of #, which is tangent to for 52NV in the previous
sense and agrees with a branch of Q on ¥V N Q.

The main result of this section deals with the characterization of “el-
lipsoidal” Reinhardt hypersurfaces in C* by means of holomorphic tangent
vector fields:

Theorem 3.1 Let Q be a complete, pseudoconvex, bounded Reinhardt domain
in C*. Assume that bQ* is strictly pseudoconvex and real analytic.

(o) Suppose that there exists an holomorphic tangent vector field for bQ,
defined on a neighborhood of some torus T,(n € bQ*) and which is not a
rotation vector field. Then, after normalization and a possible permutation of
variables, Q takes the form: Q = {|z|** +|w|** < 1} where a > 0 and n € N.

(B) Suppose that there exists an m-valued holomorphic vector field Q
on Q which is tangent for bQ* at any point of some torus T, a(n € bQ*).
If, moreover, Q has the following form: Q = a(z'", wlir) L 4 b(z‘/' wlir) L
Where a and b are holomorphic functions on Q and t, ¢ € N*, then
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Q = {lz** + |w|* < 1} where a > 0, r € Q", after normalization and
a possible permutation of variables.

We shall use the following technical lemma for proving this theorem.

Lemma 3.2 Let ¢ :]0, 1[—]0, +o0[ be a function which satisfies the following
differential equation:

(i) o' [oB) — t¢'A1] + [@B, — to' 3] = 0

where k, | € Z;t,0 € N and A, 4, B), B, € C.
Assume, moreover, that ¢ satisfies the Jollowing boundary conditions:

(ii) ’lirr(l)tqo’(t) =0.
i I g3
(iv) ’lirr(l) o) =1, tlm} o(t)=0.

Then, if k* + I>+0, one has: ¢ = (1 — /) or ¢ = (1 — Pyl where
p €[0,1].

Let us start by the proof of Theorem 3.1. The boundary 5Q may be de-
scribed by an equation |w|?> = ¢(|z|?). Since Q is pseudoconvex, ¢ satisfies
the conditions (ii) and (iii) of Lemma 3.2, the condition (iv) results from nor-
malization. Let Q =: a(z, w)% + b(z, W)% be an holomorphic vector field
satisfying the assumptions of part («) of our theorem. The holomorphic func-
tions a and b may be expended in Laurent series in some corona neighborhood
Vy of T,. Thus, we may write:

0 0
0= Zaklz"wlgz- + Zbklzkw’% .
After parametrizing bQ* by z = re™, w = pe®®, p? = @(+2), the tangency
condition
Re[wb(z, w) —2¢'(|z|*)a(z, w)] =0 on ¥, NbQ
becomes:
Re Zei(ku+lu)(bk,l+lp[+2"k _ ak+l,lrk+2p[(l)l(r2)) =0.
k1

The vanishing of the above Fourier series in (u,v) yields to the following
family of equations:

142k k+2 1 1,2
b 1s1p™ " — a2l o' (%)

= 42—k _ - —k42—1 0.2
Fokmt1p”™ T — A g, g P(r)=0.
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Since ¢ is real analytic on ]0, I[, these equations, which are a priori sat-
isfied on some neighborhood of || = r, are actually satisfied on ]0, 1[. After
multiplying by #*p' and setting 1 = r> we obtain the following differential
equations on ]0, 1[:

o' [ @by i1 — 19 ag1 1]+ [@0h g1y — 19'a@) 1] = 0.

Since Q is not a rotation vector field, it contains other non zero terms than
al_ozé or bo‘,w(.,iw. Thus, one of the above equations must be satisfied for
k=0 or /40 and the conclusion follows from Lemma 3.2 with 6 =7 = 1.

In the case of some vector field satisfying the assumptions of part (f8), the
same computations yield to equations of the following form:

M 0" (b 1hg — 19 p s 1) + (9Dt 51 — 19— ] =0

and the conclusion is also obtained via Lemma 3.2. ]

We now give a proof of Lemma 3.2.
Since equation (i) keeps the same form after multiplication by ¢~/
we only have to consider the following cases:

(1) k> 0 and /%0,
(2) k>0and I =0,
(3)k=0and / > 0.

(1) Making ¢ — 0 and using (ii) and (iv) one sees that B, = 0. Dividing by
', making ¢ — 1 and using (ii) and (iv), one gets 4, = 0. Then the equation
becomes @B, — t¢’A; = 0, making ¢t — 0 and using (ii) and (iv) one obtains
B] =0 and Al =10,

(2) Like in case (1) one sees that B, = 0. Equation (i) may therefore
be written as t**[pB| — t¢'A,] — t¢'4, = 0. Dividing by ¢, making ¢ — 1
and using (iii) and (iv), one gets 4, = —A; =: A. Thus the equation is:
AQ'[1 — tH1] = B](pt‘é‘” and, if the constants 4 and B, are not both equal to
zero, ¢ must be of the form (1 — %) for some f €]0,1].

