D
[-A elt

Werk

Titel: Higher homotopy commutativity in localized groups.

Autor: Saumell, Laia

Jahr: 1995

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0219|log20

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Math. Z. 219, 203 - 213 (1995)

Mathematische
Zeitschrift

© Springer-Verlag 1995

Higher homotopy commutativity in localized groups

Laia Saiimell

Department de Matematiquies, Universitat Aditonoma de Barcelona, E-08103 Bellaterra,
Barcelona, Spain

Received: 8 September 1993; in final form: 31 Jaunary 1994

1 Introduction and statement of results

Let G be a simply connected Lie group of rank > 1. It is well known that G is
not homotopy commutative. Instead, if we consider G localized at a prime p,
Gip), the localized Lie multiplication whether may be homotopy commutative
or not.

In [6] McGibbon give a complete description of the homotopy commuta-
tivity or not of G, for all primes p. Since the localization commutes with
the products and a product of topological groups is homotopy commutative if
and only if each factor is also homotopy commutative, it suffices to study the
case G simple.

1.1 Theorem (McGibbon [6]). Let G be a I-connected, simple Lie group of
type (2ny,...,2n;) where ny < --- < n;. Then

1) If p > 2n; then Gp) is homotopy commutative.
ii) If p < 2n; then G, is not homotopy commutative, except in two
cases: Sp(2), or equivalently Spin(5) at p =3 and G, at p = 5.

where the type means that Gy ~ (S =" x -+ x §2=1y o |

In the same paper McGibbon gives also a partial result for finite loop spaces
and loop multiplications:

1.2 Theorem (McGibbon [6]). Let (X,u) be a loop space where X has the
homotopy type of I-connected, p-local CW-complex, with type (2ny,...,2n;)
where ny < --- < n;. Then

1) If p > 2n; then pu is homotopy commutative.
i) If np < p < 2n; then u is not homotopy commutative.

Where the type means Xy ~ (S 7" x -+ x §2=1yq |
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Recall that there are some generalizations of the concept of homotopy com-
mutativity to higher homotopy commutativity, as are the C "-spaces of Sugawara
and the C,-spaces of Williams, both for n = 2 correspond to the usual concept
of homotopy commutativity.

In this paper we generalize the results of McGibbon on homotopy commuta-
tivity to higher homotopy commutativity in the sense of Williams. The reason
why we work with the C,-spaces of Williams, and not with the C"-spaces
of Sugawara (which is a stronger concept of higher homotopy commutativity,
for example, for loop spaces “C"-spaces of Sugawara” implies ”C,-spaces of
Williams” [7]) is owing to the fact that we can relate it with the generalized
higher order Whitehead product, and it is also more operative to use.

The results obtained are the followings, where in both cases the type
also means that the rationalization is homotopy equivalent to (S2-1 5 .o
821~y gy

Theorem A. Let G be a I-connected, compact, simple Lie group, different
from Gy at p =5, of type (2ny,...,2n;) where n, S---Snj,andletk =2
be an integer. Then

1) If p > kn; then G(,) is a Cy-space.
i) If p < kn; then G(p) is not a Cy-space, except in the case Sp(2), or
equivalently Spin(5) at p=3 and k =2. |}

For the case G, at p =5 McGibbon [6] proved that is homotopy commu-
tative, and Hemmi [2] conjectures that is a Cy-space but not a Cs-space.
And we also prove:

Theorem B. Let (X, u) be a loop space where X has the homotopy type of 1-
connected, p-local CW-complex, with type (2n, ...,2n;) where ny < --- < n,,
and let k = 2 be an integer. Then

1) If p > kn; then (X,p) is a Cy-space.
) If ny < p < kny then (X,p) is not a Cy-space. |

The proves are essentially founded in the proofs of McGibbon for the usual
homotopy commutativity. We generalize his results.

To do it, in Sect. 2 we introduce the generalized higher order Whitehead
product. Section 3 contains the definition and the background what we need of
the higher homotopy commutativity in the sense of Williams and their connec-
tion with the higher order Whitehead products. Section 4 concerns the use of
Steenrod operations in order to prove the non-higher homotopy commutativity.
And finally, Sect. 5 is devoted to the proof of Theorem B and Theorem A.