(3) The equation is ¢"°[pB) — t¢p'4,] + [¢By — t¢'A;] = 0. Dividing
by ¢, making 1 — 1 and using (iii) and (iv) one gets 4, = 0. Then, making

t — 0 and using (ii) and (iv) one gets B, = —B; =: B. The equation may
therefore be written B(1 — ¢//7) = A,t¢'¢7 =" and one has (1 — t#ya/1 for
some f§ > 0. |

In order to apply Theorem 3.1 to our problem we will have to extend
germs of holomorphic tangent vector fields along tori. The following proposi-
tion shows how this is possible.

Proposition 3.3 Let # be a real analytic, strictly pseudoconvex Reinhardt,
hypersurface in C". Let X =: ZL@,-(Z)% be some holomorphic vector field
which is defined in a neighborhood U of some point n € # and tangent to
H. Then X may be extended, as an holomorphic tangent vector field for #,
along any path lying in the torus Ty,
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Proof. Let V and W be open balls in C” centered at n such that V. c W c U.
We shall show that X may be holomorphically extended on any open set of
form ;o€ « W =: W, where © > 0 and 6 € R are arbitrarily cho-
sen. This will be sufficient since any path in 7, » is contained in some open
set of the form: Uj."zl(Wj)g{Tj, where W) = W and W, = %% . W;. Let
us assume that X is extendable on W »(T0 > 0) but not on WY, for any

T > 7o. In the remaining of the proof we shall identify X with its exten-
sion on W, . Consider a sequence (R p)p Of automorphisms of J# defined by

- &0 — =»
Ry(z) =:€'? - z,& > 0. The holomorphic tangent vector fields X , =: (R,).X
are defined on R ,( W(f )= W%TO +5 but are not extendable on ng’t v for any

0

w £ cp k" We
claim that X, X 2,.--,Xn,X are R-linearly independent on ¥ for any N € N*.
To prove this, suppose that 0;.X | + X, +---+ayXy+oX =0 on V for some
real numbers a,...,ay,a. If x40 then X coincides with some linear combina-

tion of Xy,..., X ~ on V. Let us denote ¥ this combination. Then, Y is defined
onﬂZ:,Wo =Wl . butX="FonVcwWl nw’ .. thisshows

%,to-f—;; & 70+ % 0,79 &0+ %

T > 1. If & is sufficiently small, we may assume that V C N P21

that X may be holomorphically extended on Wé’ e Since this is not, we

have « = 0 and o, X +---+ ay Xy = 0. By iterating this process, we find that
oy = 0,...,a; = 0. This leads to some contradiction since the Lie algebra
of holomorphic tangent vector field to # N V is finite dimensional (see [7]
or [16]). |

4 Proofs of the main results

Proof of Theorem 1. We first consider the case of pseudoconvex domains.
Then we shall extend our result to non pseudoconvex domains by using the
following lemma whose proof is defered until the end of the section.

Lemma 4.1 Let f:Q, — Q, be a proper holomorphic mapping between
domains in C". Assume that the hulls of -holomorphy Q,,Qz of Q1,9
are_domains in C". Then f extends to some proper holomorphic mapping
f:0, - @,

Let Q; and ©, be bounded, pseudoconvex Reinhardt domains in C2. After
normalization we may assume that

{(0,w);w € 4} U{(2,0),z€ 4} C Q; C 4> for j=1,2

where 4 denotes the unit disc in C. Let /:Q, — Q, be a proper holomorphic
mapping. Let us recall that, according to Bell [4], f holomorphically extends
to some neighborhood of Q). When f is splitting and Q, = 42, one easily
checks that 2, = 4? too. In that case it is well known that the components



Proper holomorphic mappings 353

of f are finite Blashke products. Thus, all we have to show is that, if f is
splitting and Q; + 42, then f has the form (e"z", ¢"w”) and, that if f is not
splitting, then @, €2, are ellipsoids.

Let us first assume that f = (f(z), f2(w)). Since {(f1(0), f2(e?));0 €
[0,27]} C b€, one has |hy(e)| = R, on [0,27] for some R, €]0,1]. If Q, & A?
we may find zg € 4 and r €]0, 1] such that S =: {(z,re'’); 0 € [0,2n]} C bQ;.
Then f(S) C b€, and therefore | f2(re™)| = R, on [0,27] for some R, €]0, 1].
Using the maximum modulus principle one sees that R, < R; and that f,
properly maps the corona {r < |w| < 1} to the corona {R, < |w| < R}. It
follows that f, has the form f,(w) = Bw" where B € C* and n € N (see, for
instance, the proof of Theorem 14.22 in [14]). The same arguments show that
f1(z) = Az™ and, by our normalization, |4| = |B| = 1.

Let us now assume that f* is not splitting. By Proposition 2.1 bQ} and bQ}
are real analytic and strictly pseudoconvex. Let n € bQ; N f (b2} ), according to
the Remark 1.3 we may find ' € Q] such that f(T,/) ¢ T,. Since f~'(T,)N
T,y is closed in T, and T,/ is connected, f~'(7,)N T,/ cannot be open. Thus
we may find #” € T,y such that f(y") € T, but f(V NT,») ¢ T, for any
neighborhood V' of »”. Without any loss of generality we may assume that
n" = n'. Since bQ} and bQ; are strictly pseudoconvex, f induces a local
biholomorphism from some neighborhood of #’ onto some neighborhood of 7,
let us call g its inverse. Then, for every (sufficiently small) neighborhood U
of n, one has g(U N T,) ¢ T,/. Otherwise g would induce a diffeomorphism
between some neighborhood of # in 7, to some neighborhood of #’ in T,y and
we would have f(V' NT,) C T, for ¥ small enough. As a consequence we
may find o, # € R and & > 0 such that the curve {g(e™n, e#'n,); t| < &} is
not contained in 7,y and, therefore, the vector field g*[iazﬁ + i[iw(,_‘—;,] cannot
coincide with a rotation vector field near #'.

Let Q; be an open neighborhood of €, on which f holomorphically ex-
tends. Consider the analytic sets Z, and Z, in Q, which are respectively defined
by {det f/ = 0} and {f,f> = 0}. Since f is locally biholomorphic on Q,\Z;,
we may define an holomorphic vector field Q on Ql\Zl by pulling back the
vector field zocz(i—z + iﬁw“—ww by f:

0

wl, 0 ., @

o=7f [to(za +lﬂw6_w] .
By construction, Q is an holomorphic tangent vector field for bQ} on Q\(Z,u
Zy). According to Proposition 3.3, every germ of Q at some point " €
T,y\(Z, U Zy) may be holomorphically extended along any path in Tp. 1t fol-
lows that the components of Q are locally bounded holomorphic functions on
V\(Z, U Z,) for some neighborhood V of T,r. By the Riemann Removable
Singularity Theorem, Q extends across Z; U Z; and defines an holomorphic
tangent vector field for bQ} on V. This vector field is not a rotation vector
field since, by our choice of « and f, it does not coincide with such a vector
field near #'. Thus, part () of Theorem 3.1 shows that Q; is an ellipsoid of
the form {|z%* + |w|** < 1}, a > 0,n € N.
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We shall now end the proof in the pseudoconvex case by showing that Q,
is an ellipsoid too. We may find points Ny € bQY and ny € b€ such that
o = f(ng) and a vector field iocz% + iﬂwp‘—:v =: X such that f,(X) does not
coincide with a rotation vector field near ). This follows from the fact that f
is not splitting by an argument similar to the argument used in the study of Q.
Now, the vector field Q =: f.(X) is a well defined m-valued vector field on
;. Let us show that Q is tangent for b2, near any point 1 € Q5. If n € bQ;3,
there exists 1’ € bQ such that f(n') € T, (since f(bQ, N {zw = 0}) cannot
contain 7,), then f induces a local biholomorphism from some neighborhood
of ' to some neighborhood of f(#') =: /. Let us still denote by f this local
biholomorphism, the vector field f,(X) is tangent to b€2; near 7§ and extends
Q. This shows that Q is tangent to Q, near 7, using Proposition 3.3 we see
that Q0 may be holomorphically extended to some tangent vector field to b,
near any point of 7; = T7,. It also follows from the above arguments that
the branch set 4 of Q cannot intersect bQ3; the maximum modulus principle
applied to the function zw on the analytic set 4 shows that 4 C {zw = 0}
This implies that Q satisfies the assumptions of part() of Theorem 3.1, thus
(%, is an ellipsoid of the form: {|w|? + |z[* < 1} where b > 0 and r € Q".
The relation between the exponents (a,n) and (r,b) follows directly from the
result of Dini and Primicerio ([9]).