2 Generalized higher order Whitehead products

The notation and definitions which we will introduce in this section is following
the one of Porter in [8], where he introduced the concept of higher order
Whitehead products.
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We shall assume that all spaces are countables, connected C W-complexes
with base point, and all maps are continuous and base point preserving.

First we will stablish some notation. Let be Ay,...,A, topological spaces,
we will denote by T;(A4,...,4,) the subspace of 4y x- - - x4, consisting of those
points with at least i co-ordinates at base point. Note that T, is the cartesian
product, 7; is so called the fat wedge, T,_; is the one point union, and 7,/T) is
the smash product. And, of course, there is a natural transformation Ti—y — T;.

We say that a map ¢ : T\W(ZAy,...,2Z4,) — X,i < n, is of type (f1,..., fn)
or more briefly ¢ € (f,..., f,), if pk; ~ f; for j = 1,...,n, where kj:ZA4; —
Ti(ZA,,...,2ZA,) is the canonical inclusion.

Porter defined the generalized higher order Whitehead products by using
natural transformations of functors and categories, but we can look at it as:

2.1 Definition [9]. Given a map ¢ : T\(ZAy,...,24,) — X,n

2, the gen-
"-Whitehead product w(¢) is an element of [~ A,

>
A A A X]

eralized n’
and it is the obstruction to extend fto X4, x - x XA,

2.2 Definition [9]. The set of n” order Whitehead products of type (f1,-.., fn)
is denoted [f,..., f,) and defined by

[fls-”s.fn] = {(U((P)I(P : TI(ZAl,aZAn)—))(»(p € (fla--wfn)} s

Note that w(¢) is well defined element while [f,..., f,] is a subset (per-
haps empty) of [Z"~14; A--- A 4,,X]. And, of course, if n = 2 it is agree to
the usual generalized Whitehead product.

Let (Z4), be the n™ reduced product space of X4 obtained by identify-
ing points of (X4)" with each other if and only if they are the same when
occurrences of the base points are disregarded. Then there is a natural map.

T(ZA, 7., ZA) 2(Z4),_; .
And hence we can define
2.3 Definition [9]. 4 map ¢ : T(ZA,".,24) — X is said to be reducible if
there exists a map W : (24),_; — X such that ¢~ o p;
Porter in [8] proved as a corollary of a Theorem:
2.4 Proposition (Porter [9]). If a reducible map ¢ : T(ZA,M,24) — X

may be extended to T;_\(XA,".,ZA) then the extension may be chosen to be
reducible. |

Then we can prove the following result, which we will need in order to
prove Theorem B:

2.5 Proposition. Let [ : X4 — X be a map.
If[ZFTANRONANXI=0, forall k, 2 < k < r, then 0 = Lf, ., £1 for all
k2<k<r
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Proof. Since [f, X, f1€ [EMA A R.AX] =0, it is plain that if [f, X, f] is
not empty, is zero. Hence, it suffices to prove that for all k, 2 < k < r there
exists a map

ok TI(ZA,0,Z4) - X

of type (f, X, f).

For k = 2 is trivial, because [ f, f] € [ZAAA,X] = 0 is the usual Whitehead
product, and of course it can not be empty. Hence there exists an extension
®, : ZA x A — X which it is clearly reducible, and consequently we can
construct a map

03 : T\(ZA,Z4,54) — (Z4), — X
T /"
ZA x 2ZA

which is a reducible map of type (f, f, f), is reducible, and w(¢3) = 0.
Assume now by induction that there exists a reducible extension

@r— : TiIEAY V. ZX) - X

of type (f,*=1), f). Since w(@x—1) € [Z¥24NZDAA,X] =0, then w(p_;) =
0. And by Proposition 2.5. we obtain that there exists a reducible map @, _,

b
Fpoy i ZA XTI XTA - (ZA)s, 5 X

Consider now the map

B, : Ti(EA, 0, ZA 5 zA)_ 5 x
Pi

which is of type (f, X, f), is reducible and w(g) € [Z*'4 A4, X] =
0, then @4 can be extended to Z4 x K. xX4,0 = w(¢i) € [f, )., f], and
furthermore the extension may be chosen reducible. [

3 Higher homotopy commutativity

Williams in [12] introduced a concept of higher homotopy commutativity in
the category of CW-monoids. He has given ([11]), [12]) many different but
equivalent descriptions. The following theorem recalls some of his results and
we can use it as definition.