Finally, it remains to remove the assumption of pseudoconvexity. Let
S:€2 — €, be a proper holomorphic mapping between bounded, complete
Reinhardt domains in C?. By Lemma 4.1 f extends to some proper holo-
morphic mapping f:Q, — Q, between bounded, complete pseudoconvex
Reinhardt domains. We must prove that, if one of the domains Q,, @, is
not pseudoconvex, then f has the form (4z", Bw"). If @, or Q2 is not pseudo-
convex then bQ,, or sz contains analytic sets. In that case, one of the do-
mains f)l, Qz is not an ellipsoid and therefore, by the first part of the proof, the
mapping /: Q; — Q, is splitting. We now proceed by contradiction. Suppose
that the mapping f* does not have the form (4z", Buw" ). Then 7 does not have
this form too and, always by the first part of the proof, one has Q, = Qz = A?
after some normalization. Moreover, ©, cannot coincide with A2 otherwise we
would also have Q, = 42 since f is splitting. Thus bQ; contains a circle
{(z0, re'); 0 € [0, 2n]} =: S where 0 < r < 1. Since f(S) C bQ,, one easily
sees that w — (f’,(zo),fz(w)) properly maps the corona {r < |w| < 1} to
some corona {R < |w| < 1}. It follows that f, has the form Bw”. Similar
arguments show that f 1(z) = A4z™; this contradicts the above assumption. M

Proof of Theorem 2. According to Lemma 4.1, we may restrict ourselves to
the pseudoconvex case. Let f:Q — Q be a self proper holomorphic mapping
of some bounded, complete pseudoconvex Reinhardt domain in C2. Assume
that 2 is not a bidisc. By Theorem 1, two cases are in order : Q is an ellipsoid
of the form {|z|* + |w|> < 1} or f has the form (4z", Bw"). In the first case,
one knows that f must be an automorphism (see [9]). In the second, after some
normalization, we may assume that {(0, w);w € 4}U{(z,0),z € 4}y c Q c A%
Since the circles {(0, ), 6 € [0, 27]} and {(e", 0),0 € [0, 2n]} are mapped to
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bQ one has |4| = |B| = 1. As Q% A%, we may find a point (zg, wy) € bQ such
that |wo| < 1 and [z| < 1. Considering the sequence of iterates f*(zo, wo)
one sees that, if (m, n)#(1, 1), then one of the points (0, 0), (0, wp), (20, 0)
must belong to Q. Since this is not, one has m =n =1 and f is a rotation.

We now close this section with the proof of Lemma 4.1.

The mapping f extends to a mapping f/ which is defined on Q). The
inverse of f is an algebroid mapping which we denote g : Q, — Q,. Each
component g; of g is an algebroid function on Q, whose values over a point
w € € are solutions of an equation Q;(w, z) = 0 where Qi(w, z) = w" +
Ajma1 ()W 4 +aj0(z) is a pseudopolynomial with coefficients in ('(,).
Since the functions a;; extend holomorphically to Q,, we see that g extend to
some algebroid mapping § on ©Q,.

The properness of / immediately follows from the two following inclusions:
§(2) C @, and f(22) C Q,. Let us justify the first one. Assume that there
exists zj ¢ Q;, such that z} € {g(w)} for some w) € Q,. If zj ¢ Q; and since
{g(w)} depends continuously on w, we may replace wq by an arbitrarily close
point which lies outside of the branch set of g. Let a € Q; be some point in
a neighborhood of which f defines a local biholomorphism. Since g extends
to some algebroid mapping on Q,, there exists a path y : [0, 1] — Q, from
f(a) to wy, which does not intersect the branch set of §, such that the branch
of g which maps f(a) to a extends holomorphically on some neighborhood of
7([0, 1]). Let us not g, this extension. Let #y €]0, 1] be such that g.(t) € b,

and §.([0, #]) C Q,. Since Q; is a domain of holomorphy there exists an

holomorphic function ¢ on Q,, which is unbounded on g,([o, to[). The function
¢ =: @ og is algebroid on Q, and therefore extends as an algebroid function
on ©,. The branch of ¢ which takes the value ¢(a) at f(a) extends along
2([0, t[) where it coincides with ¢ o g.. This is absurd since ¢ o g. is not
bounded on y[(0, £[).

So far we have shown that §(Q,) C Q. If there exists zp € b9, such that
2y € {g(wg)} for some w) € Q,, we may find a path 7 : [0, 1] — @, from zg
to wy such that ([0, 1[) does not intersect the branch set of g(w, may belong
to the branch set of ). As above we can extend a branch of § along ([0, 1])
and obtain a contradiction by the same method.

The second inclusion may be proved by following the same line, the ar-
gument is even simpler since, in that case, we are dealing with mono-valued
mappings and functions. |
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