3.1 Theorem-Definition [7]. Given a 1-connected countable CW-complex X,
and an integer n = 2, the following statements are equivalent:
a) The loop space QX admits certain forms

O Kix(QX) - QX i=2,...,n

defined by Williams [11), using Milgram’s permutahedrons K;.
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b) There is a sequence of maps
QX)) = P(2X) k=1,...,n

where (), denotes the James n-fold reduced product, and Py the k-projective
space, that starts with the identity map when k = 1, and commutes with the
usual inclusions.

¢) The composition

QX — QXX = Q[(ZQX )] 4 Q[(ZQX),]

has a left inverse that is an A,-map

d) Every generalized Whitehead product on X of order < n, contains
zero.

e) Every generalized Whitehead product on X of order < n, equals zero.

We say that a loop space QX with the above properties is a C,-space of
Williams, or to simplify, a Cy,-space. |

As in the case n = 2, we prove a connection between higher homotopy
commutativity in a loop space X and higher Whitehead products on its classi-
fying space BX, given by:

3.2 Theorem. Let X be a loop space with the homotopy type of a countable
connected CW-complex, the following statements are equivalent:

1) X is a C,-space.

2) The Whitehead product 0 € [1,.".,1], where 1 : X — BX is the adjoint
of X 2 x ~ QBX.

3) There is a map ¢, : ZX x ). xEX x — BX whose restriction to each
Jactor is homotopic to 1.

Proof. 1) = 2) It is an obvious consequence of Theorem-Definition 3.1.
2) = 3) Since we assume that 0 € [1,.")., 1], there is at least one map

¢: Ti(ZX,",2X) — BX
such that w(¢e) =0, and ¢ € (1,").,1).
Now, because of w(¢p) = 0, there is a map
¢:ZX x M.xEZX — BX

which extends ¢ and of course, whose restriction to each factor is homotopic
to 1.
3)= 1) Letbe f;:XA; — BX amap, i = 1,...,k, where k < n.
Consider f,: 4; —» QBX ~ X the adjoint of f;, then

A

4. sx LBy

is homotopic to f;.
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By the assumptions, there exists a map ¢, : X x . xZX — BX whose
restriction to each factor is homotopic to 1. And obviously there exists also

Gk ZX X D xIX o EX x D.oxIX BBY k <n

whose restriction to each factor is homotopic to 1.
Consider now the map

I x

. I f
G324 % ..ox 24, TS sy« b sy BBy

whose restriction to each X4; is homotopic to f;. Let ¢ be the composition

G Ti(ZAy,.. A) > ZA, X - x A, S BX k <n

hence ¢ € (fi,..., fi) and since ¢ is an extension of @, (@) = 0. Conse-
quently we get that 0 € [f,..., fi] for k < n. Moreover by the Theorem-
Definition 3.1. (d) we obtain that X is a C,-space in the sense of Williams.

4 Whitehead products and cohomology operations

In general, it is very difficult to compute generalized Whitehead products, but
in certain cases is easy to prove that [1,...,1] does not contain the zero. To be
exact, the non existence of the map ¢ of Theorem 3.2 (3) can be established
with the aid of primary cohomology operations. The next result is a general-
ization of Lemma 3.2. [6] of McGibbon, and the proof is also a generalization
of the proof of his Lemma.

4.1 Proposition. Let X be a loop space with the homotopy type of finite CW-
complex (or the localization of such a complex). Let k = 2 be an integer and
p > k a prime, and assume that H.(X,Z) has no p-torsion. If there exists a
class x € H*(BX, F,) and an integer t > 0 such that:

1) P'(x) =0 mod F*.

2) P'(x)*mod (F**! 4 pP'F*)
where F" = F' ™. F' is the n-fold product ideal of F' = H *( .F,) and (F**'
+P'F*) denotes the graded vector space in H*(BX,F,) spanned by the ho-
mogeneous elements of the subspace F**' and P'F*.

Then [1,X).,1] does not contain the zero at p.

Proof. All cohomology groups considered here will have Z/pZ coefficients.
and to simplify we will denote H*( ) = H*( ,Fp). Since we suppose that
H*(X,Z) has no p-torsion, then H*(BX) is a polynomial algebra with even
dimensional generators.
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Assume that the result what we want to prove is false, then by Theorem
3.1. there is a map

X x B.oxzx 5 Bx

whose restriction to each factor is homotopic to 1.

We will denote by p; : ZX, x -- - x ZX — ZX the projection on the i factor,
and by ¢@;(x) = pf1*(x) for a class x € H*(BX).

Since ¢ restricted to each factor is homotopic to 1, we may write

k
P (x) = ;‘Pi(x) + Zyi, < Vig

where each y;; belongs to the image of p;.

Suppose now that the class x satisfies the hypothesis of the proposition,
since the cup products are trivials in H*(Z X), it follows from the condition
(1) that P'¢@;(x) = 0 for all i, and hence

Plo*(x) =P (Zyil ...yik) .

From now on, we want to prove that P'(}", y;, ... ;) C P'¢*F*, and since
the kernel of @* C F¥*! this will be a contradiction to condition (2).
For this is necessary to recall that there is a splitting [3]

;I*(Z‘X) - V’@ VII

where V' = 1* H *(BX) and V" = ¢F?H*(X), where o is the suspension iso-
morphism, and furthermore, remark that this splitting is a splitting as modules
over the Steenrod algebra A7,).

If we apply p; to the splitting and we express y;, = y,fj -+ y,’j’ where y,{j eV
and y,{j’_ € V", then we can rewrite

P'¢*(x) = P'(0) + LP(3) ... 7))

where all the monomials in w involve some y,f; . And we claim that P'(w) = 0.
To show this, and with the same notation as before, consider the decom-

position
FHH*(ZX x - xZX)= @ vo.. vk
& €{101}
where V€ ...V * denotes the subspace spanned by (p}yi)...(pjyx), where
yi € V{ for all i.
Moreover by naturality and the Cartan formula it follows that this splitting
is also a splitting as modules over the Steenrod algebra Al
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Note that P'o*(x)V{... ¥/, because suppose, to simplify, that P/(x) =
aj...a is only a monomial (the general case differs only in notational com-
plexity), then

@*P'(x) = Plo*(x) = (Z(Pj(a|)+ 2ai, ~~al,jk> (Z(Pj(ak)
J j j

+ Eale ...aka>
J
and since the cup products are zero in H *(2X), we get

Plo*(x) = > eia)...o;(a)
I €41k}
LEjp of a%l

but since ¢;,(a;) € ¥/ then all the sumands belong to Vi...V{ while by defi-
nition, P'(w) belongs to its complement, and hence P! (w)=0
Now, if we choose classes )7,], € H*(BX) such that y{l = ¢;( )7,-I) (and this

choice is possible because y{j € V'), we obtain
P'9™(x) = TP (5, .3 = SP(o(F, ) 04(5,) -
Let 6 be a permutation of k letters, and

Tp:2X x - X ZX — ZX X - x ZX

the map which change the factors according to 0. Consequently 7, o interchange
the components ¢;(a) of a class ©*(a), and owing to the fact that all the
generators of H*(BX) have even degree, that in H *(2X) all the cup products
are zero and that P'(x) = 0 mod F* by hypothesis, we obtain that T, , fixes
P'p*(x), thus

Plo*(x)=T;P'o*(x) VOeS;
and consequently

kK'P'o*(x) = 3 TyPlo*(x).
0eS;

Since p > k we can divide by k! and we obtain

* l * * 1 * - -
Plo*(x) = &5 S TiP'9*(x) = = 3 T; P! (Z(pn(y.-,)---tpk(y,»,( ))
k‘ (fGSk k ()Esk i

1 B _ 1, oo
=l (Zogkq’”‘”(y"')"'q"’“"(y’* )) =t <;<p By 2 9 )>

| - - -
= F(p Z:Pl(yil ...y’-k)

and since the kernel of ¢* € F*¥*! hence P'(x) € (F*+! + P'F¥), which con-
tradicts the condition (2).
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5 Proof of main Theorems

Proof of Theorem B, part (1). Since we suppose that p > kn; = 2n; we
can apply the results of regularity of McCleary [4] and we obtain that X ~
Hl{:] s2m=1

If we consider W = V:=1 S~ and i : W — X the canonical inclusion,
since ZW is a retract of ZX, it has a homotopic left inverse 7.

Let j = 10 2;. It is no difficult [6] to see that, due to the fact that j*
takes the module of indecomposables QH*(BX ) isomorphically onto H*(XX),
r may be chosen so that the following diagram commutes homotopically

W
J

r1oN\

X — BX

1

And consequently

OV jl<=0e1,M,1] Y2<n<k.

By the proposition 2.5 we need to compute the p-component of
[ZT'WADAWBX)2[ZT2AWADAWX] for2 <r <k
but since W = \/f:, S2m=1 then

[Z2WADAWXIZTIS 2N 82V A LA St X
= [man, +..420, —2(X)

where n;,...,n; € {n,...,n}.

And since 2n; + ... + 2n;, — 2 is even, the only possibility is that this
groups was of p-torsion. But the bigger group to consider is 7,2, and the
first group of p-torsion is in our case [10] is 74, +2(p—1)—1, and since we have

2ny — 1+2(p—1) > 2n + 2kn; — 4 = 2kn; > 2rn; — 2

all groups are zero, and consequently 0 € [J,...,/].

Proof of Theorem B, part (2). Let nj < p < kn;. By the assumptions [4]
H*(X,Z) has no p-torsion and H*(BX,F,) = Fp[x|,...,x;] where |x;| = 2n;
and n) < ... < my.

We will prove the result by induction. For £ = 2 is the Theorem 1.2. of
McGibbon.

Assume now that it is true for 2 < r < k—1. As a consequence of that for
N < p < (k—1)n; X is not Cx_,-space, and consequently it is not Cy-space
too.

Only remains the case (k — 1)n; < p < kny, but in this case we can
generalize the proof of the Theorem 1.2. of McGibbon.
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Let # be the ideal generated by the classes x; where |xi] < 2n,;. There
must exist some x; where 1 < i < / such that Pl(x;) ¢ ¢, because suppose
not, then P'(,#) C #. Hence by the Adem relation (P')" = n!P" for n < p,
since p > ny, this would imply that (xI') € #, which is impossible by the
definition of ¢

Consider now x a class such that P'(x) ¢ # with minimal degree, then

Pl = x| +2(p—1) > 2p > 2(k — I)n,
IP'@)| = |x| +2(p = 1) < |x| +2p < 2n; + 2kn; < 2(k + 1)n,
thus 2(k — )n; < [P'(x)| < 2(k + 1)n,

and hence P'(x) € F*.

Furthermore if P'(x) € F**! since P'(x) ¢ 7, then P'(x) has monomi-
als formed by x; where |x;| = 2n,, but this is impossible by the right hand
inequality before.

Moreover if P'(x) € P'F* by the same reason as before and that x has
minimal degree between the classes such that P'(x) ¢ J we obtain that it is
also impossible.

Hence x is in the conditions of Proposition 4.1., and consequently X is not
a Cy-space.

Proof of Theorem A. (1) 1t is a consequence of Theorem B.

(2) Also by the Theorem B we know that for ny < p < kn; X is not a
Cy-space.

Hence only remains the case p < n;, but by the Theorem 1.1. of McGibbon
we know that the only cases which are homotopy commutative are Sp(2) at
p=3and G; at p =5, and these are the only cases that we must study.

And it is known that H*(BS p(2),F3) = F4[x4, y5] and by the Adem rela-
tions P?(x4) = x}, and as consequence of Propositon 4.1. we obtain that S »(2)
at p =3 is not a C3-space.

For G, at p =5, we can compute that only two cases are possible: Gy,
is a C-space and is not a C3-space, or is a Cy-space but is not a Cs-space.
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